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Abstract 

In this article, we examine the fractional order of Legendre’s equations by applying the Differential 

Transformation Method (DTM). This method is effective and sustainable in the investigation of 

Legendre’s equations. Series solution could be used to compare the Bessel and Legendre differential 

equations. If 𝛼 = 1 then, to get the solution of fractional order of Legendre’s equation. Generalized fraction 

variation will use to calculate the fraction form of a special function. The results of the Legendre equation 

will compare with the exact solutions at 𝛼 = 1 and also shows that the method is quite precise and reliable.  
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1. Introduction 

Differential equations have emerged as a significant area of study in both fundamental and applied math-

ematics since the middle of the seventeenth century. Even though the topic has been thoroughly studied, 

it is still important for research because of new connections to other mathematical fields, appropriate in-

teractions with other fields, the intriguing evolution of basic concepts and hypotheses over time, the emer-

gence of fresh perspectives in the 20th century, and other factors[1]. 

It may also be used to simulate the onset of cancer and the systemic spread of disease in medical education. 

It may also be applied to describe the flow of current. Economists may find it useful in developing the 

most effective financial plans. These equations can also be used to explain the motion of waves as well as 

a clock[2]. 

Boundary value problems arise in many areas of science and mathematics. In physics, for example, a 

boundary value problem can be used to model the actions of a heat-conducting rod or a vibrating string. 

In engineering, building a support structure or a bridge usually requires solving a boundary value problem. 

Boundary value problems are useful in many fields and provide a useful tool for understanding how 

differential equation-governed systems behave[3]. 

The second order ordinary differential equation is also refer to as the Legendre's differential equation. 

Legendre's technique are used in several fields of applied mathematics, physics, and chemistry in physical 

conditions involving spherical geometry, for instance, the movement of a perfect fluid around a sphere, 

determining the magnetic field due to a given sphere, and determining the heat distributions in a cylinder 
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with its exterior. Legendre's differential equation was developed by Legendre in the last years of the 18th 

century[4]. 

One mathematical strategy that generates a technique based on an electric sequence is the Differential 

Transform Method (DTM). This work undertakes a thorough examination of DTM and its development 

as a productive method for resolving a variety of mathematical issues. Like every other area of 

mathematics, DTM has evolved both longitudinally and laterally. Among other things, it may be used to 

answer fractional, partial, and typical problems in mathematics[5].  

Fractional calculus may be considered because the fractional derivative extends the ordinary derivative to 

non-integer classifications. The equation is converted to a fractional differential equation using the deriv-

ative of fractions operator. Once the differential issue has been transformed into a fractional differential 

equation, it may be solved using a variety of techniques. These methods might include Laplace transforms, 

Mellin transforms, or other integral transforms, depending on the circumstances[6].  

In this research we will find approximate solution of fractional order Legendre’s differential equation by 

using Fractional differential transform method and compare the result obtained with the existing method. 

 

2. Preliminaries 

In this section we discuss some definitions related to our research. 

Definition no 1: [7] The Legendre differential equation also known as second order ordinary differential 

equation is defined as 

(1 − 𝑥2) 
𝑑2𝑦

𝑑𝑥2
− 2𝑥

𝑑𝑦

𝑑𝑥
+ 𝑛(𝑛 + 1)𝑦 = 0. 

Definition no 2: [8]The Differential Transformation of the nth the derivative of the equation f (x) at x0 is 

defined as 

𝐹(𝑛) =
1

𝑛!
[
𝜕𝑛𝑓(𝑥)

𝜕𝑥𝑛
]

𝑥=𝑥𝑜

 , 

   𝑓(𝑥) = ∑
𝑓𝑖(𝑥)

𝑖!

∞

𝑖=0

(𝑥 − 𝑥0) , 

If 𝑓(𝑥) is a mathematical function on  𝑥𝑜 , then 𝑓(𝑥) the order differential transformation is written as 

𝐹(𝑥) = 𝐷𝑇{𝑓(𝑥)}, 

               = [
𝑓𝑘(𝑥)

𝑘!
]

𝑥=𝑥0

, 

Definition no 3:[9] The reverse of the differential transformation is written as         

𝐷𝑇
−1{𝐹(𝑘)} = 𝑓(𝑥) , 

                       = ∑ 𝐹(𝑘)(𝑥 − 𝑥0)𝑘 .

∞

𝑘=0

 

Theorem 1: Let 𝑓(𝑥) and 𝑔(𝑥) relate to differentially transformed analytical operations 𝐹(𝑘) and 𝐺(𝑘) 

accordingly; 

Thus, 

𝐷𝑇{𝛼𝑓(𝑥) + 𝛽𝑔(𝑥)} = 𝛼𝐹(𝑘) + 𝛽𝐺(𝑘).                                                    (𝑎)   

In which 𝛼 and 𝛽 stand for variables. 

Theorem 2: Let 𝑓(𝑥) define an analytical functioning, with differential transformation 𝐹(𝑘); then, 
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𝐷𝑇 = {
𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛
} =

(𝑘 + 𝑛)!

𝑘!
𝐹(𝑘 + 𝑛).                                                    (𝑏) 

Theorem 3: Let 𝑓1(𝑥) and likewise 𝑓2(𝑥) indicate analytical functions that 𝑓(𝑥) = 𝑓1(𝑥). 𝑓2(𝑥); then, 

  𝐹(𝑘) = ∑ 𝐹1(𝑛)

𝑘

𝑛=0

𝐹2(𝑘 − 𝑛).                                                                    (𝑐) 

Theorem 4: Let 𝑓(𝑥) similar to an analytical functional with 𝐷𝑇{𝑓(𝑥)} = 𝐹(𝑘); thus, 

𝐷𝑇{𝑥𝑚𝑓𝑛(𝑥)} = ∑ 𝛿𝑖,𝑚

(𝑘 + 𝑛 − 𝑖)!

(𝑘 − 𝑖)!
𝐹(𝑘 + 𝑛 − 𝑖),

𝑘

𝑖=0

                            (𝑑) 

And if,  𝑚 = 𝑛, then 

𝐷𝑇{𝑥𝑚𝑓𝑛(𝑥)} = ∏(𝑘 − 𝑖)𝐹(𝑘).

𝑛−1

𝑖=0

 

Theorem 5: Let 𝑓(𝑥) describe a mathematical function 𝐷𝑇{𝑓(𝑥)} = 𝐹(𝑘); then, 

𝐷𝑇{𝑒𝛼𝑥𝑓𝑛(𝑥)} = ∑
𝛼𝑖

𝑖!

(𝑘 + 𝑛 − 𝑖)!

(𝑘 − 𝑖)!
𝐹(𝑘 + 𝑛 − 𝑖),

𝑘

𝑖=0

 

      𝐷𝑇{cos(𝛼𝑥) 𝑓𝑛(𝑥)} = ∑
𝛼𝑖

𝑖!
cos(

𝑖𝜋

2
)

(𝑘 + 𝑛 − 𝑖)!

(𝑘 − 𝑖)!
𝐹(𝑘 + 𝑛 − 𝑖),

𝑘

𝑖=0

 

And 

𝐷𝑇{sin(𝛼𝑥) 𝑓𝑛(𝑥)} = ∑
𝛼𝑖

𝑖!
sin(

𝑖𝜋

2
)

(𝑘 + 𝑛 − 𝑖)!

(𝑘 − 𝑖)!
𝐹(𝑘 + 𝑛 − 𝑖).

𝑘

𝑖=0

                                  (𝑒) 

Theorem 6: Let 𝑓(𝑥) develop a function of analysis, where 𝐷𝑇{𝑓(𝑥)} = 𝐹(𝑘); then, 

𝐷𝑇 {
𝑑

𝑑𝑥
(𝑥𝑓𝑛(𝑥))} =

(𝑘 + 1)(𝑘 + 𝑛)!

𝑘!
𝐹(𝑘 + 𝑛),                                 (𝑓) 

Take note of, for 𝑛 = 1, simplifies to the following formula: 

𝐷𝑇 {
𝑑

𝑑𝑥
(𝑥𝑓1(𝑥))} = (𝑘 + 1)2𝐹(𝑘 + 1). 

Theorem 7: Let 𝑓(𝑥) represent an analytical function, whereas 𝐷𝑇{𝑓(𝑥)} = 𝐹(𝑘); then, 

𝐷𝑇 {
𝑑

𝑑𝑥
(𝑥𝑚𝑓𝑛(𝑥))} =

(𝑘 + 1)(𝑘 + 𝑛 − 𝑚 + 1)!

(𝑘 − 𝑚 + 1)!
𝐹(𝑘 + 𝑛 − 𝑚 + 1)                  (𝑔) 

3. Solution of the Fractional Order Legendre Differential Equation  

The Fractional Form of the Legendre Differential Equation. 

(1 − 𝑥2𝛼)𝐷𝛼𝐷𝛼𝑦(𝑥) − 2𝛼1𝑥𝐷𝛼𝑦(𝑥) + 𝑚(𝑚 + 1)𝛼1
2𝑦(𝑥) = 0 ,                           

𝐷𝛼𝑦(𝑥) =
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
𝑥1−𝛼

𝑑𝑦

𝑑𝑥
 , 

𝐷𝛼𝐷𝛼𝑦(𝑥) =
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
𝐷𝛼(𝑥1−𝛼

𝑑𝑦

𝑑𝑥
) , 

𝐷𝛼𝐷𝛼𝑦(𝑥) = [
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
]

2

[𝑥2(1−𝛼)
𝑑2𝑦

𝑑2𝑥
+ 𝑥2(1−𝛼)

𝑑𝑦

𝑑𝑥
] , 

 𝐷𝛼(𝑥1−𝛼
𝑑𝑦

𝑑𝑥
) = 𝐷𝛼(𝑥(1−𝛼))

𝑑𝑦

𝑑𝑥
+ 𝑥1−𝛼𝐷𝛼

𝑑𝑦

𝑑𝑥
 , 
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                      = (
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
𝑥(1−2𝛼) 𝑑𝑦

𝑑𝑥
+  𝑥1−𝛼

Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
𝑥1−𝛼𝐷𝛼𝑦(𝑥))  ×  

     (
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
[𝑥(1−2𝛼) 𝑑𝑦

𝑑𝑥
+  𝑥2(1−𝛼) 𝑑2𝑦

𝑑2𝑥
]) , 

Where, 

 𝛼1 =
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
𝛼 ,    

(1 − 𝑥2𝛼)𝐷𝛼𝐷𝛼𝑦(𝑥) − 2𝛼1𝑥𝐷𝛼𝑦(𝑥) + 𝑚(𝑚 + 1)𝛼1
2𝑦(𝑥) = 0 . 

y = ∑ 𝐶𝑛𝑥𝛼𝑛 ,

∞

𝑛=0

 

𝐷𝛼𝑦(𝑥) =
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
∑ 𝛼𝑛𝐶𝑛𝑥𝛼𝑛−𝛼

∞

𝑛=1

 , 

𝐷𝛼𝑦(𝑥) =
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
𝛼 ∑ 𝑛𝐶𝑛𝑥𝛼(𝑛−1) ,

∞

𝑛=1

 

𝐷𝛼𝐷𝛼𝑦(𝑥) = [
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
]

2

𝛼2 ∑ 𝑛(𝑛 − 1)𝐶𝑛𝑥𝛼(𝑛−2),

∞

𝑛=2

 

𝛼1 =
Γ(γ)

𝛤(𝛾 − 𝛼 + 1)
𝛼 , 

(1 − 𝑥2𝛼)(𝛼1)2 ∑ 𝑛(𝑛 − 1)𝐶𝑛𝑥𝛼(𝑛−2) −  2𝑥(𝛼1)2

∞

𝑛=2

∑ 𝑛𝐶𝑛𝑥𝛼(𝑛−1) + 𝑚(𝑚 + 1)(𝛼1)2

∞

𝑛=1

∑ 𝐶𝑛𝑥𝛼𝑛

∞

𝑛=0

= 0 , 

(𝛼1)2 ∑ 𝑛(𝑛 − 1)𝐶𝑛𝑥𝛼(𝑛−2) − (𝛼1)2 ∑ 𝑛(𝑛 − 1)𝐶𝑛𝑥𝛼𝑛

∞

𝑛=2

− 2(𝛼1)2

∞

𝑛=2

∑ 𝑛𝐶𝑛𝑥𝛼𝑛

∞

𝑛=1

+ 𝑚(𝑚 + 1) (𝛼1)2 ∑ 𝐶𝑛𝑥𝛼𝑛

∞

𝑛=0

= 0 , 

(𝛼1)2 [∑ 𝑛(𝑛 − 1)𝐶𝑛𝑥𝛼(𝑛−2) − ∑ 𝑛(𝑛 − 1)𝐶𝑛𝑥𝛼𝑛

∞

𝑛=2

2

∞

𝑛=2

∑ 𝑛𝐶𝑛𝑥𝛼𝑛 +  𝑚(𝑚 + 1)

∞

𝑛=1

∑ 𝐶𝑛𝑥𝛼𝑛

∞

𝑛=0

] = 0 , 

𝛼1 ≠ 0, then         

∑ 𝑛(𝑛 − 1)𝐶𝑛𝑥𝛼(𝑛−2) − ∑  𝑛(𝑛 − 1)𝐶𝑛𝑥𝛼𝑛

∞

𝑛=2

−  2

∞

𝑛=2

∑ 𝑛𝐶𝑛𝑥𝛼𝑛 +  𝑚(𝑚 + 1)

∞

𝑛=1

∑ 𝐶𝑛𝑥𝛼𝑛 = 0 ,

∞

𝑛=0

 

  Put, 𝑛 = 𝑘 + 2,             𝑛 = 𝑘, 

∑(𝑘 + 2)(𝑘 + 1)𝐶𝑘+2𝑥𝛼𝑘 − ∑ 𝑘(𝑘 − 1)𝐶𝑘𝑥𝛼𝑘

∞

𝑘=2

− 2

∞

𝑘=0

∑ 𝑘𝐶𝑘𝑥𝛼𝑘 +  𝑚(𝑚 + 1)

∞

𝑘=1

∑ 𝐶𝑘𝑥𝛼𝑘

∞

𝑘=0

= 0 , 
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2(1)𝐶2𝑥0 + 3(2)𝐶3𝑥𝛼 + ∑(𝑘 + 2)(𝑘 + 1)𝐶𝑘+2𝑥𝛼𝑘 − ∑ 𝑘(𝑘 −  1)𝐶𝑘𝑥𝛼𝑘

∞

𝑘=2

− 2(1)

∞

𝑘=2

𝐶1𝑥𝛼

− 2 ∑ 𝑘𝐶𝑘𝑥𝛼 + 𝑚(𝑚 + 1)𝐶0𝑥0 + 𝑚(𝑚 + 1)𝐶1𝑥𝛼 + 𝑚(𝑚 + 1)

∞

𝑘=2

∑ 𝐶𝑘𝑥𝛼𝑘

∞

𝑘=2

= 0 , 

[2𝐶2 + 𝑚(𝑚 + 1)𝐶0]𝑥𝛼(0) + [6𝐶3 − 2𝐶1 + 𝑚(𝑚 + 1)𝐶1]𝑥𝛼

+  [∑{(𝑘 + 2)(𝑘 + 1)𝐶𝑘+2 − 𝑘(𝑘 − 1)𝐶𝑘 − 2𝑘𝐶𝑘 + 𝑚(𝑚 + 1)𝐶𝑘

∞

𝑘=2

}] 𝑥𝛼𝑘 = 0 , 

Since, Series is identically zero. 

So,  

𝐶2 =
−𝑚(𝑚 + 1)

2!
𝐶0 ,                                                                       (1) 

 𝐶3 = −
(𝑚 + 2)(𝑚 − 1)

3!
𝐶1                                                            (2) 

Hence 

𝐶𝑘+2 = −
(𝑚 − 𝑘)(𝑘 + 𝑚 + 1)

(𝑘 + 2)(𝑘 + 1)
𝐶𝑘                                                     (3)  

 By putting, 𝑘 = 2 in equation (3) we get 

𝐶4 =
𝑚(𝑚 − 2)(𝑚 + 1)(𝑚 + 3)

4!
𝐶0                                                 (4)  

By putting, 𝑘 = 3 in equation (3) we get 

𝐶5 =
(𝑚 − 1)(𝑚 − 3)(𝑚 + 2)(𝑚 + 4)

3!
𝐶1                                         (5) 

By putting, 𝑘 = 4 in equation (3) we get 

𝐶6 = −
(𝑚 − 2)(𝑚 − 4)𝑚(𝑚 + 1)(𝑚 + 3)(𝑚 + 5)

6!
𝐶0                    (6) 

By putting, 𝑘 = 5 in equation (3) we get 

𝐶7 = −
(𝑚 − 1)(𝑚 − 3)(𝑚 − 5)(𝑚 + 2)(𝑚 + 4)(𝑚 + 6)

7!
𝐶1                     (7) 

And so on… 

y = ∑ 𝐶𝑛𝑥𝛼𝑛 

∞

𝑛=0

, 

 𝑦 = 𝐶0 + 𝐶1𝑥𝛼 + 𝐶2𝑥2𝛼 + 𝐶3𝑥3𝛼 + 𝐶4𝑥4𝛼 + 𝐶5𝑥5𝛼 + 𝐶6𝑥6𝛼 + 𝐶7𝑥7𝛼 …,            (8)  

If we choose  𝑦(1) = 𝐶1 ,  𝑦(0) = 𝐶0  

𝐶0 = 1 And  𝐶1 = 0 .   

Put  𝑚 = 4 , 𝐶0 = 1 , 

𝐶2 =
−4(4 + 1)

2
, 

𝐶2 = −10 .           

Put  𝑚 = 4 , 𝐶1 = 0 , in equation (3) 

𝐶3 =
2 − 4(4 + 1)

6
(0) , 
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𝐶3 = 0 . 

Put   𝑚 = 4 , 𝐶0 = 1 , in equation (4) 

𝐶4 =
4(4 − 2)(4 + 1)(4 + 3)

4
 , 

𝐶4 =
35

3
 .                 

Put  𝑚 = 4 , 𝐶1 = 0 , in equation (5) 

𝐶5 = 0 .                      

Put   𝑚 = 4 , 𝐶0 = 1 , in equation (6) 

𝐶6 = −
(4 − 2)(4 − 4)4(4 + 1)(4 + 3)(4 + 5)

6!
 , 

𝐶6 = 0 .                                            

Put all the above values in Eq. (1) 

 𝑦 = 1 + (0)𝑥𝛼 + (−10)𝑥2𝛼 + (0)𝑥3𝛼 +
35

3
𝑥4𝛼 + (0)𝑥5𝛼 + (0)𝑥6𝛼 + (0)𝑥7𝛼 

𝑦1(𝑥)𝛼 = 1 − 10𝑥2𝛼 +
35

3
𝑥4𝛼 .                    

If we choose  𝑦(1) = 𝐶0 ,  𝑦(0) = 𝐶1  

𝐶0 = 0 And  𝐶1 = 1 .   

Put  𝑚 = 4 , 𝐶0 = 0 ,  then 

𝐶2 = 0 .                               

𝐶3 =
2 − 𝑚(𝑚 + 1)

6
𝐶1 ,  

Put  𝑚 = 4 , 𝐶1 = 1 , in equation (3) 

𝐶3 =
2 − 4(4 + 1)

6
 ,         

𝐶3 = −3 . 

Put  𝑚 = 4 , 𝐶0 = 0 , in equation (4) 

𝐶4 =
4(4 − 2)(4 + 1)(4 + 3)

4!
(0) , 

𝐶4 = 0 . 

Put  𝑚 = 4 , 𝐶1 = 1 , in equation (5) 

𝐶5 =
(4 − 1)(4 − 3)(4 + 2)(4 + 4)

3.2.1
 , 

𝐶5 = 24 . 

Put  𝑚 = 4 , 𝐶0 = 0 , in equation (6) 

𝐶6 = −
(4 − 2)(4 − 4)4(4 + 1)(4 + 3)(4 + 5)

6!
(0) , 

𝐶6 = 0 . 

Put  𝑚 = 4 , 𝐶1 = 1 , in equation (7) 

𝐶7 = −
(4 − 1)(4 − 3)(4 − 5)(4 + 2)(4 + 4)(4 + 6)

7.6.5.4.3.2.1
 , 

𝐶7 =
2

7
 . 
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Put all the above values in Eq. (8) 

𝑦 = 0 + 𝑥𝛼 + 0𝑥2𝛼 + (−3)𝑥3𝛼 + 0𝑥4𝛼 + 24𝑥5𝛼 + 0𝑥6𝛼 +
2

7
𝑥7𝛼 

 𝑦2(𝑥)𝛼 = 𝑥𝛼 − 3𝑥3𝛼 + 24𝑥5𝛼 +
2

7
𝑥7𝛼  .                   

The exact equation of Fractional Order Legendre Differential Equation. 

𝑦(𝑥) = 𝑦1(𝑥)𝛼 + 𝑦2(𝑥)𝛼 ,                                     

𝑦(𝑥) = 1 − 10𝑥2𝛼 +
35

3
𝑥4𝛼 + 𝑥𝛼 − 3𝑥3𝛼 + 24𝑥5𝛼 +

2

7
𝑥7𝛼 , 

𝑦(𝑥) = 1 + 𝑥𝛼 − 10𝑥2𝛼 − 3𝑥3𝛼 +
35

3
𝑥4𝛼 + 24𝑥5𝛼 +

2

7
𝑥7𝛼 .                

From Eq. (1) 

𝑦 = 𝐶0 + 𝐶1𝑥𝛼 + 𝐶2𝑥2𝛼 + ⋯,                  

𝑦(𝑥) = 𝐶0𝑦1(𝑥)𝛼 + 𝐶1𝑦2(𝑥)𝛼 ,                            

𝑦1(𝑥) = [𝐶0 −
𝑚(𝑚 + 1)

2!
𝐶0𝑥2𝛼 +

𝑚(𝑚 − 2)(𝑚 + 1)(𝑚 + 3)

4!
𝐶0𝑥4𝛼

−
(𝑚 − 4)(𝑚 − 2)𝑚(𝑚 + 1)(𝑚 + 3)(𝑚 + 5)

6!
𝐶0𝑥6𝛼 + ⋯ ] ,          

𝑦1(𝑥) = 𝐶0 [1 −
𝑚(𝑚 + 1)

2!
𝑥2𝛼 +

𝑚(𝑚 − 2)(𝑚 + 1)(𝑚 + 3)

4!
𝑥4𝛼

−
(𝑚 − 4)(𝑚 − 2)𝑚(𝑚 + 1)(𝑚 + 3)(𝑚 + 5)

6!
𝑥6𝛼 + ⋯ ]  ,              

               𝑦2(𝑥) =    [𝐶1𝑥𝛼 −
(𝑚 − 1)(𝑚 + 2)

3!
𝐶1𝑥3𝛼 +

(𝑚 − 3)(𝑚 − 1)(𝑚 + 2)(𝑚 + 4)

5!
𝐶1𝑥5𝛼

−
(𝑚 − 5)(𝑚 − 3)(𝑚 − 1)(𝑚 + 2)(𝑚 + 4)(𝑚 + 6)

7!
𝐶1𝑥7𝛼 + ⋯ ] . 

Note that, if m is an even integer, the1st series vanishes meanwhile𝑦2(𝑥) denotes an infinite series. 

For     𝑚 = 4, then 

𝑦1(𝑥) = 𝐶0 [1 −
𝑚(𝑚 + 1)

2!
𝑥2𝛼 +

𝑚(𝑚 − 2)(𝑚 + 1)(𝑚 + 3)

4!
𝑥4𝛼

−
(𝑚 − 4)(𝑚 − 2)𝑚(𝑚 + 1)(𝑚 + 3)(𝑚 + 5)

6!
𝑥6𝛼 + ⋯ ] , 

             𝑦1(𝑥) = 𝐶0 [1 −
4(4 + 1)

2!
𝑥2𝛼 +

4(4 − 2)(4 + 1)(4 + 3)

4!
𝑥4𝛼

−
(4 − 4)(4 − 2)4(4 + 1)(4 + 3)(4 + 5)

6!
𝑥6𝛼 + ⋯ ] ,         

𝑦1(𝑥) = 𝐶0 [1 −
4(4 + 1)

2!
𝑥2𝛼 +

4(4 − 2)(4 + 1)(4 + 3)

4!
𝑥4𝛼 − 0] ,         

𝑦1(𝑥) = 𝐶0 [1 −
4(5)

2.1
𝑥2𝛼 +

4(2)(5)(7)

4.3.2.1
𝑥4𝛼] , 

𝑦1(𝑥) = 𝐶0 [1 − 10𝑥2𝛼 +
35

3
𝑥4𝛼]          
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The series m contains odd integers. To put it a different way, we obtain nth degree exponential when m is 

a non-negative integer. The result is a fixed number of the Legendre equation. Note that it is a specific 

value for  𝐶0  and 𝐶1 which depend on whether m denotes an odd or even positive integer. 

For, 𝑚 = 0 we select 𝐶0 = 0,  

For, 𝑚 = 2,4,6 

Put,  𝑚 = 0    

𝐶0 = (−1)
𝑛
2

1.3 … (𝑛 − 1)

2.4 … 𝑛
 , 

Where 𝑚 = 1 and 𝐶1 = 1 

𝐶1 = (−1)
𝑛−1

2
1.3 … 𝑛

2.4 … (𝑛 − 1)
 . 

For example,  𝑚 = 4 

𝑦1(𝑥) = (−1)
4
2

1.3

2.4
[1 − 10𝑥2𝛼 +

35

3
𝑥4𝛼] , 

𝑦1(𝑥) =
1

8
[3 − 30𝑥2𝛼 + 35𝑥4𝛼].     

 

 

 

 

 

 

 

𝛼 = 1 

𝒙 F=Exact 𝒁 = 𝑭𝑫𝑻𝑴 |F-Z| 

0.0 3.00000569 3.00000000 0.00000001 

0.1 2.96840667 2.96293750 0.00546917 

0.2 2.80234667 2.85700012 0.05465345 

0.3 2.56172503 2.59567523 0.03261175 

0.4 2.53242856 2.51270000 0.01972856 

0.5 2.36416667 2.33593750 0.03177083 

0.6 2.19024000 2.21700000 0.02676000 

0.7 2.17584667 2.21293750 0.04290917  

0.8 2.10698667 2.17200000 0.04149867 

0.9 2.13926000 2.11293750 0.02163224 

1.0 3.66536235 3.62500000 0.04036235 

Table 4.1: Comparison of Exact solution with 𝑭𝑫𝑻𝑴 𝒂𝒕 𝜶 = 𝟏. 
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Figure 1: Graph of Exact Solution of Legendre Differential Equation 

 

 

Figure 2: Graph of Approximate Solution of FDTM at 𝜶 = 𝟏. 

 

 

Figure 3: Comparison of Exact and FDTM Solutions at 𝜶 = 𝟏. 
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4. Conclusion  

In this work, the Differential Transformation Method (DTM) has shown to be an effective and trustworthy 

technique for deciphering Legendre's equations' fractional order. Through the use of this technique, we 

have been able to get series solutions that enable a thorough comparison of the Bessel and Legendre dif-

ferential equations. The precision of the DTM is shown by our results, which show a high degree of accu-

racy and alignment with the precise solutions, especially at α = 1. Additionally, new directions for study 

and application are made possible by the use of generalized fraction variation in determining the fractional 

form of special functions. All things considered, the results show that DTM is both practical and sustain-

able for the continued investigation of Legendre's equations, offering a strong basis for further research in 

this area. 
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