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Abstract 

The ever-rising applications of Business Intelligence techniques in the present world demands 

integration with other deep learning techniques such as Object Detection, Natural Language Processing, 

etc. With the inclusion of Object Detection, business intelligence can provide intelligible insights into 

make business experience better. With a comprehensive elucidation of training time complexities and 

the multiple factors that play a vital role in its variation, this paper aims to provide a report of object 

detection techniques. The single-stage and two-stage detectors are separately taken into consideration, 

while explaining the pertinence of its use cases. 
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1. Introduction 

Business Intelligence(BI)[1] is an ever-growing field that is exceptionally dependent on data collection, 

data manipulation, data analysis and inference on data. Deep Learning[2] and Business Intelligence go 

hand-in-hand to revolutionize the use of data to yield inventions that can change the world. The field of 

BI, wherein technological manoeuvres have created wonders through data-driven decision making, still 

strives for refinement that can enhance customer satisfaction and ensure global security, to name some 

examples. Such systems, on which a large number of the populace is dependent, need data that is 

guaranteed to be authentic and most importantly, precise. Not even an instance of fault can be tolerated, 

as it can lead to catastrophic consequences, truncating data dependency of large and small organizations.  

Data science has enriched business intelligence in that it volunteers insights and mechanisms to surpass 

the best existing technologies in the contemporary world through data collection, data warehousing, and 

data analytics. Though these methods provide robust results for concerns that prevail in the current 

world of BI, there are certain drawbacks. The fundamental drawback that can be deduced is the lack of 

large scale data during the development stage. Data inadequacy can prove to be a hard lined impediment 

in security ascertainment, or any other business intelligence goal for that matter, as it impedes the 

performance of data-dependent systems. Given enough data, wonders can be achieved by leveraging the 

techniques of Deep Learning and Machine Learning.  

Technological enhancements throughout the years have also paved the way for an exponential growth of 

cyber crimes. To the contrary, they have manifested innovative solutions to these problems as well. In 

the present world of data-driven digital systems, Deep Learning plays a vital role in gathering 

methodologies that can put the crime rates to an all-time low, and at the same enhance the efficiency of 

said systems. That includes analysis of text-based applications[3] to apprehend derogatory remarks and 
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hate crimes; verification of images for fowl and macabre contents that may harm sentiments of the 

people. 

Object detection, most of all, has a lot to offer in the field of business intelligence as it helps 

organizations gain insights using visual data, either in the form of images or videos. For example, object 

detection can prevent leakage of confidential information by keeping a track of suspicious accounts on 

the Internet and taking necessary actions that might mitigate the consequences. Video Surveillance can 

be reinforced with object detection for anomaly detection, thereby subsidising crime and improving 

security measures. Customer Behaviour Analysis can also be performed by tracking the brands and 

endorsements customers follow on a regular basis to implicitly discern their likes and dislikes to offer 

recommendations. 

Within the vast multitude of Object Detection techniques available, it is prerequisite to understand the 

applicability and practicality of each one of them in different Business Intelligence scenarios. Some of 

them may require a fast technique, with a compromise for accuracy, while others may need the opposite. 

There are innumerable techniques of Object Detection that differ in the speed and accuracy with which 

they perform. Selecting a suitable technique hence becomes an absolutely meticulous task that demands 

comprehensive knowledge about each technique and the nuanced differences between others. This 

research paper presents a comparative analysis of the various object detection techniques to infer their 

speed, accuracy and efficiency in different use cases and design recommendations for unique scenarios. 

At the outset, applications of object detection in BI are illuminated upon with pertinent examples, 

emphasizing their roles in inventory management, security, quality control and what’s more. It is 

imperative that knowledge of how object detection exerts its influence in BI be conveyed to underline its 

importance. Following the introduction, the datasets, such as COCO, ILSVRC and PASCAL 

VOC([4],[5],[6]), used to train high-precision object detection techniques are described along with the 

conventional metrics used to measure the efficacy of object detection models. With common metrics, it 

becomes convenient to compare and contrast the techniques and draw conclusions based on it. Precision 

and recall are the intrinsic metrics used in almost every dataset for object detection and inferences on the 

same are made in the succeeding sections. Furthermore, the impact of using other metrics and their 

drawbacks are also borne with. The next section includes numerous object detection techniques such as 

R-CNN, SSD, YOLO ([7],[8],[9]) etc., amongst other variations and novelties for analytical 

manifestation of how distinctive every one of them are. Performance in terms of speed, training-time and 

inference time along with memory requirements are analysed in detail. How the use of different 

algorithms at each step of the detection pipeline makes a substantial influence on the techniques’ time 

and space efficiency are also discussed. The variations in optimization techniques, hardware accelerators 

and their impact on performance are studied to evaluate the contrast between the methods. 

Based on the comparative analysis that follows, inference regarding the merits of each method are 

elucidated and relevant recommendations are contributed in aiding a selection that is suitable for 

business intelligence use cases. Concomitantly, the trade-off between training time and model 

performance is reviewed upon to get a better understanding of the factors that actuate them. It can be 

concluded that the fine-tuning of neural networks used in training an object detection technique is what 

brings about the differences, and that with proper fine-tuning, wonders can be achieved in the field of 

object detection. Errors that are quite frequent in undermining performance can be circumvented through 

scrutiny are mentioned and explained[10]. The paper also consists of a broad study of the shortcomings 
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of different methods and advances to rectify them[11]. As a result, we conclude with the pros and cons 

of the methods and review their suitability for business intelligence. 

 

2. Two-Step Methods 

2.1  R-CNN 

R-CNN[7] introduced the concept of two-stage object detectors: the first stage being region proposals 

and the second being non-maximum suppression[12] to correctly identify objects and draw bounding 

boxes around them. Using Krizhevsky’s[13] Convolutional model as a backbone network for feature 

extraction and supervised learning on image-level annotations, R-CNN was able to achieve an 

mAP(mean Average Precision) of 53.3% on the PASCAL VOC dataset. Figure 1 is a sample image of 

how R-CNN pipeline works. 

2.1.1 Region Proposals Module High resolution images of order ~1000X600 are provided as input. 

Selective Search[9] is used to generate around 2000 region proposals for each image in about 2 seconds. 

The grouping of proposals is continued till an entire region is a proposal hence leading to proposals of 

various sizes. Selective search[14] produces drastically low but accurate object proposals than other 

exhaustive searches and is thus computationally very efficient and saves time.  

2.1.2 Object Detection Module The images studded with region proposals are fed as input after 

converting them into the size of 227X227. Extraction of a 4096-dimensional feature vector from each 

region proposal is conducted using Caffe implementation of CNN[13]. During compression, the pixels 

are warped into a tight bounding box in such a way that there are exactly p pixels in each box (p=16, 

generally). 

2.1.3 Classification Model SVMs are trained for each class which are used to generate respective scores. 

Considering these obtained scores, a greedy non-maximum suppression is applied to reject a region if it 

has Intersection over Union overlap lesser than the threshold value of 0.5. 

 

Figure 1: R-CNN System Computes Region Proposals And Classifies Which Class The Object 

Belongs To 

 
 

The high performance of the technique is attributed to the feature sharing among the variety of 

categories during training. Additionally, features extracted are low-dimensional compared to the UVA 

detection system[15] which uses features of an order of 360K as opposed to those of 4K in R-CNN. 

Moreover, the only class-specific computations are between features, SVM weights and non-maximum 

suppression[28], signifying that R-CNN can scale to thousands of object classes without the mAP 

perishing. 

The 1000-way classification layer of the CNN is replaced with a randomly initialized (N+1)-way 

classification layer where N is the number of classes, plus 1 for background. For PASCAL VOC dataset 
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[6], N=20 and for ILSVRC 2013 dataset[5], N=200. 

The bounding box regression method is very much similar to that of deformable parts models[10] with a 

key difference in that R-CNN uses features extracted from CNN and not DPM([16],[17]) part locations. 

R-CNN achieved an mAP score of 53.3% on PASCAL VOC 2011/12 dataset with N=20 and 31.4% 

mAP on the ILSVRC2013 dataset with N=200. Using [18] as baseline improved the mAP to 66.0%, but 

took almost 7 times more computation power, hence the decline in efficiency. 

The time taken to compute region proposals and features per image is roughly 13s on a GPU and 53s on 

a CPU. The memory requirements are also dropped down by 90 times using GPU. 10K detectors 

manage to run in about a minute on a CPU using R-CNN. Fine-tuning on the ILSVRC dataset took 13 

hours using Caffe on the NVIDIA Tesla K20. 

Drawbacks of R-CNN 

1. R-CNN follows a pipeline procedure where it first fine tunes a ConvNet[19] using log loss, then 

SVMs are fit on these ConvNets, which act as object detectors followed by bounding-box regression; 

which is a tedious and time-consuming task. 

2. The input shape of images necessarily need to be of resolution 227X227 in order to be compatible 

with the first layer of the CNN. 

3. Training is time and space expensive. 

4. Despite selective search being a well sought out method for region proposals, the myriad of region 

proposals are redundant and time consuming. 

 

2.2 SPP-NET 

The R-CNN technique had some major shortcomings; one of which is that the fully connected layers of 

the CNN required the input be provided in a fixed shape. But the Convolutional Neural Network 

backbone of Krizhevsky[13] produces output in different shapes and sizes. As a solution, R-CNN warps 

the images into a fixed bounding box and then conducts the forward pass of the neural network. This 

method of warping might lead to geometric distortion of pixels and might prove to be a substantial 

impediment during object detection. 

The Spatial Pyramid Pooling layer[20] uses pooling layers at the top of the last layer of the 

convolutional network to avoid this problem. As a result, state-of-the-art accuracies using only a single 

full-image representation and no fine tuning have been achieved. The pooling layer takes the features 

extracted by the CNN as input and generates fixed-length representations, which are used as input by the 

fully connected layers for further predictions, subduing the necessity of additional computations.  While 

training, this helps reduce over-fitting and increases scale-invariance. The maintenance of spatial 

information by pooling in local spatial bins makes SPP superior over the Bag of Words[9] method. The 

advantage of multi-level pooling is due to its robustness to the variance in object deformations and 

spatial layout, and not because it has more parameters. 

SPP-Net has achieved state-of-the-art classification accuracies on Caltech101 and Pascal VOC 2007 

datasets. The 5-scale result on Object Detection was 59.2%, which is significantly better than that of R-

CNN with immense speed improvement which comes by running the convolutional network only one on 

each image of the dataset in contrast to the repeated application on every warped region in R-CNN. 

Feature extraction of 1-scale images takes ~0.05s, compared to the 14s in R-CNN. The overall testing 

time is ~0.5s. Use of different backbone architectures lead to slight changes in training and testing time. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240426893 Volume 6, Issue 4, July-August 2024 6 

 

EdgeBoxes[21] method computes the region proposals quicker than Selective Search[14], but is not up 

to par with accuracy. 

 

2.3 Fast R-CNN 

Though SPP-Net obviates the necessity of fixed-size inputs for the fully connected layers, it still 

maintains the complex pipeline of R-CNN, and hence the time complexity. The fine-tuning algorithm 

proposed in SPP-Net cannot update the CNNs that precede the spatial pyramid pooling layer.  

Fast R-CNN[22] technique presents a new method of training the Convolutional neural networks where 

training is single-staged using a multi-task loss. Convolutional feature maps are first generated by the 

CNN which takes image and object proposals as input. For each object proposal, the RoI(region of 

interest) pooling layer extracts a fixed-length feature vector using the feature maps. The output layer is 

designed as (K+1), which is K object classes and one for background, which outputs four real-valued 

numbers for each of the K object classes. Each RoI is defined by a four-tuple (r, c, h, w) that specifies its 

top-left corner (r, c) and its height and width (h, w). Pooling is applied to each feature map channel 

independently. On the very deep model of VGG-net, Fast R-CNN trains 9 times faster and is 213 times 

faster at test time that R-CNN. A top accuracy on PASCAL VOC dataset of 66% is achieved. The speed 

lag in R-CNN was overcome in Fast R-CNN by computing the feature maps only once per image and 

sharing features while training. 

Since Selective Search[14] generates large number of region proposals, it is imperative to use a speed 

booster such as Single Value Decomposition(SVD). The use of SVD gives a simple compression to the 

network and boosts the speed when RoIs are large in number. Such intense remodelling reduces the 

training time from 84 hours for that of R-CNN with VGG-Net as backbone to 9.5 hours for Fast R-CNN.  

Fast R-CNN is almost three times faster than SPP-Net and ten times with the truncated SVD integrated 

to it. Truncated SVD reduces detection time by nearly 30% without severely impacting the mAP, and 

without fine-tuning. Yet, multi-scale approach to training increases mAP by only a small amount at a 

larger cost of compute time. 

 

2.4 Faster R-CNN 

Faster R-CNN[23] originated from the inception of Region Proposal Networks(RPN) that share full-

image convolutional features with the detection network, thus enabling near cost-free region proposals. 

An RPN is simply a convolutional network which is delegated the job of predicting object bounds and 

object-ness scores simultaneously. It is trained end-to-end to generate high-quality region proposals for 

Fast R-CNN to detect objects. Using attention mechanisms, the RPN tells the object detector where to 

look in the image. The Faster R-CNN works with only 300 object proposals as opposed to the 2000 in 

R-CNN. For computation of 2000 proposals, it takes only 300ms for RPN, but 2s for Selective search. 

The artfully low marginal cost for computing proposals can be attributed to the feature sharing between 

convolutions at test-time. Novel “anchor” boxes were introduced to serve as references at multiple scales 

and aspect ratios. An anchor is centred at the sliding window and is associated with a scale and aspect 

ratio; which by default is assumed to be 3 and 3, respectively, yielding 9 anchors at each sliding position. 

These anchors are translation-invariant which implies that they are capable of detecting objects 

irrespective of their locations in the image. While SPP-Net[20] uses pyramid pooling to deal with the 

problem of multi-scale images, Faster R-CNN[23] uses a ‘pyramid of anchors’ technique which results 

in sliding windows of multiple scales and sizes that annuls the necessity of pyramid pooling.  
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The technique used to unify RPN and Fast R-CNN as detection network is alternative training, which 

alternates between fine-tuning for the region proposal task and fine-tuning for object detection, while 

keeping the proposals fixed. Another way would have been to join the two networks during training 

(Approximate joint training) that involves SGD (Stochastic Gradient Descent) and back propagation. 

Regardless of it producing near same results as the Fast R-CNN, the method reduces training time by 25-

50%. The RPN method takes only about 10ms to generate proposals per image. Approximate joint 

training reduces the training time by 25-50%. The whole system takes up nearly 200ms for both 

proposals and detection. On the COCO dataset, the testing time is also nearly 200ms per image.  

mAP of 70.4% was achieved on the PASCAL VOC test set using Faster R-CNN. On the union of 

PASCAL VOC 2007 trainval and 2012 trainval the mAP is 73.2%. 

 

2.5 Miscellaneous 

2.5.1 R-FCN 

R-FCN[24] proposed position-sensitive feature maps to address the dilemma between translation-

invariance in image classification and translation-variance in object detection.Using the 101-layer 

ResNet[18] architecture as backbone, R-FCN yields an mAP of 83.6% on the PASCAL VOC 2007 and 

82.0% on the PASCAL VOC 2012 dataset at a test time speed of 170ms per image, which is faster than 

that of Faster R-CNN[23].  R-FCN is almost 2.5 times faster than Faster R-CNN at test time and 20 

times faster on the COCO dataset at 53.2% mAP. 

2.5.2 Cascade R-CNN 

Cascade R-CNN[25] consists of sequence of object detectors trained with increasing IOU thresholds to 

be sequentially more selective against close false positives during inference, was proposed to address the 

dilemma caused by noisy detections and performance degradation caused by increasing IoU thresholds. 

It is evaluated on the MS-COCO dataset with an AP threshold ranging from 0.5 to 0.95 with an interval 

of 0.05. 

Experiments were performed with three popular baseline detectors: Faster-RCNN with backbone VGG-

Net, R-FCN and FPN with ResNet[18] backbone. Compared to the state-of-the-art detectors like Faster 

R-CNN etc., Cascade R-CNN has about 50 million more parameters in terms of architectural design due 

to the increase in cascade stages and therefore takes up more per image training and testing 

time(difference is in the order of 10^-2 seconds). A significant rise in mAP is observed with Cascade R-

CNN because of the reduction of false positive occurances. On the COCO test-dev, Cascade R-CNN 

achieved an mAP of 42.8%, surpassing the state-of-the-art detectors. 

2.5.3 Feature Pyramid Networks 

FPN[26] is a top-down architecture with lateral connections developed to build high-level semantic 

feature maps at all scales. The run-time is nearly 6 FPS on a GPU. A minimum of 7 point increase in AP 

as compared to Faster R-CNN is observed. The postulation of feature sharing increases training time by 

almost twice, but reduces test-time. 

Inference time was monitored to be 0.148s and 0.172s for Resnet-50 and Resnet-101[18], respectively. 

In spite of having a lighter overhead, a small extra cost is introduced from the extra layers of the Feature 

Pyramid Network. Table 1 gives a consolidated insight of the mAP of various object detection methods. 
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Table 1: mAP comparison of Object detection methods. 

Sl.no  Method Backbone mAP 

1 Cascade R-CNN Resnet-101 42.8% 

2 YOLO Resnet-101 52.7% 

3 R-CNN Resnet-101 58.5% 

4 SSD Resnet-101 60.9% 

5 Fast R-CNN Resnet-101 70.0% 

6 Faster R-CNN Resnet-101 73.2% 

7 DSSD Resnet-101 81.5% 

8 Retina-net Resnet-101 82.9% 

    

 

3 Single-Step Detectors 

3.1 SSD 

Single shot Multi-Box detector[8] is a single-stage object detector that eliminates the requirement of an 

independent region proposal mechanism by encapsulating all the computation within a single network. 

Not only does it simplify the training and increase the speed of detection, also demonstrates competitive 

results to two-step object detectors. SSD has better accuracy for input images of smaller size than those 

used in other single-stage detectors. 

The model consists of a feed-forward convolutional network that produces fixed-size collections of 

bounding boxes and confidence scores for each box, followed by non-maximum suppression to produce  

the finalized detection results. Furthermore, convolutional layers are added to the base network to obtain 

predictions of detections at multiple scales. The default boxes play a role similar to that of anchor boxes 

used in Faster R-CNN[23], a subtle difference with the former being that, here, it is applied to several 

feature maps of different resolutions. 

Unlike two-step methods which use intersection over Union, SSD uses jaccard overlap to match ground 

truth boxes to any default boxes above the threshold of 0.5. The training objective is derived from 

MultiBox[27] and is extended to handle multiple object categories. Utilizing feature maps from several 

different layers in a single network for predictions aids the handling objects of different scales while also 

sharing parameters across all object scales. An additional step of negative hard mining is encouraged, 

wherein the negative samples are sorted using the highest confidence loss for each box and the top ones 

are picked in such a way that the ratio between negatives and positives is at the most 3:1. 

Ground truth information is assigned to specific outputs in a fixed set of detector outputs during training. 

Boxes with jaccard overlap greater than 0.5 are matched, which allows the network to predict high 

scores for multiple overlapping default boxes rather than requiring it to pick only the one with maximum 

overlap. 

An mAP of 74.3% is achieved on PASCAL VOC 2007 test dataset at 59 fps for an input of 300X300 

and 76.9% for 512X512. Using a faster base network can further ameliorate the speed and make the 

system robust to images of different resolutions as well. The high speed and commendable accuracy 

leads to the conclusion that speed vs accuracy trade-off is concretely improved by SSD[8]. 
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3.2 DSSD 

The deconvolutional single-shot detector[28] was introduced to augment high-level context knowledge 

into state-of-the-art single-stage object detectors. It is achieved by adding deconvolutional layers to the 

SSD network to improve accuracy and most importantly, detect objects of small scale. The 

deconvolutional layers increase the resolution of the feature maps after each layer of convolution. 

The use of combined feature maps not only draw a substantial memory requirement but also impede the 

speed of a detector. The deconvolutional module is responsible for integrating the feature maps and the 

deconvolutional layers, thus improving speed and efficiency. The deconvolution module is inspired by 

Pinheiro, who suggested that a factored version of the deconvolution module for a refinement network 

has the same accuracy as a more complicated one and the network will be more efficient. Changes made 

to the module for the purpose of object detection include an addition of batch normalization layer after 

each convolutional layer and replacing the use of bilinear sampling with deconvolutional layer. 

By keeping the training policy same as that of SSD, the VGG backbone is replaced with Residual-101. 

The deconvolutional module is trained first with the weights of the original SSD model’s weights frozen, 

followed by fine-tuning the entire network. The Residual-101 model without the prediction module 

worked better than VGG for higher resolution input images. The replacement of VGG with Residual-

101 barely makes an impact for small input images, but for large images attributed to spatial information. 

Adding the deconvolutional layer on top of the backbone improves the AP for smaller objects.  

mAPs of 81.5% and 80.0% were achieved on the PASCAL VOC dataset of the years 2007 and 2012 

respectively. An mAP of 33.2% was achieved on COCO, which thereby outperformed the state-of-the-

art R-FCN[12]. Though it maintains a speed advantage over R-FCN, DSSD is slower than SSD. DSSD 

was able to present with such high performance only after exacting large training time. Hence, the lag in 

inference time. The increase in training time is because of the increase in the number of default 

bounding boxes. 

 

3.3 YOLO 

You Only Look Once(YOLO)[9] frames object detection as a regression problem to spatially separated 

bounding boxes and associated class probabilities. The entire detection pipeline has been boiled down to 

a single network, which predicts bounding boxes and class probabilities directly from images in one 

evaluation; hence accentuating that end-to-end optimization can be done directly on the detection 

performance. The YOLO model is less likely to predict false positives for background compared to other 

state-of-the-art detectors, but makes more localization errors. The exclusion of a complex pipeline 

speeds up the detection process significantly. The base network performs at a speed of 45 fps with no 

batch processing on a Titan X GPU. Ever since, many YOLO upgradations have been proposed[29]. 

Yet another remarkable feature of YOLO is that it takes the image as a whole and reasons globally 

around it to implicitly encode contextual information about classes and their appearance. This does not 

happen in sliding-window based methods because they only look for objects within the region proposals, 

thus limiting global context. YOLO is a highly generalized method that does not break down when 

applied to new domains or unexpected objects. The only downside is that it trails in detection accuracy. 

In spite of achieving remarkable speed in detection, its accuracy is below par.  

To remedy early divergence caused by the use of sum-squared error, the loss from bounding-box 

predictions is increased and the loss from confidence predictions is decreased. A multi-part loss function 

is to be optimized during training, which penalizes an error only if a grid cell contain an object. 
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YOLO struggles with grouped objects and objects of small size. A grid cell can predict only two 

bounding boxes and one class. Despite being good at generalization, it does not generalize well with new 

aspects and configurations. All types of errors are treated as the same by the loss function; which is not 

healthy for the performance because a small error in a large bounding box may be passable, but a large 

error in a small bounding box may be catastrophic. 

Fast YOLO has an mAP of 52.7%, whereas YOLO(main) pushes it further to 63.4%. YOLO is the 

fastest known object detector but lags in accuracy. Despite having a greater speed of 155 FPS, Fast 

YOLO has a substandard mAP than that of SSD(52.7%). On combining with R-CNN, bounding boxes 

that are predicted to match the ground truth value in both the methods were boosted, mAP increased to 

75%. 

After training the network for a week, a single crop top-5 accuracy of 88% is achieved on the ImageNet 

2012 validation set. On the PASCAL VOC dataset, only 98 bounding boxes and class probabilities per 

image are predicted. Figure 2 gives an insight of the processing speeds of different methods. 

 

Figure 2: Comparison of Frames Per Second Processing of  Different Methods 

 
 

3.4 Corner-Net and Center-Net 

Corner-Net [30] takes a different approach to object detection which identifies objects as a pair of key-

points: top-left corner and bottom-right corner, particularly, hence eliminating the requirement of anchor 

boxes used in previous single-stage methods in order to compete with two-stage detectors. Heat-maps 

around the corner key-points are predicted using a single convolutional neural network along with an 

embedding vector for each detected corner. An additional corner-pooling approach to understand context 

was introduced to ameliorate the prediction of corners and their unification.  

During training, the input and output image resolutions were set to 511X511 and 128X128, respectively, 

and an AP of nearly 40% was achieved. After random, customary data augmentation procedures, 

PCA(Principal Component Analysis) is applied to input images. While testing, after non-maximal 

suppression was applied, the top 100 top-left and bottom-right corners were selected for final predictions. 

Penalty for negative locations is reduced within a certain radius determined by the object that is 

predicted as positive, rather than keeping it high. The hourglass network as the backbone is crucial for 
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the working of Corner-Net which developed bounding boxes of better quality viz.-a-viz. a better 

precision for a higher threshold of IoU. 

Center-Net [31], which is an extension of Corner-Net detects each object as a triplet, rather than a pair of 

key-points improving both precision and recall. The design includes two customized modules called as 

cascade corner pooling and centre pooling which enrich the information collected for both top-left 

corners and bottom-right corners and provide more recognizable information at the centre regions, 

respectively. 

The weak ability of Corner-Net to refer to the global information of the object leads to wrong estimation 

of object boundaries. CenterNet was designed to equip the CornerNet method with an additional key-

point for detection which holds information about the centre region of a proposal. The intuition was that 

if a predicted bounding box has a high IoU with the ground truth value, then the probability that the 

centre key-point in its central region is predicted as the same class is high, and vice versa. This can be 

enforced during inference to verify whether that proposal belongs to the same class of object. For large 

objects, ‘centre pooling’ can extract richer internal visual patterns, which is abundant in larger objects, to 

inculcate centre knowledge. ‘Cascade corner pooling’ helps improve average recall(AR) and thus reduce 

incorrect bounding boxes by deducing boundary information. 

The fault discovery(FD) rates(the complement of average precision and a representation of how many of 

the bounding boxes have an IoU less than threshold value) of several CornerNet IoUs were extensively 

researched to decide on a suitable IoU rate that minimizes FD. These rates when compared to Corner-

Net dropped from ~30% to 4.5% in Center-Net. For small incorrect bounding boxes, the FD rates 

dropped from ~60% to 9%, and are accredited to the infusion of knowledge about the centres. 

For inference, both original and horizontally flipped images with original resolutions are provided as 

input for the network. Bounding boxes detected in the horizontally flipped images are flipped back and 

mixed with those of the original image. The redundant boxes are deleted using soft nms###, then the top 

100 bounding boxes are selected based on their scores as final detection results. 

The input image size is set to 511X511, the same as Corner-Net, by using the Hourglass-52 backbone, 

single-scale testing AP improved by 3.8% and multi-scale testing improved by 4.1% than Corner-Net. 

The quality of improvement is mainly because of small objects, since centre information of small objects 

has been better reformed than that of larger objects with the Center-Net intuition. The reduction of 

incorrect bounding boxes improves average recall of the system, thus improving the confidence of those 

boxes with accurate locations but low scores. 

The main premise of Center-Net; inculcation of knowledge about the centre region of object works well 

with smaller objects more than large ones because it is easier to locate the centre of a smaller object. 

With hourglass-104 as the backbone, inference time of Corner-Net and Center-Net was observed to be 

roughly 300ms and 340ms respectively. Center-Net speeds up to 270ms with hourglass-52 backbone 

along with improvement in accuracy.   

 

3.5 Retina-Net 

The trailing accuracy of one-shot detectors motivated the research for Retina-net[32], which introduced 

a novel concept of focal loss that reduces the focal loss of well-classified examples. The class imbalance 

during training was found to be the leading impediment for one-stage detectors. Retina-net demonstrated 

comparable accuracies with that of state-of-the-art two-stage detectors, surpassing all the previous one-

stage detectors.  

https://www.ijfmr.com/
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After taking images as inputs, the model uses anchors to predict proposals. The use of FPN with the 

backbone architecture avoids the burden of taking into consideration the variable scales of images. 

Anchors are similar to that of RPN, which predicts a class probability and 4 bounding box offsets. If 

IOU>0.5, the anchor is assigned the ground truth values, else, if IOU<0.4, it is regarded as background 

class. Also, if 0.4<IOU<0.5, then the anchor is ignored during training. 

Along with the main network, two subnetworks are used in Retina-net, the first of which predicts the 

class of the region and the second one predicts the coordinate offsets. Each convolutional layer has a 

ReLU activation function and maintains the same channel size as the input feature map. Sigmoid 

activations are attached to the output feature map.  

Training is performed using SGD, with the initial learning rate set to 0.01 and is divided by 10 after the 

count of examples exceeds 60k and again at 80k. The only data augmentation performed is that of 

horizontal image flipping. 

With the Resnet-101-FPN backbone, Retina-net achieves an AP of 39.1 on the COCO test-dev, running 

at 5 fps. Retina-net boasts the state-of-the-art accuracy in object detection. 

 

 4. Conclusion 

By analysing the trends and turns, or even anomalies within images or videos, object detection 

techniques provide insight on how decision-making, overall efficiency and customer experience can be 

improved in business intelligence practices. The computational complexity of training an object 

detection model is of pivotal concern, and dictates the efficacy of these applications. Acquiring in depth 

knowledge about the training time and space complexities plays a significant role in ensuring that the 

right technique is used for the right circumstances. This paper, with its descriptive interpretations of 

various object detection techniques including R-CNN, SSD, and YOLO([7],[8],[9]); provides a profound 

elucidation that can help understand the varying factors that determine the applicability of the existing 

object detection models. With this intuition, the use of object detection in the field of business 

intelligence can be magnified for societal benefit. 
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