
 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240527926 Volume 6, Issue 5, September-October 2024 1 

 

Organizational Structure as a Catalyst for Software 

Architecture Design in Embedded Systems
 

Siddharth Chauhan  
 

PMP®, Software Developer, Bengaluru, India 

 

Abstract 

The relationship between organizational structure and software architecture is a crucial but often 

overlooked aspect of product development in embedded systems companies. A well-aligned 

organizational structure can drive efficiency, collaboration, and innovation, while a misaligned structure 

may lead to architectural deficiencies, delays, and poor system integration. This paper explores how 

various organizational frameworks impact software architecture decisions in embedded product 

companies. It discusses notable examples, such as Conway’s Law, which links the two concepts and 

analyzes real-world case studies that demonstrate the benefits of aligning software development teams 

with system modules. The paper concludes with recommended organizational models proven to support 

optimal software architecture for embedded systems. 

 

Keywords: Conway’s Law, Matrix organization, IoT(Internet of Things), SAFe(Scaled Agile 

Framework), Scrum (part of Agile methodologies), IEEE(Institute of Electrical and Electronics Engineers) 

 

INTRODUCTION 

In embedded systems, the architecture of software is influenced by the organizational structure of the 

development team. Conway's Law suggests that "organizations which design systems are constrained to 

produce designs that are copies of the communication structures of these organizations." This relationship 

is particularly evident in the embedded systems sector, where close coordination between hardware, 

firmware, and software teams is essential. The alignment of these teams directly impacts the modularity, 

scalability, and overall performance of the system. 

A. Objective 

The purpose of this paper is to explore how organizational structures influence software architecture in 

embedded systems companies and to provide actionable insights for improving alignment. 

 

CONWAY'S LAW AND ITS IMPLICATIONS 

Conway's Law is an adage named after Melvin Conway, who introduced it in a 1968 paper titled "How Do 

Committees Invent?". The law states: "Any organization that designs a system (defined broadly) will 

produce a design whose structure is a copy of the organization's communication structure." In 

essence, the architecture of a system mirrors the way communication flows within the organization that 

built it. This concept has significant implications, especially in software development and complex system 

design, where teams' structure, workflows, and communication patterns impact the end product’s 

architecture. 

Melvin Conway's observation has remained relevant for decades and is especially pertinent in embedded  

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240527926 Volume 6, Issue 5, September-October 2024 2 

 

systems. When the organizational structure mirrors the architecture of a system, teams can work more 

efficiently. Conversely, when the organization is misaligned with the architecture, inefficiencies, 

miscommunication, and integration challenges often arise. 

B. Key Aspects of Conway's Law 

1. Communication and Collaboration:  

Conway's Law emphasizes that the way teams communicate is directly reflected in the systems they build. 

For example, if development teams are siloed (e.g., software team, hardware team, testing team), the 

system may end up having rigid boundaries and communication gaps between different components, 

mirroring the siloed teams' structure. 

2. Organizational Structure’s Influence: 

1. Tightly coupled teams(with regular communication and collaboration) are likely to produce tightly 

integrated systems with fewer modular boundaries. 

2. Loosely coupled teams (with less interaction) tend to produce more modular systems, where each part 

of the system can operate more independently. 

 

 

II. A DIFFERENCE BETWEEN TIGHTLY AND LOOSELY COUPLED TEAM 

 

3. System Modularity:  

When an organization is divided into distinct teams, each team is likely to work on its own component or 

module of the system. This often results in modular designs, where teams focus on their "piece" of the 

system, leading to modular or microservices architectures. These designs are typically easier to scale and 

maintain if the communication structure supports this approach. 

4. Impact of Misalignment:  

Misalignment between the organizational structure and system architecture can cause several issues: 

1. Integration challenges: If teams don't communicate well, integrating the different system components 

can be difficult and inefficient. 

2. Coordination problems: If two teams are responsible for interdependent components but don't 

communicate regularly, design decisions made by one team might contradict or negatively impact the 

other. 

A. Case Study: Conway’s Law in Action 

In an embedded product company developing IoT devices, the separation between hardware, software, 

and firmware teams created silos. As a result, the software was not optimized for the hardware, leading to 

poor performance and delayed integration. By restructuring into cross-functional teams that mapped onto 

system components, the company improved efficiency and product quality. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240527926 Volume 6, Issue 5, September-October 2024 3 

 

B. How to Apply Conway's Law in Modern Software Development 

Agile and DevOps: Agile methodologies and DevOps practices aim to break down silos in development 

and operational teams, encouraging more collaboration. According to Conway's Law, this should naturally 

lead to more integrated and collaborative software architectures, such as microservices, where individual 

teams are responsible for specific services that can operate and communicate efficiently. 

Microservices Architecture: In a microservices architecture, small, independent teams often work on 

specific services or components of a system. Conway's Law suggests that this structure is reflected in the 

system itself, where the architecture consists of loosely coupled, modular services. Each team can work 

independently on their service, improving both development speed and system flexibility. 

Cross-Functional Teams: Cross-functional teams, as promoted by Agile and DevOps, can create more 

holistic designs because they consist of members with diverse expertise (e.g., developers, testers, 

operations staff) working closely together. Conway’s Law predicts that the resulting systems will reflect 

the integrated nature of these teams, leading to a well-coordinated system architecture. 

C. Criticism and Limitations of Conway's Law in Modern Software Development 

While Conway’s Law offers valuable insight into the relationship between organizational structure and 

system architecture, it’s important to consider its limitations: 

Not an absolute rule:The law highlights a tendency rather than a hard-and-fast rule. With strong 

leadership, careful planning, and deliberate efforts, organizations can sometimes overcome structural 

limitations and create an architecture that doesn't exactly mirror the communication structure. 

Dynamic environments: As organizations evolve, so do their communication patterns and structures. 

This means that system architectures also need to be adaptable and scalable, potentially deviating from 

the organization's initial structure over time. 

Context dependency: In some cases, external factors, such as market pressure or regulatory requirements, 

might force the organization to adopt an architecture that doesn't match its internal communication 

structure. 

 

KEY ORGANIZATIONAL STRUCTURES AND THEIR IMPACT ON SOFTWARE ARCHITECTURE 

D. Functional vs. Cross-Functional Teams 

In functional team structures, developers are organized by their specific expertise (e.g., hardware, 

software, testing). While this promotes deep specialization, it often creates bottlenecks and hampers 

collaboration between teams working on interconnected components of an embedded system. Cross-

functional teams, on the other hand, are organized around features or product modules. Each team consists 

of members from various disciplines working together on a specific aspect of the system. This structure 

encourages collaboration, reduces communication barriers, and results in better-integrated software 

architecture. Example - A leading automotive embedded systems company transitioned from a functional 

team structure to a cross-functional team structure to develop a new autonomous driving system. This shift 

allowed for better integration between the software controlling vehicle sensors and the underlying 

hardware systems, reducing development time by 20%. 

E. Centralized vs. Decentralized Decision Making 

In a centralized organizational structure, architectural decisions are typically made by a small group of 

senior architects. While this can ensure consistency and control, it often stifles innovation and slows down 

decision-making. In contrast, decentralized structures give more autonomy to individual teams to make 

architecture decisions for their modules. This promotes faster iteration and innovation but can lead to 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240527926 Volume 6, Issue 5, September-October 2024 4 

 

integration challenges if there is no overarching architectural vision. Example - A consumer electronics 

company developing embedded systems for smart home devices adopted a decentralized structure where 

teams had autonomy over their respective modules. While this fostered innovation, it led to integration 

issues as different teams chose conflicting protocols. They resolved this by implementing an architectural 

review board that provided overarching guidelines while maintaining team autonomy. 

 

PROVEN ORGANIZATIONAL STRUCTURES AND CORRESPONDING ARCHITECTURES 

F. Microservices Architecture with Feature Teams 

In companies developing highly modular embedded systems, such as those in the telecommunications 

industry, a microservices architecture combined with cross-functional feature teams has proven to be 

successful. Each feature team owns an independent service or module, promoting faster development 

cycles and easier scalability. 

 

 
IV.a  Conway's law, trunk-based dev example 

 

 
IV.b  Conway's law, trunk-based dev example 

G. Layered Architecture with Matrix Organization 

A matrix organizational structure is common in embedded systems companies developing safety-critical 

applications, such as medical devices. Here, teams are grouped both by function and product, allowing for 

both specialization in safety-critical aspects (e.g., compliance, firmware) and collaboration across layers 

of the software stack. Example - A medical device company designing an embedded system for patient 

monitoring used a matrix structure where compliance specialists worked closely with both the software 

development and testing teams. This ensured the product met regulatory standards while maintaining 

modularity in the software architecture. 

 

ORGANIZATIONAL STRUCTURE AND AGILE METHODOLOGIES 

Agile methodologies, such as Scrum and SAFe (Scaled Agile Framework), are increasingly being adopted 

in embedded systems development. These frameworks promote iterative development, continuous 

feedback, and team collaboration. Aligning organizational structure with Agile practices can enhance the 

flexibility and responsiveness of embedded software architecture. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240527926 Volume 6, Issue 5, September-October 2024 5 

 

H. Agile Teams and Modular Architectures 

Agile emphasizes small, self-organizing teams. For embedded product companies, organizing teams 

around product modules or subsystems can enable better coordination and reduce architectural complexity. 

Regular sprint reviews and retrospectives help teams align their architecture decisions with product goals. 

 

CONCLUSION 

The architecture of software in embedded systems is heavily influenced by the organizational structure of 

the development team. Companies that align their organizational models with the system architecture – 

through cross-functional teams, decentralized decision-making, or Agile frameworks – see improved 

performance, faster delivery times, and more scalable solutions. By contrast, misaligned structures lead to 

communication breakdowns, integration problems, and delays. Organizational change can therefore be a 

key lever for optimizing software architecture in embedded product companies. 

 

ACKNOWLEDGMENTS 

This paper discusses the impact of organizational structures on software architecture within embedded 

product companies, illustrating the relationship through case studies and theoretical frameworks. The 

examples provided are meant to offer insights for improving collaboration and optimizing software 

architecture by leveraging organizational design. 

I would like to thank all my colleagues for sharing their experiences and insights, which greatly 

contributed to the case studies in this paper. We also acknowledge the valuable input from industry experts 

on organizational design and software architecture alignment. 

 

REFERENCES 

1. Conway, M. (1968).How Do Committees Invent? Datamation. 

2. Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice (3rd ed.). Addison-

Wesley. 

3. Leffingwell, D. (2007). Scaling Software Agility: Best Practices for Large Enterprises. Addison-

Wesley. 

4. Smolander, K., & Paivarinta, T. (2002). Organizational Interfaces and Software Development 

Practices. IEEE Software. 

5. Larman, C., & Vodde, B. (2010). Practices for Scaling Lean and Agile Development. Addison-Wesley.  

https://www.ijfmr.com/

