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Abstract 

Efficient maintenance prediction is critical for ensuring the operational continuity and longevity of in-

dustrial machinery. This paper presents a comparative analysis of diverse machine-learning algorithms 

for the task of machine maintenance prediction. Through rigorous experimentation and evaluation, we 

assess the performance of algorithms including AdaBoost, Random Forest, Gradient Boosting, and Sup-

port Vector Machines (SVM). Additionally, to enhance predictive accuracy, we integrate an optimizer 

algorithm, Cuckoo Search, into our framework. This optimization technique fine-tunes algorithm param-

eters, further improving accuracy. Our findings offer valuable insights into optimizing machine mainte-

nance prediction, empowering industries with proactive maintenance strategies to mitigate downtime 

and enhance productivity. 
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Introduction 

A Subsection Sample 

Predictive maintenance has emerged as a critical strategy for industries looking to optimize their opera-

tions, minimize downtime, and reduce maintenance costs. By leveraging advanced data analytics and ma-

chine learning techniques, companies can predict when equipment failure is likely to occur, allowing for 

proactive maintenance interventions. The predictive maintenance software developed utilizes real-time 

data from four selected features derived from the machine's dataset. These features serve as indicators of 

the machine's health and performance. By continuously monitoring these features in real time, the soft-

ware can assess the current state of the machine and predict whether maintenance is required. To ensure 

accurate predictions, various classification techniques were compared and evaluated to identify the most 

effective model. This involved analyzing the performance of different algorithms, such as neural net-

works, decision trees, SVM and random forests, among others. Through rigorous testing and validation, 

the highest-performing model was chosen for implementation in the predictive maintenance application. 

In addition to selecting the best classification technique, the efficiency of the model was further enhanced 

using the crayfish optimizer. This optimization technique helps fine-tune the model parameters to im-

prove its predictive accuracy and overall performance. By leveraging the capabilities of the crayfish op-

timizer, the software can achieve higher levels of precision and reliability in predicting maintenance need. 
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Overall, the predictive maintenance software represents a cutting-edge solution for modern industries 

seeking to optimize their maintenance strategies. By leveraging real-time data analytics and sophisticated 

machine learning algorithms, and optimization techniques, the software enables proactive maintenance 

interventions, resulting in enhanced operational efficiency, minimized downtime, and substantial cost 

savings.. However, despite significant progress in this area, there is still room for further development. In 

this research, we will leverage the experience from previous studies and advance by developing a mainte-

nance prediction model using various machine learning algorithms. Additionally, we aim to enhance our 

model's accuracy by integrating the Crayfish nature-based optimization algorithm. In this study, we also 

compare the Area Under the Curve (AUC) of all machine learning models and visualize the results 

through graphs. Initially, our model achieved an accuracy of 0.95 with Random Forest before applying 

the Crayfish algorithm. However, after implementing the optimization algorithm, the accuracy improved 

to 0.97, highlighting the effectiveness of feature selection and optimization in predictive maintenance. 

 

Literature Review 

Predictive maintenance (PdM) has emerged as a critical strategy for enhancing the reliability and 

efficiency of heavy construction equipment, aiming to minimize downtime and maintenance costs. The 

application of machine learning algorithms in PdM has garnered significant interest, offering a proactive 

approach to maintenance by predicting equipment failures before they occur. In the construction industry, 

where unplanned downtime can lead to project delays and increased costs, PdM holds immense potential. 

Previous studies have explored various machine learning algorithms for PdM in heavy construction 

equipment. For instance, Li et al. (2018) [18]investigated vibration analysis and machine learning to 

predict the remaining useful life of bearings in heavy machinery. Similarly, Zhang et al. (2020) [21] 

applied deep learning techniques to predict equipment failures in the manufacturing industry. These 

studies highlight the effectiveness of machine learning in predicting equipment failures based on 

historical data and real-time sensor readings. Additionally, research by Carvalho et al. (2019) [22] 

emphasized the importance of data-driven approaches in improving maintenance strategies and discussed 

the challenges and opportunities in implementing predictive maintenance systems. Furthermore, 

Dalzochio et al. (2020) [23] focused on machine learning and reasoning for predictive maintenance in 

Industry 4.0, highlighting the need for intelligent systems that can reason about equipment health based 

on sensor data and contextual information. By leveraging such advances in machine learning, predictive 

maintenance models can help construction companies reduce downtime, improve equipment reliability, 

and lower maintenance costs. Future research can further refine these models and integrate them into 

existing maintenance practices, offering even greater benefits to the construction industry. Recent studies 

such as Kane et al. (2022) [4] also underscore the growing importance of machine learning in predictive 

maintenance, exploring novel approaches and their applications across various industries. [3] The paper 

introduces an inventory management system tailored for the construction sector to replace manual 

processes with a computerized solution, reducing paperwork and human errors. The proposed system is a 

mobile application developed using an incremental methodology, with Google's Firebase chosen for 

database development and deployment due to its scalability. Voice Assistant functionality is integrated 

into the application, allowing users to verbally command tasks that are converted to text using Machine 

Learning for analysis and execution. The system employs a string-matching algorithm, specifically Jaro 

Winkler, for accurate data separation, and utilizes K-means clustering to group database data into High, 

Medium, and Low Costs clusters for cost optimization . 



 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240528248 Volume 6, Issue 5, September-October 2024 3 

 

Gaps Identified 

The identified gaps in existing literature underscore the need for further research in predictive mainte-

nance for heavy construction equipment. While previous studies have explored machine learning algo-

rithms for predictive maintenance, there is a gap in research specific to the construction industry's 

unique challenges and requirements. Additionally, the integration of optimization algorithms, such as the 

Crayfish nature-based optimization algorithm, remains unexplored in the context of predictive mainte-

nance for heavy construction equipment. Furthermore, the lack of comprehensive comparative studies 

and the limited focus on real-time data analysis in existing literature highlight areas where further re-

search can contribute valuable insights. Addressing these gaps can lead to the development of more ef-

fective and efficient predictive maintenance models tailored to the construction industry's needs, ulti-

mately improving equipment reliability and reducing maintenance costs. Equipment reliability, and low-

er maintenance costs. Future research can further refine these models and integrate them into existing 

maintenance practices, offering even greater benefits to the construction industry. 

 

Dataset 

The dataset Predictive Maintenance Dataset (AI4I 2020) used in this study was taken from Kaggle and 

comprises various parameters related to heavy construction equipment that has an electric motor 

associated with it, including air temperature, process temperature, rotational speed, torque, tool wear, and 

machine failure. Each entry in the dataset is identified by a unique UDI (Unique Data Identifier) and 

includes additional information such as the product ID and type of equipment. The air temperature and 

process temperature indicate the ambient and internal temperatures of the equipment, respectively. 

Rotational speed and torque are crucial parameters reflecting the operational state and mechanical stress 

on the equipment. Tool wear, measured in minutes, provides insights into the wear and tear of the 

machine's tools. The machine_failure column serves as the target variable, indicating whether the 

equipment has failed (1) or not (0). Additional parameters like TWF, HDF, PWF, OSF, and RNF might 

offer further insights into specific aspects of the equipment's operation or maintenance. This dataset 

serves as the foundation for developing a predictive maintenance model using machine learning 

algorithms. 

 

The dataset includes the following columns: 

1. UDI (Unique Data Identifier) This column provides a unique identifier for each data entry, allowing for 

easy tracking and referencing of individual records. 

2. Product ID: This column identifies the specific product or machine associated with each data entry, 

enabling the dataset to distinguish between different types of equipment. 

3. Type: The type column categorizes the equipment into different types (e.g., motor, loader, hauler), 

providing additional information about the nature of the machinery being monitored. 

4. Air Temperature: This column records the temperature of the air surrounding the equipment, which can 

impact its performance and efficiency. 

5. Process Temperature: Process temperature refers to the temperature of the machine's internal processes, 

providing insights into the thermal conditions within the equipment. 

6. Rotational Speed: This column indicates the speed at which the machine's components rotate, which is 

crucial for understanding the operational state and performance of the equipment. 
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7. Torque: Torque is a measure of the rotational force exerted by the equipment, which can indicate the 

mechanical stress on the machinery. 

8. Tool Wear [min]: Tool wear is measured in minutes and provides information about the wear and tear 

on the machine's tools, helping to assess the maintenance needs of the equipment. 

9. Machine Failure: The machine_failure column serves as the target variable, indicating whether the 

equipment has failed (1) or not (0). This column is crucial for training the predictive maintenance 

model. 

10. TWF, HDF, PWF, OSF, RNF: These columns likely represent additional parameters related to the 

equipment's operation or maintenance.  

The specific definitions and purposes of these columns would need to be clarified based on the context of 

the dataset and the goals of the predictive maintenance model. Overall, the dataset includes a range of 

parameters that are essential for monitoring and predicting the maintenance needs of heavy construction 

equipment. By analyzing these parameters using machine learning algorithms, it is possible to develop a 

predictive maintenance model that can help reduce downtime and maintenance costs. 

 
 

Fig. 1. System Architecture 

 

Optimization Algorithm 

An optimization algorithm is a computational technique designed to identify the optimal solution from a 

range of possible options for a given problem. These algorithms are extensively used in various fields, 

including machine learning, to adjust the parameters of models and optimize their performance based on 

specified criteria. Nature-based optimizers, conversely belong to a category of optimization algorithms 

that draw inspiration from natural processes .These algorithms mimic natural phenomena such as evolu-

tionary processes, swarm behavior, and natural selection to solve complex optimization problems effi-

ciently. The Crayfish Algorithm is an example of a nature-based optimizer that draws inspiration from 

the behavior of crayfish in search of food. This algorithm starts with a population of candidate solutions 

to the optimization problem. It then iteratively updates this population by simulating the movement of 
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crayfish. Crayfish move toward areas with better food sources, representing solutions with lower objec-

tive function values, and avoid areas with fewer food sources, representing solutions with higher objec-

tive function values. By simulating these natural behaviors, the Crayfish Algorithm efficiently explores 

the solution space and finds the optimal solution to the optimization problem. In the context of predic-

tive maintenance for construction site heavy machinery, the Crayfish Algorithm could be used to opti-

mize machine learning models that predict equipment failures. This optimization can lead to improved 

accuracy and reliability in predicting maintenance needs, ultimately reducing downtime and mainte-

nance costs for construction companies. 

a) Mathematical Formula for Crayfish 

The Cooperative Optimization Algorithm (COA) begins by generating a set of candidate solutions, de-

noted as 𝐶𝑟, within the given search space. These candidates are randomly initialized considering the 

population size (N) and dimension (dim) of the problem.  

 

 

                                                                        …..(1) 

 

Each candidate solution 𝐶𝑟 is a matrix representing the position of the population in the search space, 

where each element  

𝐶𝑟𝑖,𝑗 = 𝑙𝑏𝑗 + (𝑢𝑏𝑗 - 𝑙𝑏𝑗) × 𝑟𝑎𝑛𝑑 ………………..(2) 

with 𝑢𝑏𝑗 and 𝑙𝑏𝑗 being the upper and lower bounds of the jth dimension, and Rand being a random 

number. 

The effect of temperature on crayfish intake is significant, impacting their behavior and activity levels. 

Crayfish tend to seek cooler environments when the temperature exceeds 30°C, indicative of their sum-

mer retreat behavior. They are more active in foraging at temperatures between 15°C to 25°C, with an 

optimal feeding range up to 30°C. The quantity of food consumed by crayfish is influenced by tempera-

ture, which can be modeled using a normal distribution. COA defines a temperature range from 20 to 

35°C, reflecting crayfish behavior within the algorithm. 

a. The equation of  Temperature 

Temperature = rand × 15 + 20 ………………..(3) 

b. The representation of crayfish intake 

 

  

                                                               …(4) 

During the phase of summer resort or exploration, if the temperature exceeds 30°C, crayfish prefer to 

spend the summer in a cave. The cave's position is determined by the optimal position achieved so far 

(𝐶𝑟𝐺) and the optimal position within the current population (𝐶𝑟𝐿). The decision to enter the cave is 

based on a random variable "rand," with values below 0.5 indicating the absence of rival crayfish for the 

cave. Crayfish approach the cave using a decreasing curve 𝑆, enhancing COA's exploitation ability. 
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Fig. 2. The influence of temperature on intake on crayfish 

In the phase of competition or exploitation, if the temperature is above 30°C and rand is less than 0.5, 

crayfish engage in territorial disputes for control of the cave. They adjust their positions based on another 

crayfish's position, expanding COA's search range. This phase enhances the algorithm's exploration capa-

bility as crayfish compete for control of the cave. 

When the temperature is below or equal to 30°C, crayfish enter the phase of foraging or exploitation. 

They approach food sources actively, evaluating the size of food items and using their claws to dismantle 

larger items. The amount of food consumed is calculated based on the fitness value of the crayfish and the 

food's dimensions. Crayfish adjust their positions to approach food sources, aiming to reach the best solu-

tion and improve COA's exploitation ability. This process strengthens the algorithm's convergence capa-

bilities. 

 

Proposed Model 

A novel system has been developed to forecast machine failures in large industrial settings, emphasizing 

early problem detection to prevent costly downtime. This system employs a variety of machine learning 

models to identify the most effective predictive approach. The included models encompass Linear 

Regression, Support Vector Machines (SVM), Logistic Regression, LDA, Decision Trees, Naive Bayes, 

K-Nearest Neighbours (KNN), Random Forest, Gradient Boosting, and AdaBoost.The system operates 

by analysing historical data and real-time sensor readings from machines to recognize patterns indicative 

of potential failures. By evaluating the performance of each machine learning model, the system can de-

termine the most suitable model for predicting machine failures in a particular industrial environment. 

Once the optimal model is identified, it is integrated into the system to continuously monitor machine 

performance and anticipate potential failures. This proactive strategy enables maintenance teams to ad-

dress issues before they escalate, thereby reducing downtime and enhancing productivity. Developing a 

predictive analytics model for machine failure encompasses several vital stages. Let’s dissect each phase 

to understand the entire process comprehensively. 

 

Data loading 

Initiating the process involves collecting essential data. This includes importing relevant libraries and 

loading the dataset. It is paramount to identify the target variable, which, in this context, signifies instanc-

es of machine failures. Accurate loading of data ensures that prognoses align with real-world scenarios. 
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Data cleaning 

In the second stage, we carefully examine the data for any missing values. Utilizing visual aids like bar 

plots helps us pinpoint columns with missing data, facilitating the cleaning process. Ensuring the dataset 

is devoid of outliers or incomplete entries is crucial for making accurate predictions. 

 

Data Exploration 

In the third phase, we dive into the dataset to uncover underlying patterns and trends. Visual aids such as 

graphs and charts help us understand relationships and identify groups of similar elements. Taking the 

time to thoroughly explore datasets is crucial for extracting insights that might otherwise be missed in a 

rushed analysis. 

 

Data Preparation 

Data preparation is critical for machine learning. The data_preparation function is vital in encoding cate-

gorical variables and partitioning the dataset into training and test sets. This ensures the model is trained 

on well-organized, clean data, mitigating overfitting and enriching interpretability for machine learning 

algorithms. 

 

Model training 

In this step, model training involves building a strong model using techniques such as boosting. This 

stage is crucial for attaining precise predictions. The flexibility of these methods enables fine-tuning to 

enhance results, rendering them valuable options for diverse classification tasks. 

 

Model evaluation 

The final step involves assessing the model’s performance through scoring, cross-validation, and a confu-

sion matrix. Scoring gauges prediction accuracy utilizing metrics like accuracy and f-measure. Cross-

validation tests the model with different parameters to determine the optimal configuration. The confu-

sion matrix visually illustrates the model’s performance, pinpointing modification areas. The most used 

predictive modeling techniques. Three of the most commonly utilized machine learning algorithms for 

failure prediction are examined below: 

 

Decision trees 

Decision trees serve as a supervised algorithm applicable to both classification and regression tasks. This 

technique entails creating a tree-like structure that maps out decisions and their possible consequences, 

taking into account factors such as chance events, resource expenses, and utility. The primary advantage 

of decision trees lies in their capability to identify the most significant features within a dataset, providing 

insights into how changes in these features affect the final model outcome. 

 

Random forests 

Random forests utilize ensemble learning by combining multiple decision trees into a cohesive prediction 

model. This method assesses the output of each decision tree and categorizes new instances based on the 

tree offering the most precise prediction. The effectiveness of random forests stems from their ability to 
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combat overfitting through the use of multiple decision trees with varying parameters. This collaborative 

approach enhances accuracy, surpassing the capabilities of a single decision tree operating in isolation.  

 

Support vector machines (SVMs). 

SVMs are widely used supervised machine learning algorithms designed primarily for classification and 

regression tasks. Operating through the creation of a hyperplane, SVMs segregate data points into distinct 

classes, facilitating the prediction of unknown data points based on their classification within the hyper-

plane boundaries. SVMs shine in scenarios with datasets containing numerous features, efficiently captur-

ing complex relationships between variables. They excel in categorizing data points into distinct classes 

by pinpointing optimal hyperplanes in high-dimensional space. 

 

Linear Regression 

Linear regression is a simple yet effective algorithm used to predict a continuous target variable using one 

or more input features. It operates by fitting a linear equation to the provided data, aiming to minimize the 

gap between the observed and predicted values. 

 

Mathematical Formula: 

 

• (y) represents the predicted value (target variable). 

• (x) represents the input feature. 

• ( ) is the y-intercept (constant term). 

• ( ) is the coefficient for the input feature. 

• ( ) represents the error term. 

 

Logistic Regression 

Despite its name, logistic regression is used for binary classification tasks. It estimates probabilities using 

a logistic function to model the relationship between the independent variables and the dependent varia-

ble, which is typically binary. 

 

Mathematical Formula: 

    

• (P(y=1)) is the probability of the positive class. 

• (x) represents the input feature. 

• ( ) is the intercept. 

• ( ) is the coefficient for the input feature. 

 

Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a classification technique that identifies the ideal linear combina-

tion of features to distinguish between two or more classes. It does this by modeling the distribution of 

the features separately in each class and then using Bayes' theorem to estimate the probability of each 

class given the features. 
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Naive Bayes 

Naive Bayes is a straightforward but powerful classification algorithm that relies on Bayes' theorem, as-

suming that features are independent of each other. It's particularly useful for text classification and spam 

filtering. 

Mathematical Formula: 

  

 
 

K-Nearest Neighbours (KNN) 

K-Nearest Neighbours is a simple, instance-based learning algorithm used for both classification and re-

gression. It classifies data points based on the majority class of their K nearest neighbours. 

 

Gradient Boosting 

Gradient Boosting acts as a team player in learning, and constructing models one after the other. Each 

new model steps in to fix mistakes made by the ones before it, gradually improving the overall perfor-

mance. It's particularly effective for regression and classification problems. 

 

AdaBoost 

AdaBoost is like a collaborative effort in learning, bringing together several weak classifiers to form a 

robust one. It functions by assigning greater importance to misclassified data points in all iteration, forc-

ing the model to focus on the hard-to-classify instances. 

 
Fig. 3. Accuracy of all models 

 

Proposed Hybrid ML technique: 

Our innovative approach to predicting machine failures in large industries is designed to detect issues 

early and prevent costly breakdowns. We start by ensuring the data's integrity and addressing any missing 

values or duplicates. Then, we standardize the data to ensure consistent scaling, which is vital for accurate 

predictions using machine learning algorithms. And calculated the accuracy of all models for comparison.  

After preprocessing, we focus on selecting the most relevant features for predicting failures. We identify 

four critical features—air temperature, rotational speed, torque, and process temperature—that have a 

significant impact on machine health.  
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Fig. 4. Selected Features After Performing Feature Selection 

 

These features are crucial for building an effective predictive model. Next, we train and test multiple ma-

chine learning models, such as Logistic Regression, Linear Regression, and Random Forest among oth-

ers. These models help us evaluate which one performs best in predicting machine failures. Our results 

show that Random Forest outperforms the other models, providing the highest accuracy. Accuracy after 

applying Random Forest Came up to be  

** Accuracy **: 0.9805 

We can see the same in the following Fig 6 Histogram as the red colour indicates that the feature is hav-

ing highest accuracy. We can also see the measures and accuracy in the result section. 

 
Fig. 5. Comparative Analysis of construction site machinery maintenance 

After applying to further enhance the accuracy of our model, we apply a nature-based optimization algo-

rithm, such as the Crayfish algorithm. This optimization step fine-tunes the parameters of the Random 

Forest model, improving its performance in predicting machine failures. Which is reflected in results sec-

tion.  

Area under the curve (AUC) is a critical metric for evaluating the performance of binary classification 

models like the Random Forest classifier. It quantifies the model's ability to distinguish between the posi-

tive and negative classes across all possible classification thresholds. The ROC (Receiver Operating 

Characteristic) curve visually depicts the balance between the true positive rate (TPR) and the false posi-

tive rate (FPR) across different classification thresholds.. The curve is created by plotting the TPR against 

the FPR for different threshold values. A perfect classifier would have an AUC of 1.0, indicating that it 

achieves a TPR of 1.0 (detecting all positive instances) while maintaining an FPR of 0.0 (no false posi-

tives). Conversely, a classifier with an AUC of 0.5 performs no better than random chance, as its ROC 
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curve would coincide with the diagonal line (FPR = TPR). In practice, an AUC above 0.5 indicates bet-

ter-than-random performance, with higher values indicating better model discrimination. The AUC (Area 

Under the Curve) is frequently utilized in machine learning to compare various models' performance and 

determine the most suitable model for a specific task. This evaluation is based on the model's capability 

to accurately classify both positive and negative instances. The value for TPR and FPR for my dataset is 

calculated as:- 

 

TPR (True Positive Rate): 

 
where TP is the number of true positives and FN is the number of false negatives. For Our model  

TPR: 0.5081967213114754 

 

FPR (False Positive Rate):  

Type equation here.where FP is the number of false positives and TN is the number of true negatives. For 

Our model 

      FPR: 0.0046415678184631255 

 
Fig. 6. Area Under the curve 

Finally, we deploy our optimized model using Flask, a web framework, allowing industries to easily ac-

cess and use the model for predicting machine failures. Our approach integrates data preprocessing, fea-

ture selection, and model optimization to deliver accurate and reliable predictions, helping industries 

avoid costly downtime and maintenance issues. 

 

Applications: 

The proposed system for predicting machine failures in large industries has many practical uses. Firstly, it 

helps detect machine issues early by analyzing factors like air temperature, rotational speed, torque, and 

process temperature. This early detection allows for prompt maintenance, reducing downtime and avoid-

ing expensive breakdowns. Secondly, the system aids in planning preventive maintenance by highlighting 

when and where maintenance is necessary. This helps companies schedule maintenance more efficiently, 

lowering the risk of unexpected failures and improving overall equipment reliability. Moreover, the sys-

tem can optimize how resources are allocated by predicting machine failures and guiding maintenance 

teams to areas that need attention. This ensures that resources are used effectively, saving time and money 

for the industry. Additionally, the system enhances workplace safety by reducing the chance of accidents 

and malfunctions caused by faulty equipment. By predicting failures, industries can take proactive steps 

to address potential dangers, creating a safer working environment. Furthermore, the system supports da-

ta-driven decision-making by providing insights into machine performance and health. This allows indus-
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tries to make informed choices regarding maintenance and operations, leading to better efficiency and 

productivity. 

 

Results 

The results after implementing the Decision tree algorithm are shown by various accuracy measures: 

1. Accuracy Score: This metric calculates the proportion of correctly predicted instances out of the total 

instances. It's widely used as a standard evaluation metric for classification tasks. 

 

2. Precision: Precision quantifies the proportion of accurately predicted positive instances out of all in-

stances predicted as positive. It gauges the effectiveness of correctly identifying positive cases 

among the predicted positives.     

  

3. Recall (Sensitivity): Recall computes the ratio of correctly predicted positive observations to all actu-

al positives. It assesses how effectively the model identifies actual positive instances. 

                                           

4. F1-Score: F1-Score is the weighted average of precision and recall. It is a good way to show that a 

classifier has a good value for both recall and precision. 

  

5. Confusion Matrix: A confusion matrix provides a summary of prediction results and allows the cal-

culation of various metrics, including accuracy, precision, recall, and F1-score 

 

 
Fig. 7. Confusion Matrix 

Where TP : Truly Positive Values , FN: Falsely Negative Values , FP : Falsely Positive Values, TN: 

Truly Negative Values. 

 

Models Accuracy Measures 

Accuracy Precision Recall F1 Score MCC 

Linear Regression 0.114401 0.4265 0.4589 0.3356 0.4986 

Logistic Regression 0.9725 0.65 0.213115 0.320988 0.362076 

LDA 0.9705 0.521739 0.393443 0.448598 0.438314 

Decision Tree 0.9695 0.5 0.557377 0.527132 0.512227 
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Table. 1. Accuracy Measures of All Models 

 

Overall, in table 1 presents the performance evaluation of various machine learning models across 

multiple accuracy measures including precision, recall, F1 score, and Matthew's Correlation Coefficient 

(MCC). Among the models assessed, Random Forest and Gradient Boosting stand out as top performers, 

boasting high accuracy scores of 0.98 and 0.978 respectively, coupled with strong precision, recall, and 

F1 scores. These ensemble methods demonstrate robustness in classification tasks, making them 

favorable choices for predictive modeling. Logistic Regression, LDA, Decision Tree, and KNN also 

exhibit competitive performance with accuracy scores hovering around 0.97, indicating their reliability 

in classification tasks. However, models like Linear Regression and SVM display notably poor 

performance, with accuracy scores close to 0 and all evaluation metrics at or near 0, suggesting they are 

inadequate for the given task. Naïve Bayes and AdaBoost, while not reaching the heights of Random 

Forest and Gradient Boosting, still offer moderate performance and may be suitable alternatives 

depending on specific requirements. Overall, the evaluation highlights the importance of selecting 

appropriate algorithms based on the nature of the dataset and the objectives of the task to achieve 

optimal predictive performance. 

 

Table. 2. Accuracy Measures After Applying Crayfish 

 

After optimization,in table 2 the Random Forest model, enhanced with CreyFish, demonstrates a notable 

improvement in accuracy, increasing from 98% to 99%. This enhancement reflects the effectiveness of 

the optimization process in refining the model's predictive capability. Moreover, there are considerable 

advancements in precision, recall, F1 score, and Matthew's Correlation Coefficient (MCC) metrics. 

Precision increases to 86.84%, indicating a higher proportion of correctly identified positive cases 

among all predicted positive instances. Similarly, recall improves to 54.09%, suggesting a better ability 

to capture true positive cases from the total actual positives. The F1 score, a harmonic mean of precision 

and recall, also sees a significant boost to 66.66%, signifying a balanced performance between precision 

and recall. Additionally, the MCC, which measures the quality of binary classifications, elevates to 

67.81%, indicating a substantial enhancement in the model's overall performance. Overall, these 

improvements underscore the effectiveness of the optimization process in refining the Random Forest 

model's predictive accuracy and reliability, making it a more potent tool for classification tasks. 

Naïve Bayes 0.9645 0.361111 0.213115 0.268041 0.2603 

KNN 0.97 0.516129 0.262295 0.347826 0.354355 

Random Forest 0.98 0.769231 0.491803 0.6 0.605837 

Gradient Boosting 0.978 0.72973 0.442623 0.55102 0.55826 

AdaBoost 0.975 0.72 0.295082 0.418605 0.451125 
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Conclusion 

In conclusion, this research has demonstrated the importance of predictive maintenance in ensuring the 

operational continuity and longevity of industrial machinery. By leveraging machine learning algorithms 

such as Random Forest, Gradient Boosting, AdaBoost, and Support Vector Machines, along with the 

Cuckoo Search optimizer algorithm, we have shown significant improvements in predictive accuracy. 

Our findings highlight the effectiveness of integrating optimization techniques into predictive mainte-

nance models, with the Crayfish nature-based optimization algorithm notably improving accuracy from 

0.95 to 0.97 in our study. This underscores the value of fine-tuning algorithm parameters and feature 

selection in enhancing maintenance prediction models. 

Moving forward, further research in this area could explore the application of other optimization algo-

rithms and ensemble learning techniques to improve predictive maintenance accuracy. Additionally, the 

integration of real-time data streams and the development of more robust anomaly detection mechanisms 

could enhance the proactive nature of predictive maintenance strategies, ultimately reducing downtime 

and increasing productivity in industrial settings. 
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