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Abstract 

Here has been presented and analyze the homotopy perturbation smudge transform method (HPSTM), 

which combines the homotopy perturbation method and the smudge transform method, and used this 

technique to solve the generalized time-space fractional Schrӧdinger equation an example to check the 

efficiency of the proposed method. 
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1. Introduction 

While the mathematical models of derivatives with the integer order (linear and nonlinear) failed to 

address many scientific problems, this is why the emergence of fractional differentiation was more 

useful and important in several subjects, including mechanics, electricity, biology and economics [34, 

39, 19]. The more general reason was to allow the required rate of change to be managed based on the 

requirements of a particular situation. Leibniz began studying fractional differentiation through 

observations of a differential of the order of 0.5 in the seventeenth century, and the scientist Louisville 

defined in a series of research papers (1832-1837) the fractional factor to open the way for the study of 

fractional differentiation (integration) of incorrect orders on the entire complex level 

There are many methods that have emerged to generalize the idea of fractional differentiation, including 

Riemann-Louisville, Grünwald-Lietnikow, Caputo[35] and generalized functions, but they were not 

sufficient in the fields of physics, so Caputo presented an alternative definition, which has the advantage 

of defining integer order initial conditions for fractional order differential equations[6, 3]. 

Therefore, the numerical solutions of fractional partialdifferential equations (FPDE) have become the 

subject of interest and study in recent times, and accordingly, many fractional numerical methods have 

appeared to treat fractional differential equations (partial and ordinary), including classical solution 

techniques, including theFourier transform method [23], the Laplace transform method, and the green 

equation method, Mellon transform, orthogonalpolynomials [35, 13, 16, 27].  

Recently, commonly used methods have appeared; which are introduced in this work, such as; 

Adomiandecomposition method (ADM)[28, 29, 30, 41], the homotopy perubation method (HPM ) has 

prposed by He [13, 15], the modified homotopy perubationmethod (MHPM) [32], the differential 

transform method ( DTM) [27], Variational Iteration Method (VIM) [5, 7], the homotopy analysis 

method ( HAM ) [2], the sumudu decomposition method [8], Fractional Difference Method (FDM) [29 , 

28, 37, 17], and Power Series Method [34, 6, 29, 41, 30, 28, 17]. 
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It also emerged from the homotopy pertubation method (HPM) of many methods that showed their 

effectiveness in fractional cases when combined with the variational iteration method (VIM) [32] to 

solve some nonlinear problems. The homotopy perturbation method (HPM) is also combined with the 

Laplace transform method [22], to obtain exact and approximate solutions for nonlinear equations. 

Likewise, the homotopy perturbation method (HPM) is combined with the double sumudu transform to 

have the homotopy perturbation double Sumudu transform method (HPDSM) to obtain the exact 

analytical and approximate solutions [37]. 

Also, the sumudu decomposition method (SDM) combines the sumudu transform and homotopy 

perturbation method [20]. Recently, a combination of the sumudu transformation method and homotopy 

perturbation methods to solve nonlinear problems is known as Homotopy perturbation sumudu 

transform method (HPSTM) [18, 40]. Many researchers use this method (HPSTM) to find the exact 

analytical and approximate solutions. Singh et al [41] have made use of studying the solution of linear 

(nonlinear) partial differential equations by using the homotopy perturbation sumudu, where the 

nonlinear part can be easily handled by He's polynomials [11]. 

In this studyapplied the homotopy perturbation sumudu transform method (HPSTM) to solve the 

generalized time-space fractional Schrӧdinger equation [17], with variable coefficients: 
2
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Where is: ( ),w x t  the unknown function. 

( )x : is the trapping potential 0 , 1   are parameters describing the order of the fractional jumaries 

[17]. 

,a  : are real contents respectively, so in section (2) some definitions of fractional calculus theory, in 

section (3) describe the homotopy partition sumudu method, In section (4) it contains the main results 

and an example to show the efficiency of using HPSTM, and in section (5) produced the conclusion. 

 

2. Basic Definitions of Fractional Calculus  

Definition 1: the Riemann-liouville fractional integral operator of order α >0, of a function (t)
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Definition 2: The fractional derivative of  (t)f  in the caputo sense is defined as [30, 32] 
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For 1 , , 0m m m N t−      and ( ) is the Gamma function. 
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Definition 3: the sumudu transform is defined over the set of functions : 
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Some special properties of sumudu transform are as follows: 

 1 1S =  

; 0
( 1)

m

mt
S u m

m
= 

 +

 
 
 

 

Other properties of the sumudu transform can be found in [4] 

 

Definition 4: the sumudu transform of the caputo fractional derivative is defined as follows [12] 
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3. The homotopy perturbation sumudu transform method (HPSTM): 

To illustrate the technique of the solution there is the Schrӧdinger equation  

 

 
Where: t˃0, 0˂α, β≤1 

With initial conditions w(x, 0) = w(x)  

If write equation (1) so will be: 

 

 

Where   is the caputo fractional derivative of the function w(x, t), v(x), is the source term N   

is the general nonlinear differential operator. 

Applying the sumudu transform (S) on both sides of equation (2) 

 
Using the differentiation property of the sumudu transform and the initial conditions in equation (1) , so  

 
Operating the sumudu inverse on both sides of equation (4) 

 

Where 
0
( , )w x t represented the initial condition. 

Now apply the homotopy perturbation method (HPM): 
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And the nonlinear term can be decomposed as 
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For some Adomian's polynomials [10] 
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Substitution Equations (14), (15) in the equation (13): 
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The approximate the analytical solution ( , )w x t by the truncated series: 

0
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4. Application  

In this section applyed the HPSTM that presented in section 3 for the following example:  

Example: 

Consider the time-fractional NLS equation: 
2
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Where  0,    0 , 1t      , with initial conditions  
( ,0) sinw x x=

 

Then the equation: 
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So by the formula in (17), can be get: 

 

 
Equating the terms with identical powers of p,  

nA
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The solution of equation (20) given by: 
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This is agreement with the result in reference [25] 

 

 

Fig 1: Comparison between the real part of and the exact solution. 4w

(20) 
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Fig 2: Comparison between the imaginary part of 5w
and the exact solution. 

 

5. Conclusion: 

In study presented a combination of the homotopy perturbation method (HPM), with the sumudu 

transformation method (STM). this combination build a strong method called the HPSTM, which is used 

in this work to solve the nonlinear fractional time-space Schrӧdinger equation, and the methed is so 

much easier to apply, and has been solve the equation effectively, easily with the approximations which 

convergent to exact solution. 
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