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Abstract 

This paper systematically analyzes the knowledge generation process of neural networks through the lens 

of Philosophy for Science and Epistemology. This paper first argues that for neural network’s knowledge 

to be possible, it is necessary that the truth of the world can be represented by mathematics, since neural 

networks are, by their first nature, a mathematical model, and this paper provides few arguments that 

support the mathematical nature of truth. For a central characterization of neural network’s knowledge, 

this paper argues that neural networks bypass the three inherent limits of traditional sciences, such as 

physics and chemistry, suggested by Eugene P. Wigner (1995). The three limits are: 1) Traditional 

sciences are inevitably approximations of the transcendental truth; 2) Scientists will never stop pursuing 

deeper, more profound scientific theories that encompass more information than previous theories, despite 

every theory being an approximation; 3) The increasing complexity and depth of the successive scientific 

theories poses a significant challenge to human intellect. Neural networks bypass these limits by 

adaptively learning any underlying function to the given data space, without creating any fundamental 

hypothesis, which are inevitably not transcendental, like that of traditional sciences. This is also another 

distinction that supports the differentiation between “machine knowledge” and “human knowledge”, as 

first proposed by Wheller (2016). This paper argues that the only way humans can justify machine 

knowledge is through Reliabilism, the epistemic justification through trust in the knowledge generation 

process. Although reliabilism may currently seem unacceptable, this paper predicts that scientists will take 

control over machine knowledge in the future, as testified by scientists exploring the chemical world, 

which is similarly beyond direct comprehension. In the end, this paper suggests the necessity of discussing 

how AI can justify its own knowledge as conscious beings.  

 

Keywords: Epistemology, Philosophy for Science, Artificial Intelligence, Neural Networks 

 

1. Introduction 

In the past two decades, has Artificial Intelligence (AI) become successful and started to impact every 

aspect of people’s lives worldwide (Makridakis, 2017). While scientists worldwide are using AI 

techniques as an efficient and effective instrument, the mechanisms through which AI models and training 

algorithms generate knowledge and predictions are generally unclear (Doshi-Velez & Kim, 2017). That 

is, foundational topics such as model parameter interpretations, the predictions' causal explanations, or the 

selected algorithms' reliability within a specific context are unanswered. Hence, AI models are often 

referred to as “black boxes.” However, a better understanding of the foundations of AI is urgently needed 

since the use of these models has spread throughout the fields of facial recognition, self-driving cars, and 

medical diagnosis, where safety and morality are at stake, and there have been more than a few cases of 
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AI failure (Yampolskiy & Spellchecker, 2016). At present, the philosophical discussions on artificial 

intelligence are centered on its ethical issues and social impacts. At the same time, relatively little research 

exists on the philosophy behind AI-generated knowledge. To address this issue, I turn to epistemology, 

the subfield of philosophy that discusses the characteristics of knowledge and the methods of this 

acquisition. This paper attempts to epistemologically analyze the knowledge generating process of AI and 

possible justification for the generated knowledge.  

Such analyses inevitably involve many types of models and variations of AI, each worth its examination. 

This paper will only investigate neural networks since they are the dominant models of today’s AI. Neural 

networks’ application is seen in almost every artificial intelligence subfield, including image classification, 

speech recognition, and natural language processing, as shown by multiple surveys on the field (e.g. 

Abiodun et al., 2018). The neural networks are unique AI models since they are particularly adept at 

learning high-dimension, non-linear, complex relations. Especially their unlimited ability to build low-

level features up to higher dimensions and to fit any form of function, as they are Universal Approximators, 

marks a clear difference from other models. While no current literature particularly examines neural 

networks, the broader analysis of machine learning and artificial intelligence can provide a general 

framework for reference since neural networks are no more than a subset of these fields. This allows us to 

infer the potential perspectives and understandings the academic community might have regarding neural 

networks. For example, Frické (2014) is a critical analysis of Data Science methods for the irresolvable 

inductive biases; Smart et al. (2020) argues that Epistemic justification to machine generated knowledge 

is not enough and there ought to be moral justification; Hammoudeh et al. (2021) examines the common 

belief that more data leads to better machine learning models and the limits of using generic mathematical 

theories to describe the learning process; Wheeler (2016) and Bai (2022) develop the idea of “machine 

knowledge” as opposed to “human knowledge,” and arguing that humans are unable to comprehend 

“machine knowledge.”  

The current discourse about machine learning and artificial intelligence epistemology in academia and the 

press has generally been critical. Researchers acknowledge that they can collect a large amount of data; 

however, selecting the categories to be collected is conjectural, and people need to learn what type of data 

can inherently offer explanations, theories, or solutions to scientific problems. Data is collected through 

instruments, which is fallible. Commentators criticize that machine learning and artificial intelligence's 

inductive nature may fail to provide valid theories.  

Such tasks as fitting machines, machine learning, and artificial intelligence may be targeted with a few 

criticisms. First, the causal relationship is unknown. Similarly, people do not know whether there is a law-

like relationship, such as in social sciences, where laws can be elusive. Second, there can be omitted 

variables. For example, a statistically significant number of smokers get lung cancer and also get cirrhosis 

in the liver. In this case, smoking causes lung cancer but not cirrhosis; it is just that many smokers happen 

to drink. Plotting the relationship between smoking and cirrhosis may have accurate results, but it cannot 

indicate any causation, and the factor that smokers often drink is omitted. Third, there can be inductive 

bias; that is, the formulation of the curve, whether quadratic or exponential, is unknown. Fourth there are 

problems of overfit and underfit. 

Critical as these prior analyses may be, a few common issues remain unanswered within them. First, they 

take the statement “artificial intelligence is a knowledge generating enterprise” as an assumption without 

explaining the genesis of machine knowledge. This statement is instinctively true since there is such a 

broad success in applying artificial intelligence, testifying to its effectiveness. As a result, the part of the 
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discussion on why and how AI is a knowledge generating enterprise is often left out. This question should 

be further investigated because no one can understand the characteristics of knowledge generated without 

knowing anything about the generation process. Completing this part of the discussion will guide future 

discussions involving machine learning’s epistemology. Second, the previous discussion focused on how 

data science/machine learning/artificial intelligence serves as a science. As a type of science, the sole 

problem in Epistemology is conveying the model’s results for human use, with the concern of human 

safety and understanding as a central purpose. However, scientists are building AI to mimic human 

intelligence and are concerned about intelligence crises, such as emergent awareness and AI taking over 

the human world. Therefore, another necessary field of discussion is how AI will justify its knowledge, 

assuming it gains intelligence and self-awareness. In other words, we need to consider AI’s epistemology 

from the perspective of the emergence of intelligence, AI as the subject themselves. Third, the recent 

discoveries of emergent world models in Large Language Models shed new light on the topic (Gurnee & 

Tegmark, 2024). For the first time, scientists successfully detected one internal structure of Large 

Language Models. This discovery should bring researchers new insights into how people take machine-

generated knowledge.  

This paper will analyze how neural networks generate knowledge and present an optimistic view of 

machine knowledge while addressing the three unresolved issues mentioned above. Although there are 

variations to the definition of knowledge, there is a consensus between most epistemologists that 

knowledge should be minimally given by a definition of three parts: justified and true belief (Ichikawa, 

2020). I will adopt this definition to guide my analysis. This paper should discuss each of these three 

elements. The belief element is beyond the scope of the paper; here, I will say that neural networks “believe” 

anything encoded in its numerical parameters. For the "truth" element, which I discuss in section 2, I must 

consider what characteristics the truth of our universe holds and answer the question of why neural 

networks can fundamentally learn the truth. I argue that mathematics underlies all phenomena or can be 

mathematically represented. This trait of truth is necessary because neural networks are natural 

mathematical models, which means they cannot learn anything beyond the scope of mathematical 

representation. 

Furthermore, as Universal Approximators (Hornik et al., 1989), neural networks can learn any designated 

function. That is, for whatever mathematical function governs the phenomena, neural networks can learn 

it. This is why neural networks can learn; the process they learn is their training process. In section 3, 

having the philosophical explanation of neural networks generating knowledge, I move on to develop the 

idea of "machine knowledge" by providing a new distinction with "human knowledge", namely, neural 

networks are capable of overcoming the limits of "layers of science," a concept proposed by (Wigner, 

1995). According to Wigner, physics, chemistry, social sciences, and other forms of traditional sciences, 

such as those before data science and machine learning, are inevitably constructed by layers and layers of 

theories. Each theory is a human construction that models the target problem, with new theories 

encompassing more phenomena than older ones. The progression from Newtonian Mechanics to Relativity 

is as such. Each theory is inevitably an approximation to the problem. However, neural networks do not 

fall for these limits because they can accurately model the target mathematical function, which I will 

further explain below. Since the layer structure is inherent in all traditional science but not in any neural 

networks, this difference distinguishes machine knowledge and human knowledge, and neural networks 

also surpass human knowledge in this perspective, since they do not fall for this limit.  
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Finally, in section 5, I will consider the possible epistemic justifications for machine knowledge. As 

machine knowledge is inscrutable, this indicates only one possible form of justification: Reliabilism, 

justification by the trust in the process of knowledge generation. While such a justification may seem 

unfulfilling, I bring up examples such as the Linear probe to demonstrate that researchers would find 

methods to understand machine knowledge using machine knowledge. In the end, from considering AI as 

an intelligence subject and how it justifies its knowledge, I provide the discovery of emergent world 

models as proof that such a discussion is necessary. 

  

2. Truth 

Before discussing whether neural networks are learning knowledge, I must first discuss the properties of 

the truth of our world. Belief adheres to truth, and thus, the properties of the truth will subsequently 

influence the knowledge production of neural networks we care about. For example, if there is no single 

truth, one may argue that neural networks may never learn anything. Similarly, other theories on truth will 

lead to other conclusions.  

The first and foremost characteristic in this analysis is the effectiveness of mathematics in modeling the 

universe or mathematical functions that can represent the problems researchers are trying to solve. Neural 

networks are, by their very nature, a mathematical model. Each neuron in the network performs a 

mathematical operation, typically a weighted sum of its inputs followed by an activation function. This 

allows the overall network to be seen as a complex mathematical function that maps input data to output 

predictions. The neural network parameters, including weights and biases, are numerical values adjusted 

during training using optimization algorithms like gradient descent, which are rooted in mathematical 

principles. The training process involves minimizing a loss function that quantifies the difference between 

the network's predictions and actual target values, employing calculus-based methods to find the optimal 

set of weights and biases. Many scientists have developed more complicated variations of neural networks, 

such as Bayesian neural networks and Graph neural networks. However, their variations inevitably 

incorporate other mathematical structures and nothing more. Regarding application, neural networks 

formulate a mathematical relation that maps the input data to the output. In essence, neural networks are 

in every aspect mathematical.  

Before applying neural networks to resolve a problem, the premise is that the problem can be 

mathematically formulated. Today, when there is such a wide spread of good applications of neural 

networks, we must ask ourselves why our problems can be mathematically formulated. However, this 

question, which touches on the very nature of science and math, is a generally unresolved philosophical 

issue. In the following paragraphs, I will review the primary theories on this problem. Generally, this 

discussion should be separated into two parts: exact science and inexact science. This categorization 

between science was proposed by Auguste Comte in his seminal book Course of Positive Philosophy 

(Comte, 1876) and later developed by philosophers including Michael Polanyi and Stephen Toulmin. This 

paper defines exact science as the field of study based on measurements, empirical evidence, and 

quantifiable data in which theories and models can be tested with high accuracy and predictability. 

In contrast, inexact science deals with subjects that are more complex, variable, and less amenable to 

precise measurement and prediction. These fields often involve human behavior, social systems, or natural 

phenomena influenced by many variables, many of which cannot be controlled or isolated. Generally 

speaking, exact science accounts for mathematics, physics, chemistry, and biology, subjects known to 

have formal representations; inexact science accounts for sociology, humanity, and linguistics. The 
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problem of natural language processing, where humans have struggled to find sufficient formal 

representation, is categorized as inexact science. Since the two categories are treated with different 

philosophical analyses, I will discuss the two categories of exact and inexact science separately below. 

2.1 Exact Science 

In Eugene Paul Wigner's seminal essay, "The Unreasonable Effectiveness of Mathematics" in the Natural 

Science (Wigner, 1990), he proposed the problem that "the enormous usefulness of mathematics in the 

natural sciences is something bordering on the mysterious and that there is no rational explanation for it." 

Later, it was mentioned that "...the mathematical formulation of the physicist’s often crude experience 

leads in an uncanny number of cases to an amazingly accurate description of a large class of phenomena." 

Wigner was the Nobel Laureate of Physics in 1963, and when he proposed this problem, his central 

concern was physics and other natural sciences, which we categorize as exact science. Bochner 

subsequently expressed a similar view: “what makes mathematics so effective when it enters science is a 

mystery of mysteries, and the present book wants to achieve no more than explicate how deep this mystery 

is” (Neugebauer, 1969). This question initiated a discussion to explore the mysterious relation between 

scientific theories and their mathematical formulation to formulate an answer.  

Among many scholars answering this question, a common school of thought is Realism. At the heart of 

the Realist perspective is the belief that mathematical entities and structures exist independently of human 

thought and are discovered rather than invented. This school of thought posits that mathematics is an 

intrinsic part of the universe's fabric. The British mathematician Hardy expresses this view: "I have myself 

always thought of a mathematician in the first instance as an observer, who gazes at a distant range of 

mountains and writes down his observations” (Rose, 1988) 

The Realists have plenty of evidence within the history of physics that indicates mathematics’ inherency 

in physics. The Dirac equation in quantum physics, for example, not only described the electron but also 

predicted the existence of the positron before it was discovered. Dirac said, "It was found that this equation 

gave the particle a spin of half a quantum. Moreover, it gave it a magnetic moment. It gave just the 

properties that one needed for an electron. That was an unexpected bonus for me, completely unexpected” 

(Dirac, 1977). Dirac published his equation in 1927, which predicted the existence of a spin of half a 

quantum and remained undiscovered until 1932. This predictive power indicates that mathematics is not 

just a tool but a fundamental aspect of the physical universe.  

Another example is the wide application of Maxwell's equations. The equations can accurately describe 

various electromagnetic phenomena, from transformers to radio transmission, showing that the 

mathematical structure has a rich ability to describe natural phenomena, which manifests the likelihood 

that mathematics underlies natural phenomena. Furthermore, the Maxwell equations also predicted 

phenomena that still need to be discovered, such as the existence of radio waves. Maxwell published his 

equations in 1864, whereas radio waves were not discovered until 1888. This predictive ability of the 

mathematical structure for unknown phenomena further supports the realist philosophy. 

Experience has demonstrated the power of mathematics in modeling the problems of exact sciences. 

Mathematics has successfully represented problems in exact science and provided predictions for 

undiscovered phenomena. Therefore, it has been accepted that mathematics underlies the events in exact 

science and is transcendental to this knowledge. 

2.2 Inexact Science 

Not much literature delves into the relationship between mathematics and inexact science. As far as 

Google Scholar provides, the sole text that discusses this issue is On the Epistemology of Inexact Science 
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(Helmer & Rescher, 1959), where the authors Olaf Helmer and Nicholas Rescher proposed several reasons 

why mathematics can be incorporated into inexact science.First, exact parts exist within the inexact 

science, as they write, “Some branches of social science (e.g., certain parts of demography), which are 

usually characterized by the presence of a formalized mathematical theory, are methodologically 

analogous to the exact parts of physics."The second key aspect is the role of probability theory and 

statistics, which provide a mathematical framework to handle uncertainties and variations within these 

sciences. The authors state, "Mathematics offers the tools to quantify and model the probabilistic nature 

of inexact sciences." This probabilistic approach allows for creating models that can predict outcomes 

with a certain degree of confidence, even if they cannot offer absolute certainty. Third, the iterative process 

of refining models is highlighted as crucial. Helmer and Rescher note, "Through successive 

approximations and the continuous incorporation of new data, mathematical models in inexact sciences 

are progressively refined." This iterative refinement ensures that models become more accurate over time, 

aligning closely with empirical observations. Therefore, Helmer and Rescher note the use of mathematics 

within inexact science. It is possible that mathematics is as effective in inexact science as it is in exact 

science. 

 2.3 A Review 

Acknowledging that mathematics is inherent in scientific problems is crucial so that a mathematical 

function can represent the solution. If true, neural networks can function in the way people expect them 

to. A mathematical function that governs the given data space must exist for a Neural Network to have a 

target to adhere to through its learning process. If this is not true, neural networks can only be left to 

malfunction since they cannot learn anything besides mathematical functions. On the other hand, as long 

as the problem is governed by mathematics, neural networks will function because they are naturally 

Universal Approximators, meaning that they will fit any function in the given data space. 

This analysis explains why and how neural networks derive knowledge. Since our world can be 

mathematically represented, and neural networks are entities that adapt to fit any given mathematical 

function, neural networks can produce knowledge of the world through data. The process through which 

they do so is the process of regression, and naturally, regression is the method of neural networks deriving 

knowledge.  

In the above two sections, I have demonstrated why mathematics will likely represent exact and inexact 

sciences. However, although most philosophers are inclined to believe that mathematics has this property 

to some extent, this topic still needs to be solved with a final answer. In the Constructivist view, 

mathematics is constructed by the human mind and is not independent (Hersh, 1997). Constructivists 

would say mathematicians use vectors to describe speed not because vectors are inherent in speed but 

because vectors seem appropriate to the mathematicians’ minds. In some interpretations of the Platonian 

view, mathematics is more fundamental than all other disciplines of knowledge. However, it is still less 

fundamental than the Platonian “world of ideals” that mathematics is between the phenomenal and the 

true transcendental.   

Nevertheless, I will take this property of mathematics as an assumption in my analysis because without it, 

there is no basis for the knowledge generated by neural networks to exist. This property of mathematics 

is the necessary condition for Neural Network knowledge, and as long as the neural networks are given 

the appropriate training, the sufficient condition.  
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3. Machine Knowledge 

At this point, we have in hand an analysis of a foundational principle that gives the possibility of neural 

network’s knowledge. What then, does this principle tell us about the characteristics of its knowledge? Or, 

in other words, before the discussion on the possible justification to neural network’s knowledge, what 

can we know about the knowledge so that there is a cornerstone for the analysis on justification? Here, I 

make a fundamental differentiation between “machine knowledge” and “human knowledge”, having in 

mind that this differentiation will be decisive to the possible justifications.  

The concept of "machine knowledge" was first put forward by (Wheeler, 2016) and later developed by 

(Bai, 2022). As Bai suggests, "the kind of epistemology or epistemic view held determines what kind of 

paradigm machine learning is designed." Our understanding of machine knowledge's characteristics will 

influence how we treat it. In the coming section, this paper will determine the justification for machine 

knowledge. In this section, I will review how Bai argues for the essential difference between machine and 

human knowledge. Then, I will develop this idea by adding one more crucial distinction between "machine 

knowledge" and "human knowledge." That is, machine knowledge can overcome a limit of human 

perception called "layers of science." 

 3.1 A Review of Bai, 2021 

In his paper, Bai argues for a "machine-centric" epistemology and characterizes “Machine Knowledge” 

as an entity fundamentally different from “Human Knowledge,” i.e., our knowledge. First, machine 

"experience" is characterized by data (large amount, multidimensional, rapid, automatic), which is 

different from human experience, and the assimilation of their experiences occurs via neural networks, 

which is an extension of the human perceptual system. The core difference is that machine knowledge 

relies on data, while human knowledge relies on information. Information is the observable representation 

of things, including much more detail than the data that machines use. Knowledge is formed when 

information is properly processed and combined with experience, judgment, and intuition——a process 

in which the human being as an epistemic subject plays a crucial role. In contrast, machine knowledge is 

primarily the recognition of patterns in data, which can be beyond human understanding and perception. 

The relationships between the data that constitute machine knowledge are often beyond human 

understanding. Human perception is limited to three-dimensional physical space and one-dimensional 

time, and we can only partially perceive external information. The complex relationships that large-scale 

data machines can handle are not expressible through mathematical tools accessible to humans. As the 

layers and numbers of artificial neural networks increase, machine learning can handle increasingly 

complex data, leading to machine knowledge that is incomprehensible to humans. These observations 

align with the common critics posted towards machine knowledge, as briefly summarized in the 

introduction. Humans will not be able to perceive machine knowledge directly.  

Machine "experience" is characterized by data, including large amounts, multidimensionality, rapidity, 

and automation. Machines can emulate aspects of human experience by calculating, computing, and 

correlating data. However, the precise mechanisms by which machine learning generates knowledge are 

often opaque and incomprehensible to humans, leading to the "black box" problem. This epistemic opacity 

of machine learning marks a difference to human knowledge, which is assumed to be understandable and 

transparent.  

In summary, the author suggests that machine knowledge fundamentally differs from human knowledge, 

as it is based on data patterns rather than the richer information and subjective experience that characterizes 

human understanding. Therefore, Bai recognizes machine knowledge as different from human knowledge,  
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and thus, it must be treated as something naturally different from human knowledge.  

3.2 The meaning of “layers of science” and limits of science 

The concept of “layers of science” was proposed by E. P. Wigner in his famous paper "The Limits of 

Science" (Wigner, 1995). This concept is best illustrated with an example. Traditional Newtonian 

mechanics assumes that space and time are independent of each other and the observer’s state of motion, 

and the interactions between masses are caused by force, as defined by Newton's Second Law of Motion, 

F=ma. For roughly two centuries after Newton published his work, Newtonian mechanics was seen as a 

complete and accurate description of the physical world, which was similar to people’s attitudes to 

Aristotle’s philosophy that objects fall at a speed proportional to their weight earlier; however, both 

theories do not represent the absolute truth. Although Newtonian theory does provide a great 

approximation for everyday situations, later scientists have recognized its limitations to macroscopic 

phenomena, such as the problem of blackbody radiation and the  Michelson-Morley Experiment. In 

General Relativity, the interactions of masses are no longer derived from Force but are instead a 

manifestation of the Curvature of spacetime caused by mass and energy. In this case, the theory of 

relativity explains all the same phenomena Newtonian mechanics explains. Thus, the theory of relativity 

encapsulates and builds on the knowledge of Newtonian mechanics. It relatively resembles a higher “layer” 

of knowledge than Newtonian mechanics because it covers everything in Newtonian mechanics and 

pushes it slightly further. The structure of scientific theories, which extends from physics to psychology, 

is the structure of all sciences humans possess. Having one theory over another, this structure is, therefore, 

called “the layers of science.”  

In the past two hundred years, science has shown progress from Newtonian mechanics to quantum 

mechanics, field theories, and the relativistic quantum theory, and these can be considered as a total of 

four layers. Scientists are never confident that someone's layer will be the very last layer. As history has 

proven, no matter whether it is Aristotle’s theory or the Newtonian Theory, and no matter how much 

people once were deeply convinced in its applicability, later scientists will realize their approximate nature 

and limitations and create another layer to incorporate more phenomenon, given an adequate amount of 

time. Aristotle’s theory was false; Newtonian Mechanics was found only to approximate daily physical 

phenomena; Relativity has been found hard to reconcile with Quantum Theory. Scientific progress, as 

Wigner puts it, “always involve[s] digging one layer deeper into the ‘secrets of nature,’ and involve[s] a 

longer series of concepts based on the previous ones, those that are thereby recognized as ‘mere 

approximations.’” This leads to the first limit of science: all science theories are approximations.  

Although inevitably approximations, it is never one of science’s courses to end its explorations. Regardless 

of how hard it may be, science will always continue its explorations, attempting to go beyond the scope 

of current recognition, and it will inevitably find extremities that current theories cannot cover. Science 

shall not be satisfied with Newtonian mechanics despite it being adequate for most worldly use cases. 

When science reaches the tenth layer of theories or any other number of layers, scientists have no right to 

expect that they have reached the final layer; whatever we have on our hands will mostly be another 

“approximation,” and the search for new theories will never end. This is the second limit of science: 

scientists will never stop pursuing more layers of science despite every layer being an approximation. 

In the future, there will be an accumulated successive layer of science, each with increasing complexity 

and depth, making it difficult for new students in science to dig through every layer to do research at the 

frontier. As Wigner points out, it will require a much more elaborate and much longer study to arrive at 

an understanding of the roots of the last layer, when the layers have accumulated, since every new layer 
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is marked by its ability to encompass more phenomena. This requirement conflicts with the deemed 

limited lifespan of humans and the limited intellect each scientist has. It is easy to imagine a stage in which 

the new student will no longer be interested, or perhaps practical, in digging through the already 

accumulated layers to reach the frontier. This increasing complexity and depth of the successive layers of 

scientific concepts poses a significant challenge to human intellect. This marks the third limit of science. 

3.3 Neural networks overcoming the limits 

It seems rather counterintuitive when Wigner comments that our science is approximations since humans 

hold the power of reason, which should have given accurate, reliable results. At least, when people criticize 

data science for its inaccuracy, they assume that Reason, as a faculty of mind, should bring people closer 

to truth than empirical speculations on data. I would rather not attack this assumption. What, then, causes 

our science to be approximations? Certainly not the mathematical tools since they have been so well tested. 

Then, there is only one thing left that can go wrong: fundamental principles.  

The fundamental principles of scientific theories are not transcendental; rather, they are hypothetical 

products of the scientists’ conjectures that have been tested, at best extensively, to be coherent and 

applicable and to have the greatest explainability of the world. The property of approximations is given 

by that they are hypotheses and conjectures. In Kantian philosophy, “transcendental” refers to the 

knowledge or concepts that are a priori, meaning they are independent of experience, precede it, and exist 

independently from human perception (Stang, 2024). In simpler words, transcendental knowledge is true 

in-them-selves, aiming for universality and necessity, and it certainly is not an approximation. This is the 

type of knowledge that people wish to pursue, as opposed to the knowledge produced by data science. 

However, as Wigner has pointed out, our sciences are approximations; all of humanity's science today has 

failed this undertaking of transcendental knowledge because their fundamental principles are not 

transcendental. Concepts such as Force in Newtonian Mechanics and Curvature in Relativity synthesize 

the experiment results and induction from experience. These concepts are in themselves a representation 

of the entire, real, physical world. The Concept of Force, though assumed to be true in its theory, is 

overthrown and replaced by Curvature in Relativity. Although the Newtonian theory cannot be established 

without this concept, the theory of Relativity functions even better without it. Since Force is only necessary 

for one theory but not for others, it is rather apparent that it is not transcendental since it is not a property 

of things true in themselves that vary with the condition. The principles of other theories are alike.  

Kant's transcendental analysis aims to identify the general principles of physics as "constitutive principles 

of the metaphysics of nature" (DiSalle, 2013). However, Kant’s theory of space and time is a philosophical 

theory, not a physical one. From Kant's point of view, the transcendental perspective is precisely what is 

lacking in Newton's metaphysics. At the same time, Newton's principles in his theory play a "constitutive 

role" in his theoretical framework. Unlike Kant's transcendental principles, they are not proposed as 

"necessary and sufficient conditions for a general metaphysics of nature." Instead, Newton's principles are 

"justified, not by independent arguments from metaphysics, but by the constitutive role that they play in 

the conceptual system of physics——in other words, as 'conditions of the possibility of a practical account 

of nature,' not indeed of experience in general, but of physics as a coherent explanatory framework." 

Newton's principles are "relative to the physical theory of which they form a part, and their sufficiency 

depends on the theory's empirical sufficiency," unlike the wanted transcendental principles which aim for 

universality and necessity.  

Like other mechanics of his time, Newton proposes his theory using a hypothetico-deductive method. He 

used his keen observations to observe and record the motions of physical objects. From the observations, 
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he proposed a theory that explains these motions. For some mechanics, all motions result from impacts, 

and for Newton, the three Newtonian Laws of Motion. The theory is then measured by its eligibility and 

practical usage, whether it forms self-contradictions, can explain the known phenomena, and whether 

people could build the entire building of physics on top of it. This process is the creation of the 

foundational principles of our science. Therefore, the foundational principles of science are not 

transcendental in the Kantian sense but truly approximations. Even today, when scientists recognize the 

discrepancies of Newtonian Mechanics, people still use it daily. This testifies that people do not 

necessarily seek transcendental knowledge from scientific theories but justify them for their utility. The 

property of our sciences as approximations is inherent. Thus, science theories are deemed approximations 

because of their very roots, principles, and approximations.  

Now, imagine a methodology for deriving knowledge that does not involve creating principles and 

hypotheses. That is neural networks. As well known, neural networks are Universal Approximators 

(Cybenko, 1989; Hornik, 1989). This property, mathematically substantiated by the universal 

approximation theorem, asserts that a neural network with at least one hidden layer and a sufficient number 

of neurons can approximate any continuous function to any desired degree of accuracy, given 

appropriately trained weights and biases. Witness that neural networks are fundamentally the summation 

of a large quantity of non-linear activation functions, such as the sigmoid or ReLu, which empower neural 

networks to capture complex, non-linear relationships within the data and further enable the modeling of 

a wide array of phenomena. Each activation function can be tuned on its own parameters, based on the 

training from input and output data, to represent local aspects of the targeted data space, and these local 

approximations collectively form a global approximation of the target function. The central point is that 

the neural networks learn directly from the given data set and discover, or approximate, the hidden function. 

For example, if Newton’s second law were absolutely, transcendentally true, and Force always equals 

mass times acceleration, a neural network would eventually learn this, given sufficient size and training 

time. However, unlike standard scientific theories, neural networks are very adaptable. They are not 

confined to theories that must stem from a hypothesis, nor are the forms of their theory confined when 

their hypothesis is settled. Continuing the example, we presently know that Newton’s second law is not 

true at high speeds. Neural networks could learn this discrepancy if given access to data at high speeds. 

The neural networks will reach it no matter what the true mathematical equation governs the relationship 

between the input and output data. In another perspective, the mathematical representation of Newtonian 

mechanics is determined to be F=ma once the hypotheses are decided. The equation is an inevitable 

product of a series of logical deductions starting from the hypothesis. So is the mathematical representation 

of relativity determined when its hypotheses are settled. Neural networks do not fall for this limitation, 

they learn whatever mathematical representation there is. Whether the transcendental truth is that F=ma 

or some other formulation in another theory, the neural networks can learn it, since the transcendental 

representation is inherent in the data. The process of neural networks learning completely bypasses the 

limits of approximations, as it is not based on human-presumed empirical principles. Neural networks 

showing greater accuracy in complex tasks than human-built theories testify to neural networks' 

effectiveness.  

Neural networks’ advantage is exemplified clearly through its excellence in natural language processing. 

Rule-based systems, also known as symbolic AI, are constructed based on a predefined set of rules that 

encode domain knowledge in the form of logical "if-then" statements. This approach to AI can be 

considered more analogous to human science since the rule-based systems are constructed based on 
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empirical assumptions and developed into human-deduced theories. An input data is given, and the output 

is derived from the pre-designed set of deterministic rules, like a handbook. However, as the complexity 

of the domain increases, maintaining and scaling these rule sets becomes challenging. Symbolic AI 

struggles in tasks that involve high variability and intricate patterns, such as object detection in complex 

scenes with diverse backgrounds and lighting conditions. Neural machine translation (NMT) models, such 

as the sequence-to-sequence (Seq2Seq) model with attention mechanisms, have long resolved rule-based 

systems' discrepancies by incorporating Neural Network techniques. For instance, Google's Neural 

Machine Translation system (GNMT) (Wu et al., 2016) implemented a Seq2Seq model with attention, 

significantly improving translation quality by capturing complex linguistic patterns. Facebook's Fairseq 

translation system (Sutskever, 2014) utilizes transformer models, a variant of Seq2Seq, which excel in 

handling ambiguity and variability in language, as demonstrated by its ability to generate contextually 

appropriate translations with fluency and coherence. ChatGPT and similar LLMs are also based on 

transformer models. So, these neural network methods are much more effective at language than the rule-

based methods analogous to human scientific endeavors.  

 3.4 Back to Machine Knowledge 

Witness that the structure of “layers of science” is inherent to traditional science. Every traditional science 

is doomed to endure the limits derived from it. How humans structure their knowledge is represented by 

the way these traditional sciences do. These traditional sciences are said to be built by the faculty of reason 

and reflect how humans build their knowledge. As I have demonstrated, neural networks do not conform 

to this structure; therefore, “machine knowledge,” derived by neural networks, is fundamentally different 

from “human knowledge.” Since the “layers of science” come with disadvantages that neural networks 

can overcome, I hereby argue that neural networks can provide a better learning method than human 

learning. 

  

4. Our Justification 

In the above two sections, we have accounted for the properties of truth and the properties of the 

knowledge gained from neural networks. In this section, we move to the next step in the justified, true 

belief definition of knowledge and account for the possible justifications for machine knowledge. The first 

categorization we should make is between external justification and internal justification. Which of the 

two considerations of machine knowledge will greatly influence the result of our analysis? This distinction 

needs to be carefully handled in existing literature on machine knowledge. 

In epistemology, the concepts of internal and external justification pertain to the basis on which a belief 

is deemed justified. According to the Stanford Encyclopedia of Philosophy (Pappas, 2013), internal 

justification posits that "a person either does or can have a form of access to the basis for knowledge or 

justified belief," which means that the reasons or evidence supporting the belief must be accessible or 

knowable by the person, emphasizing an introspective awareness of the justifying factors. The "basis for 

one's knowledge and justified belief" refers to the underlying reasons, evidence, or grounds that support 

or justify a person's belief or claim to know something. Simply, it means the subject's mental state and 

process. For a belief to be internally justified, the individual must be able to reflect upon and recognize 

the reasons or evidence that support it. The reflection often involves conscious awareness of one's mental 

states, perceptions, logical reasoning, or any other form of reliable evidence that ensures the belief 

accurately reflects reality. Internalism requires that these justifying factors be accessible to the individual's 

reflective awareness or introspection. 
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External justification, by contrast, denies that one must always have access to the basis for one's 

knowledge and justified belief, arguing instead that "things other than mental states operate as justifiers." 

This view allows for external factors, such as the reliability of the cognitive process that produced the 

belief, to serve as justifiers, regardless of the individual's awareness of them. Externalists maintain that a 

belief can be justified by objective factors like the dependability of the method by which it was formed, 

even if the person holding the belief is unaware of these external justifiers. Again, the primary difference 

lies in internalists requiring accessibility of justifying reasons, while externalists accept justification based 

on external, often objective, factors. 

Now, we can clearly categorize previous analyses on the epistemology of data science and machine 

learning: they are inevitably external justifications. The scientists trying to interpret the inner mechanisms 

of the neural networks need access to the neural networks' mental state and mental process. In the above 

section, we have demonstrated the existence of Machine Epistemology, which we argued to be inherently 

different from human knowledge. Due to this difference, as humans, we can never directly perceive and 

understand the knowledge gained from neural networks. As humans, we can only partially understand the 

digits within the neural networks. Access to the mental state and process of neural networks is necessary 

for scientists to truly have internal justifications for the knowledge gained by neural networks. 

Alternatively, from another aspect, the process through which neural networks gain their knowledge is not 

something the scientist can reflect on using their introspective awareness.  

In the previous literature, scientists are inherently considering external justifications. When addressing the 

fallibility of instruments used to collect data, which suggests a concern with the reliability of the processes 

by which data is gathered, scientists are considering the process and instruments through which the 

knowledge is generated, which aligns with external justification. When addressing the inductive biases of 

omitting variables, scientists examine objective factors that justify a belief, such as causal relationships 

and variables that lead to the result, which, again, is aligned with external justification. In fact, as a third 

person observing the learning of neural networks, we can only have external justifications, which is very 

intuitive since we are, in fact, external. 

In the following two sections, we will address the issues of external justification and internal justification 

separately.  

4.1 External Justification 

In this section, we argue that the existing methods of justification for machine knowledge are reliabilistic, 

and we will predict the trend of the development of Reliabilist approaches, saying that in the future, we 

will have a coherent and sufficient method of external justification. For now, allow me to stop for a minute 

to conduct a brief overview of major kinds of justification defended in the philosophical literature.  

Foundationalism posits that some beliefs are basic or foundational and do not require further justification 

from other beliefs (Pasillos, 2017). These basic beliefs serve as the starting point for all other justified 

beliefs, where all other knowledge can be derived through a set of logical deductions. The famous assertion 

“I think, therefore I am” and the classical syllogism are examples of foundationalist justification.  

Coherentism argues that the justification of a belief is a matter of its fitting coherently with a system of 

other beliefs (Quine & Ullian, 1978). In Coherentism, the justification of a belief is not grounded in its 

correspondence to reality (as in foundationalism) or its inferential relationship to other beliefs (as in 

Evidentialism) but rather in its consistency and coherence within a broader network of beliefs.  

Reliabilism argues that belief is justified if a reliable process produces it. Alvin Goldman is a prominent 

philosopher associated with reliabilism. There are two main types of reliabilism: process reliabilism, 
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which focuses on the reliability of the process that produces the belief, and indicator reliabilism, which 

focuses on the reliability of the indicators or evidence that supports the belief.  

Imagine an experienced ornithologist and a novice walking through the forest. Suddenly, a Pink-spotted 

Flycatcher lands on a branch. Both observers think it is a Pink-spotted Flycatcher, and their judgment is 

correct. However, according to reliabilism, only the ornithologist's judgment is justified. This is because 

the novice is merely guessing, and his judgment needs a reliable source of information. 

On the other hand, the ornithologist relies on his extensive knowledge and experience, matching his 

memory of birds with his visual observation of these birds. This matching process is reliable and based on 

accurate information and experience. Although the ornithologist cannot explain how he identifies birds in 

detail, his judgment is reliable because of his mass experience over the novice. This is an example 

proposed by Feldman (Pappas, 2023) that illustrates the essence of reliabilist justification, and this is how 

neural networks can also be justified.  

For a well-trained bird classification algorithm with a massive amount of pictorial data as its training set, 

we understand that it is well-trained through the method we train it. Even if we cannot pinpoint which 

specific input features and correlations led the algorithm to identify the Pink-spotted Flycatcher, we 

consider its result to be mostly reliable within the data space. Using a machine learning algorithm for bird 

identification is dependable and can sometimes be more accurate than an expert birdwatcher. Although 

we cannot precisely explain the workings of the deep learning network, its reliability makes this 

explanation unnecessary. 

The common methods we currently have of judging whether a neural network is well-trained fits in this 

category. For example, GPT-3 and BERT are transformer-based models used for various NLP tasks such 

as language translation, sentiment analysis, and text generation. Looking at the design of transformers, we 

can easily see that they allow the neural network to shift focus when analyzing a sentence. Through this 

intuition and practice, we vaguely know that transformers leverage self-attention mechanisms to 

understand the context and relationships within the text, which allows them to handle tasks that involve 

understanding language at a deeper level. Transformers' past success on related problems demonstrates its 

superior performance in capturing long-range dependencies and contextual information compared to 

traditional RNNs and LSTMs, which leads us to use it again. Although we may not be able to spell out 

why Transformers work in such a way, we use it frequently.  

As we have shown, machine knowledge fundamentally differs from human knowledge, and it is easy to 

see the possible justifications we can have for neural networks. Reliabilism is the main possible 

justification we can have. Foundationalism requires certain foundational beliefs typically derived from 

immediate experiences or self-evident truths. Since foundationalism relies on direct perception or 

introspection to establish its foundational beliefs, it needs help to justify claims about the existence or 

nature of things that cannot be directly observed or understood. The leap from the concrete and perceivable 

to the abstract and inconceivable requires a form of justification beyond the immediate and self-evident, 

which foundationalism cannot provide. While the Coherentism approach may seem promising for 

justifying complex or abstract ideas, it risks creating a closed system where beliefs reinforce each other 

without necessarily connecting to the external world. For something beyond direct perception, the 

coherence of our beliefs does not guarantee their truth. The system could be internally consistent but still 

fail to represent reality accurately. For such an enterprise that is beyond direct perception and machine 

knowledge, the only choice we are left with is to believe in the reliability of the knowledge generating 

process.  
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We must further determine whether we should settle with Reliabilism or lose faith in AI. We should also 

determine whether a Reliabilist justification nature will impair our AI advancements. Most current 

analyses, like those stated in the literature review, reject this Reliabilist justification. People should have 

faith in AI because of the prospective field of explainable AI. There exist other instances where humans 

managed to understand a world beyond direct perception. 

For the length of this paper, I will not cover all existing techniques for interpreting the inner mechanisms 

of neural networks, but I will present one solid example: the Linear Probe. A linear probe in the context 

of large language models (LLMs) is a technique used to analyze and understand the inner mechanisms of 

these models. It involves adding a linear classifier or layer with linear functions on top of a pre-trained 

neural network, such as a large language model. This probe is designed to be simple without introducing 

complex, non-linear transformations. The primary purpose of a linear probe is to determine how much 

information about a specific task is already captured by the pre-trained model. It helps in assessing the 

quality of the features learned by the model. To insert a linear probe into LLMs, researchers start with a 

pre-trained model trained on a vast amount of text data to learn general language representations. They 

then add a linear layer on this pre-trained model, which acts as the probe. The output from the last layer 

of the pre-trained model is fed into this linear probe. The linear probe is then trained on a downstream 

task, such as sentiment analysis or topic classification. Researchers use linear probes to understand LLMs 

in several ways. By training a linear probe on a task, they can assess how much of the task’s information 

is already encoded in the pre-trained model’s features. If the linear probe performs well, the pre-trained 

model has learned relevant features for the task. It also helps in understanding the transferability of 

knowledge from the pre-trained model to different tasks. If a linear probe is effective, it indicates that the 

model’s representations are general and useful across various tasks.  

The paper “Language Models Represent Space and Time” by Wes Gurnee and Max Tegmark delves into 

the internal workings of large language models by employing Linear Probes. This approach involves 

training a simple linear model on the activations of a neural network to infer the presence of specific 

features. In their study, the researchers constructed six datasets, each containing the names of places or 

events and their corresponding spatial or temporal coordinates. These datasets span various scales, from 

global locations to specific periods. They then used the Llama-2 family of LLMS, which are large 

transformer-based language models, to process the names in these datasets. The researchers then applied 

linear probes by taking the activations of the model's hidden states (the internal representations) for each 

entity name at various layers and training a linear regression model, or probe, to predict the actual space 

or time coordinates of these entities. The probe learns to decode the spatial and temporal information from 

the model’s activations. The results showed that LLMs learn linear representations of space and time 

across multiple scales. These representations were robust to prompting variations and unified across 

different entity types, such as cities and landmarks. The researchers also identified individual “space 

neurons” and “time neurons” that reliably encode spatial and temporal coordinates. Above is a successful 

example of researchers interpreting the inner mechanism of neural networks. 

Furthermore, we should have sufficient confidence that such techniques will become more established in 

the future. There is a famous analogy made about the NeuralPS conference: artificial intelligence today is 

like alchemy. In other words, both subjects are pre-scientific disciplines that gave out partially good results, 

but the understanding and the explanations for the phenomenon must be present. I agree with this analogy, 

but the implication should be positive. The world of atoms, the subject of alchemy and later chemistry, 

and machine knowledge are those beyond direct human perception. If we say the core issue of neural 
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networks today is that we cannot directly perceive their internal mechanisms, the same was the issue of 

alchemy five hundred years ago. However, chemists today triumph in drawing knowledge of the atomic, 

despite being beyond their direct perception. This triumph testifies to the possibility of perceiving worlds 

beyond, and we researchers of neural networks today should have confidence in completing a similar task, 

namely drawing information of worlds of machine knowledge.  

The world of atoms and molecules, the fundamental building blocks of matter, operates at a scale far too 

minute for human senses to perceive directly. The atomic world is governed by quantum mechanics, a 

realm of probabilities and wave functions that defies classical intuitions honed by our macroscopic 

experiences. The interactions between electrons, protons, and neutrons occur at energies and distances that 

are entirely alien to the human natural understanding. In this sense, chemistry is inherently beyond humans' 

direct comprehension. However, chemists have developed a suite of tools and methodologies that allow 

them to probe, manipulate, and make sense of the atomic world. Microscopes that can visualize individual 

atoms, spectrometers that can decipher the energy states of electrons, or computers that can simulate the 

interactions between molecules.  

The analogy to chemistry suggests that the inability to directly comprehend machine knowledge from 

neural networks does not preclude humans from understanding their functions through other methods. As 

chemists have built a comprehensive framework to interpret and predict chemical phenomena, AI 

researchers can develop interpretive methods to make neural network decision-making more transparent, 

like the linear probes described above. Chemistry is the testimony. 

4.2 Internal Justification 

For the length of this paper, I do not go on to formulate an argument for the internal justifications of neural 

networks but only point out how this perspective is necessary and worth future inspection.  

As stated above, the current discussion on the epistemology of neural networks is centered on how humans 

can learn and justify the knowledge within neural networks; however, since the emergence of AI's self-

awareness is a crucial topic, considering neural network as the agent itself can justifying its own 

knowledge is a topic with equivalent importance. That is, to consider the internal justification of neural 

networks is first to assume that the neural networks may have self-awareness, and then how can it justify 

its own knowledge? There have been many prior analyses on the importance of discussing the 

consciousness of machines (i.e. Chalmers, 1995).  

As stated in the above section, the key to Internalist Justification is the agent's access to some mental state 

that generates the knowledge, and it happens that a very recent paper discovered the existence of such a 

mental state in "Large Language Models: Large Language Models Represent Space and Time" (Gurnee 

& Tegmark, 2024). 

The book Thinking, Fast and Slow (Kahneman, 2017) by Daniel Kahneman offers a profound insight into 

the human mind, revealing the dual-process system that governs our thoughts and decisions. The book 

educates us on the interplay between two systems: System 1, which is fast, intuitive, and often unconscious, 

and System 2, which is slow, deliberate, and logical. Kahneman demonstrates how these systems shape 

our judgments and choices, often leading to biases and cognitive illusions. Such two systems of mind are 

philosophical faculties and can serve as the basis of internalist justification.  

The paper "World Models" (Ha & Schmidhuber, 2015) integrates principles from Daniel Kahneman’s 

book “Thinking, Fast and Slow” by leveraging the dual-process theory of cognitive function to enhance 

the development of artificial intelligence systems. It draws on the book’s concepts of System 1 (fast, 

intuitive thinking) and System 2 (slow, deliberate reasoning) to design AI architectures that can efficiently 
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process and learn from complex environments. By mimicking System 1 with a Variational Autoencoder 

(VAE) for intuitive perception and System 2 with a recurrent neural network (RNN) controller for 

decision-making, the authors of “World Models” create a framework that allows AI to balance rapid, 

heuristic-driven responses with more contemplative, strategic actions, thereby enabling the AI to navigate 

environments with a nuanced understanding reminiscent of human cognitive processes. 

Later in the paper, "Language Models Represent Space and Time", researchers discovered the existence 

of emergent World Models within Large Language Models. Although LLMs are not designed to have 

world model structures, they have world model structures that emerge within themselves after training. 

This signals that the LLMs, a neural network structure, have a faculty of mind, which is the key factor to 

internalist justification. Therefore, how AI agents justify their own knowledge must be a topic of 

discussion.   

  

5 Conclusion 

In this paper, I systematically analyzed the knowledge generation in neural networks, from the genesis of 

knowledge to characterizing knowledge and determining probable justification. The entire analysis 

complements a few questions that need to be addressed in previous analyses, pointed out in the 

introduction, and the conclusion differs from the prominent view that machine knowledge is risky.  

In the first part, I demonstrated how the mathematical nature of truth is necessary for generating 

knowledge since neural networks are, by default, mathematical. However, whether or not truth is 

mathematical still awaits future philosophical discussion. There are, however, numerous famous instances 

that demonstrate the power of mathematics in modeling the world. Importantly, the trait as universal 

approximators allowed neural networks to learn mathematical truths. This explains the genesis of neural 

network knowledge. This is the necessary premise of neural network knowledge generation. If researchers 

face a problem where mathematical representation does not exist, it is not likely that neural networks will 

function well.  

To characterize machine knowledge, I provide that neural networks bypass Wigner's layers of science and 

the following limitations, leading to another distinction between human knowledge and machine 

knowledge, in addition to those suggested by Bai (2021). This distinction further testifies to machine 

knowledge’s fundamental difference from human knowledge. I deem this distinction influential in how 

we treat neural networks and utilize their power, as it leads to the conclusion that Reliabilism is the only 

possible form of epistemic justification.  

Reliabilism represents the epistemic justification where people trust the process of knowledge generation 

when a chain of logic cannot produce the result of knowledge. While intuitively, Reliabilism is not 

acceptable as a method of justification in critical fields such as medicine and health, I see the potential for 

future resolution in this issue because recent successes in techniques such as Linear Probes are helping 

with our understanding of the internal mechanisms in the now believed "inscrutable" black-boxes. This 

provides an optimistic view regarding our understanding and control of neural networks, as opposed to 

the now popular skeptical and critical arguments. However, this paper needs to address how people should 

treat neural networks before our understanding of techniques and relevant theories is complete. Concerns 

about safety and explainability may still occur when we use neural networks. Thus, I hereby advocate for 

a research focus shift from application to probing techniques, developing more methods like the Linear 

Probe.  

In the ending section, this paper considers the importance of analyzing neural network knowledge from  
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the perspective that neural networks are intelligent agents since the emergent world models are a symptom 

of the trend, marking an emergent faculty of mind in neural networks: the ability to understand.  

In summary, this paper demonstrates an optimistic view towards knowledge of neural networks. It 

transcends the limits of layers of science——inevitably approximations and forever pursuit of the next 

layer——and, as this paper predicts, its learning process and inner mechanism will be understood in the 

future. 
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