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Abstract 

Hierarchical data structures emerge when observations are nested within higher-level units or clusters. 

Existing research often ignores the hierarchical structure of data leading to biased estimates, suboptimal 

model selection, and challenges in identifying important predictors and dependencies. This study aims to 

contribute to hierarchical frameworks by improving challenges with the interpretability of the random 

effect, scalability, and computation feasibility in the traditional hierarchical Bayesian model.  The authors’ 

model is an advancement of the Standard hierarchical Bayesian model which introduced a unique variable 

to the model and parameters to the random effects. The advancements in hierarchical modelling by the 

authors have significantly improved the accuracy, reliability, and interpretability of the model analysis. 

Hierarchical Bayesian Information Criteria (HBIC) is the method of selecting variables in the models. The 

findings of the research indicated that the introduction of Phi (ϕj)  and Psi (ψj) as shrinkage parameters 

are instrumental in the regulation of parameter estimates towards a common value, resulting in more 

accurate estimation and less overfitting in the Hierarchical Bayesian Model as well as accounting for the 

presence of heterogeneity. The introduction of the unique variable (z) allows the model to capture cluster-

specific effects associated with the (z). Lastly, the study found that the authors' innovative model 

outperformed the standard model by improving the accuracy, interpretability, scalability, and 

regularisation through shrinkage parameters and innovative (z) as the contextual variable. 
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Introduction 

There has been a surge in modern research and an interest in learning and understanding data-driven 

decision-making.  Having a larger dataset analysis is no more sophisticated, as insights in the underlying 

huge dataset are no more hidden which makes it exciting and appealing. Despite such advancement in 

research methodologies, there is a limitation in hierarchical model procedure where potential researchers 

find it difficult to extract all issues surrounding the data.  Most fascinating studies have looked into 

examining the predictor variables separately ignoring the aspect of interaction and the nested aspect within 

the dataset (Johnson, 2018).  Hierarchical models and structures including the levels of data or clustered 

observations are common in social science, ecology, and epidemiology areas (Green & White, 2017).   

Disregarding such structures leads to estimation bias and incorrect conclusions demanding robust 

statistical tools that address the complexity of data (Rajaraman, 2020). A common approach in analysing 
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multilevel data is through a hierarchical framework by introducing random effects to account for 

variability in the level of structures (James & Douglas, 2016). The researcher’s proposed model adopts a 

hierarchical structure where the individual-level predictors fixed effects, and group-level variables are 

captured through the random effects (Klein & Moeschberger, 2018).  The researcher’s model incorporates 

interactions within the individual-level explanatory variables and group-level random effects which 

regulate whether a lower-level factor can moderate that of a higher-level one (Gelman & Hill, 2007). The 

researchers believe the study will be a game changer in the sphere of hierarchical modelling by accounting 

for the structures and interactions between lower and higher-level factors.  Such insight provides more 

accurate model that inform policy decision-making through the usage of real datasets. 

Hierarchical Bayesian modelling is a formal statistical framework that has established norms that guide 

its application and interpretation. Hierarchical modelling ensures that the procedure for a model is valid, 

reproducible, and transparent. The hierarchical model basic norm concentrates specifically on the prior 

distribution of parameters which should be clearly defined.  The knowledge and beliefs of the parameters 

considered in the model ought to be chosen in the right manner.  Hierarchical modelling allows for the 

nested structures within data and the incorporation of uncertainty, prior information, and variability with 

the structure settings. The parameters of interest are treated as random variables in Hierarchical modelling. 

Prior distributions are also defined for each parameter of interest at different levels in the hierarchy to 

cater for the uncertainty about the parameters before the data is observed. Bayesian theorem is used to 

observe the posterior distribution of data.  The posterior distribution is updated using the combination of 

likelihood data and prior information. 

There has been extensive research nowadays on Hierarchical modelling in the areas of social sciences, 

economics, epidemiology, and ecology just to mention a few as a result of its ability to handle complex 

data and beliefs.  Due to this, hierarchical modelling analysis has evolved as a powerful tool to handle 

complex data with uncertainties for decision-making.  The use of the most appropriate method in 

hierarchical Bayesian model selection is to initially identify the model structures that account for the fixed 

effects, random effects, and interaction which predicts the underlying patterns in a data more accurately 

(Gelman & Hill, 2007). This is often carried out by comparing alternative models using criteria that weigh 

the balance that must be taken into account for model fitness and the one which is not overly complicated, 

such as the Deviance Information Criterion (DID) or the Widely Applicable Information Criterion (WAIC) 

(Gelman et al., 2023). 

The hierarchical Bayesian model has gained several successes although there have been teething 

limitations and challenges that ought to be considered to formulate a parsimonious model.     One of the 

biggest challenges encountered by researchers in hierarchical modelling is its intensiveness in computing 

large datasets and at times complex structures. This results in long computational times, high 

autocorrelation, and slow convergences because of the posterior inferences from the Markov Chain Monte 

Carlo (MCMC) algorithm.  Informative priors that present accurate prior knowledge selection are essential 

but become a challenge when there is no or slight essential information.  Wrong specification of priors 

results in biased estimates and unreliable conclusions (Klein & Moeschberger, 2018).  If the model does 

not include important predictors or it is not well understood how the data was designed, it can fail to 

represent significant structures and patterns contained in the data. The hierarchical structure of data is 

many at times ignored by researchers which leads the model to bias in estimation, suboptimal model 

selection, and also challenges to be able to identify the essential predictors and dependencies.  This 

problem is encountered by researchers in epidemiology, ecology, and social sciences areas where 
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researchers work with nested structures regularly. Many times, it is difficult to identify the appropriate 

statistical model because traditional model selection criteria are inadequate for complex datasets and 

hierarchical relationships. Traditional variable selection procedures are ill-equipped to handle complex 

data settings with many structures and tens or hundreds of possible predictors to be considered in social 

and biological networks; this leads researchers to potential suboptimal model construction and 

interpretation. 

However, the major hope for researchers in addressing the aforementioned challenges is through the use 

of the Hierarchical Bayesian model. Bayesian hierarchical modelling provides a reproducible framework 

and transparency with articulated guidelines for validating models.  There are even practical challenges 

with model transparency, uncertainty quantification, scalability, interpretability of the random effects, and 

computational feasibility of which researchers have to be circumspect. Researchers at times ignore the 

cumbersome dependencies and the correlation within the nested data structures with the traditional model 

and variable selection procedures.  An effective model is produced by the traditional model and variable 

selection technique; however, the model’s predictive performance diminishes, biased estimates are 

produced, and type I error rates are inflated.  Researchers must therefore focus on improving a model’s 

interpretability concerning the relationships under different conditions and hierarchy for the predictor and 

the criterion variables. 

Failure of existing research or statistical methodologies in identifying problems to accommodate 

hierarchical structures in datasets often leads to suboptimal model and variable selection, and inefficient 

and biased estimates. Therefore, in order to address hierarchical data analysis challenges and enable 

accurate model interpretability, transparency, and making informed decisions, there is a need to address 

model comparison challenges, reproducibility, uncertainty quantification, and model transparency through 

a robust statistical technique. 

The hierarchical structure of the data will be addressed amidst the limitations encountered in hierarchical 

modelling methodologies by using the researchers’ model to enhance the robustness and predictive 

accuracy through the hierarchical model and variable selection technique.  The existing research 

methodologies regarding model selection procedures focused on individual characteristics; though the 

researchers’ model will address the heterogeneity and dependencies within nested data. The stability of 

the variable selection in the model, the interpretability of model results, model fitness, and predictive 

accuracy will be the outcome of the researcher’s proposed model. The proposed methodology will address 

model and variable selection approaches on decision-making and inferences in various aspects and also 

ensure practical relevancy and applicability. 

The general objective of the paper is to advance and evaluate the performance of hierarchical Bayesian 

modelling, as a way of enhancing accuracy, interpretability, and generalizability while tackling the 

limitations encountered by current methods. This study has specific aims which are to introduce a unique 

variable to the standard hierarchical Bayesian model to solve the current limitations and also to enhance 

on variable selection procedure within the hierarchical model. 

The study contributes to scientific knowledge by introducing a hierarchical Bayesian model that is based 

on a global test (of fixed or random effects) under the likelihood ratio test framework. Secondly, the study 

advances variable selection techniques within the hierarchical modelling framework to improve the 

performance of the model. The results of this study will have direct applications in a wide range of domains 

including education, finance, healthcare, and social sciences, where hierarchical structures and high-

dimensional data are common. The study will also enhance the quality and interpretability of methods 
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used in science and other investigations. Specifically, by introducing a unique model the researchers 

enhance the accuracy and interpretability.  This paper aims to make more feasible good decisions where 

transparency and understanding of model outputs are of utmost priority. 

 

Literature Review 

Modern data analysis nowadays has brought a surge in statistical literature on hierarchical models and 

variable selection techniques in addressing complex data more interpretably and transparently. The 

technique has gained much attention as a result of the hierarchical structure’s ability to provide insight 

into data patterns and address its selection limitation to approaches.  The hierarchical model allows for 

accurate capture of complex relationships and also models the dependencies among observations within 

the hierarchies.  Improving the model’s parsimony and interpretability is ensuring that a model selection 

technique is employed to elect the right predictors. A valuable contribution was made to the literature on 

Bayesian hierarchical modelling, by introducing a new approach to improving predictive performance 

through model selection criteria (Zong & Bradley, 2023). The article’s theoretical and empirical 

contributions provide a valuable resource to researchers seeking to improve the accuracy and efficiency 

of Bayesian hierarchical models across a diverse set of applications by incorporating an often-used 

criterion from model selection (Zong & Bradley, 2023). A special case of several information criteria 

expressions was proposed by Zong & Bradley (2023) which they labeled as Covariance Penalized Error 

(CPE). By the variance empirical Bayes estimator, a penalized mean value was formed. Zong & Bradley's 

(2023) prime aim was to obtain a small value of the CPE criterion, by truncating the joint support of the 

data and the parameter space using Bayesian hierarchical modelling. The authors achieved their objective 

of minimizing the squared error by identifying a subset parameter space that produces lower values than 

the Bayesian model averaging yields, provided that there is a non-zero probability value within this 

truncated set. The limitation in their paper comprises Complexity of Implementation, Interpretability and 

Transparency, and Dependency on Criterion Selection. 

In the publication titled "Income, education, and Other Poverty-related Variables: A Journey Through 

Bayesian Hierarchical Models," G´omez-M´endez and Chainarong (2023) focuses on addressing the issue 

of poverty in Thailand. The paper by Gomez-Mendez and Chainarong (2023) examines poverty-related 

variables such as income, education, and others in the multiresolution governing structural data of 

Thailand. Bayesian hierarchical models are utilized for this analysis. The authors discuss the progression 

of their modelling methodology from simple to more complex models and assess each model's 

effectiveness based on its ability to explain relevant variables while balancing complexity considerations. 

The models are designed to capture the data's hierarchical structure, incorporating individual and region-

level variables. G´omez-M´endez and Chainarong (2023), while Bayesian hierarchical models provide a 

flexible and powerful framework for analyzing complex data, they have drawbacks, such as challenges in 

model specification, computational complexity, and overfitting when a large number of parameters are 

included. The availability, and quality, of data, may also limit the utility of the modelling approach. The 

methodology in the article “Income, education, and other poverty-related variables: a journey through 

Bayesian hierarchical models” by Gómez-Méndez and Chainarong (2023) can be summarized in 

mathematical and statistical terms as follows: 

The hierarchical model aims to explain income and other poverty-related variables in Thailand. It can be 

represented as: 

𝑌𝑖𝑗 = 𝛽0 + ∑ 𝛽𝑘𝑋𝑖𝑗𝑘 𝑝
𝑘=1 + 𝜙𝑗𝜑0𝑗+ εij        [1] 
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Where 

Yij is the income or poverty − related variable for observation i in region j, 

β0 is the intercept 

βk are the coefficients for covariates 𝑋𝑖𝑗𝑘 (such as education  level, household characteristics, etc.), 

ϕj is the regional random effect capturing unobserved heterogeneity at the regional level, 

φ0j represents the random effect for region j, 

εij is the error term 

The journey started by the authors in designing the hierarchical models in a simple and then gradually 

complex form. The performance of each model is assessed based on the ability to explain the variability 

in income and poverty-related variables. In practice, the preference for simpler models should not only be 

based on the explanatory power but also the complexity. If two models provide comparable explanatory 

power a simpler model is preferred to a more complex one. So, the evaluation of model fit, overfitting, 

and computational complexity for each model should be discussed. Thus, the regularization techniques 

(e.g., fixed-effects, random-effects, and mixed-effects models), model averaging, and sensitivity analysis 

for Bayesian hierarchical models. The limitations highlighted in the article as a single policy may not 

adequately address poverty-related issues in different areas, each with its unique challenges. Custom-made 

policies for each area separately are unrealistic due to resource limitations. The article points out the 

limitation of ignoring dependencies or relationships between different geographic areas when formulating 

poverty-related policies. While Bayesian hierarchical models provide a flexible and powerful framework 

for analyzing complex data, the authors' model has drawbacks, such as challenges in model specification, 

computational complexity, and potential overfitting because a large number of parameters were included. 

The availability, and quality, of data, may also limit the utility of the modelling approach. 

The Article by Porter et al., (2023) titled “Objective Bayesian Model Selection for Spatial Hierarchical 

Models with Intrinsic Conditional Autoregressive Priors” addresses the problem of model selection for 

Gaussian hierarchical models with intrinsic conditional autoregressive (ICAR) spatial random effects. The 

problem of model selection is particularly challenging in spatial models as there is spatial dependence and 

confounding between fixed and spatial random effects. The Article develops a Bayesian model selection 

approach with fractional Bayes factors to do so, which not only selects regressors but also assesses spatial 

dependence. Moreover, Porter et al., (2022) also acknowledge the problem of selecting covariates and 

spatial model structure independently in spatial hierarchical models; previously, methods required one to 

be fixed a priori and the other to be selected, which necessitated arbitrary decisions. Methods for 

simultaneous selection solve this problem but there are few Bayesian methods for simultaneous selection; 

the Article aims to do so, using fractional Bayes factors for model selection under automatic reference 

priors. In developing this methodological contribution, the Article first develops Bayesian model selection 

by fractional Bayes factors, so that fixed effects especially are selected simultaneously with spatial model 

structure; the approach also uses automatic reference priors, so that hyperparameters for priors do not need 

to be specified. The Article then also establishes the stochastic ordering of two ICAR specifications and 

its implication for the fractional Bayes factor for the ICAR model under the reference prior. A comparison 

of the methodology to traditional model selection criteria and its performance in a simulation study is also 

undertaken. 

Porter et al., (2023) hierarchical model under review is represented as: 

𝑌𝑖 = 𝛽0 +  ∑ 𝛽𝑘𝑋𝑖𝑘 𝑝
𝑘=1 + εi       [2] 

Where 
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Yi is the response varable for observation i 

β0 is the intercept 

βk are the coefficients for covariates 𝑋𝑖𝑘 

εi is the error term 

Spatial Random Effects: The model includes spatial random effects represented by the ICAR prior, 

denoted as ϕi. 

Fractional Bayes Factors (FBFs): FBFs are used for model selection.  M0 represents the null model with 

no covariates and only spatial random effects, and M1 represents the model with covariates and spatial 

random effects. The Fractional Bayes Factors (FBFs) for comparing models M0 and M1 are as follows: 

FBF01 = 
𝐵𝐹01

1+ 𝑃𝐵𝐹01
          [3] 

where 

𝐵𝐹01 is the Bayes factor comparing models M0 and M1, 

FBF01 is the fractional Bayes factor. 

The proposed approach offers a novel solution to model selection in spatial hierarchical models. Porter et 

al., (2023) model in the hierarchical framework has challenges including computational complexity, 

potential challenges in applying the method to large-scale spatial datasets, and sensitivity to prior 

specifications that the researchers encountered. Additionally, the approach’s performance may vary based 

on the unique characteristics of each dataset and model specifications. Porter et al., (2023) limitation could 

be addressed using the authors’ model which could be relevant to the article in these aspects. 

 

Methodology 

The methodology section of this article outlines the systematic approach employed to achieve the 

objectives of adding a unique variable to the Bayesian hierarchical model. The methodology section is 

therefore a transparent framework for undertaking and replicating the effectiveness of the research. The 

research design provides a road map for the study’s overarching plan and strategy to advance 

the hierarchical Bayesian model. The framework incorporates specific procedures and techniques to 

identify and develop the desired study objectives. Therefore, the paper advances the hierarchical Bayesian 

model with a unique variable to the fixed effect and parameters to the random effects respectively. The 

paper adopted a theoretical design approach; highlighting how the introduction of a unique variable and 

parameters improve the model's theoretical grounding and possibly align it more closely. This improves 

the standard Bayesian model by adding a unique variable to the standard Bayesian hierarchical model and 

assessing the regularization.  The theoretical design approach focuses on the conceptual justification that 

explores model structures conceptually without needing empirical validation thereby accounting for 

unobserved heterogeneity or the group-level effects.  Also, the introduction of parameters ϕj, ψj, and Xijz  

as a contextual factor are theoretically significant to be observed in the model. Normal statistical 

procedures for the determination of population, target population, sample, and sampling technique should 

be duly followed and researchers must ensure that individual-level and group-level selection are catered 

for.  Techniques such as power analysis or sample size calculation can aid in the determination of optimal 

sample sizes when adopting empirical validation of the researchers' model. These techniques use different 

standard statistical parameters such as the effect size, the preferred level of statistical significance, and an 

estimation of the variability that is expected to be in the data. The rule of thumb for sample size 

determination in a hierarchical framework ensures that an adequate number of clusters and observations 
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per cluster are present and information is fairly representative in each cluster. This rule of thumb states 

that at best, a minimum observation ought to be considered, a researcher should have 20 to 30 clusters (i.e. 

higher-level units) and at least 5 to 10 observations within each cluster. The numbers may vary based on 

the specific context of the research and the complexity of the model as well as the number of predictors 

considered in a cluster or unit, these guidelines ensure enough variability at both the individual and group 

levels to estimate model parameters reliably. The rule of thumb for sample size determination in a 

hierarchical framework is thus a general guideline proposed by methodologists and researchers wishing 

to apply the principles underlying multilevel modelling and statistics to applied research. While it is 

difficult to attribute this rule of thumb to a specific individual or group, it has emerged over time from a 

collective understanding of the statistical principles underlying multilevel modelling and the practical 

considerations of designing studies with clustered or hierarchical data structures. Methodologists and 

researchers alike have been consistent in recommending that a minimum number of clusters and 

observations per cluster is essential for estimating model parameters reliably and thereby reducing bias 

due to clustering. This guideline has been widely adopted and used in many different research contexts 

that utilize multilevel modelling. Mathematically, the rule is expressed as: 

N≥nclusters(j) X nobservations(i) = nj(20) X ni(5)       [4] 

Note that the minimum samples for individual - levels and clusters are postulated in Equation 4. 

 

Model Selection 

For model selection, researchers must consider adopting the Hierarchical Information Criterion (HIC). 

The hierarchical information criterion (HIC) reassesses the accuracy versus complexity trade-off to tackle 

the centralized hierarchical learning issue. Unlike classic information criteria such as AIC and BIC which 

disregard a hierarchical point of view, HIC considers nested structure by reducing model complication at 

each tier. Inclusively targeting all levels, it merges information standards while integrating adaptive 

penalizations corresponding to hierarchy gradation that combats overfitting via weighting level 

contribution based on intrinsic hierarchal intricacy. 

HIC =  −2 ∑ log {P(yi|θi)} +N
i=1  k ∑ wj(logNj)

J
j=1   [5] 

Where: 

N is the total number of observations, P(yi|θi) is the likelihood for observation i given parameters θi, 

k is a penalty factor for the model complexity, 

J is the number of levels in the hierarchy 

wj is the weight associated with level j,                              

Nj is the number of observation at level j. 

However, researchers are not obliged to employ such HIC but can decide to use any other model selection 

criteria  such as Nested Deviance Information Criterion (nDIC), Hierarchy-Adjusted Cross-Validation 

(HACV), Clustered Bayesian Information Criterion (cBIC), and Bayesian Model Averaging (BMA) could 

be used in the empirical validation of the model that may account for the nested structures. 

Original /Standard Hierarchical Bayesian Model 

Below is the Standard Bayesian hierarchical model: 

Yij =  β0 +  β1Xij1 +  β2Xij2 +  u0j + u0jXij1  + εij    [6] 

Where: 

Yij is the dependent variable for observatjion 𝑖 in group 𝑗 
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Xij1, Xij2 are the predictor variables, 

u0j , u1j are group − specific random effects, 

β0, β1, β2 are the fixed effects, 

εij is the individual − level error term. 

 

Introduction of a Unique Variable to the Model 

The introduction of a unique variable, Xijz, where z represents the innovative variable capturing a unique 

aspect within each cluster. The new model then becomes: 

Yij =  β0 +  β1Xij1 +  β2Xij2 +  β3Xijz + u0j +  u0jXij1  +  εij  [7] 

Where: 

Yij is the dependent variable for observatjion 𝑖 in group 𝑗 

Xij1, Xij2 are the predictor variables, 

u0j , u1j are group − specific random effects, 

β0, β1, β2 𝛽3 are the fixed effects, 

the introduction of Xijz  allows the model to capture cluster-specific effects associated with the 

innovative (z) aspect, 

εij is the individual − level error term. 

 

New Methodology and Combine Hierarchical Model 

A new methodology of incorporating a hierarchical Bayesian Shrinkage prior enhances the estimation of 

cluster-specific effects. The introduction of hierarchical Bayesian Shrinkage strengthens the estimation of 

the cluster-specific shrinkage effects, resulting in more robust and stable estimates (i.e., stabilizing the 

estimates). The unique variable and the new methodology together make a new and unique contribution 

of the Hierarchical Bayesian model to the field of knowledge by addressing particular substantive aspects 

of the research domain and enhancing the hierarchical modelling methodology. The substantive role of 

the unique variable is that the new variable is another predictor that captures something unique in the 

model (i.e. data). Xijz captures the factor specific which differs to each observation in group j not captured 

by other predictors (Xij1 and Xij2). The addition of the innovative variable in the model paves room to 

account for individual differences within each cluster that are not explained by the existing covariates. 

The coefficient of β3 is the effect of the unique variable on the dependent variable, Yij. It tells us how a 

change in Yij is associated with a unit change in Xijz when other variables are held constant. With the new 

methodology, the Hierarchical Bayesian Shrinkage model is now: 

Yij =  β0 +  β1Xij1 +  β2Xij2 +  β3Xijz + ϕju0j +  ψju0jXij1  +  εij      [8] 

Where: 

Yij is the dependent variable for observatjion 𝑖 in group 𝑗 

Xij1, Xij2 are the predictor variables, 

u0j , u1j are group − specific random effects, 

β0, β1, β2 𝛽3 are the fixed effects, 

ϕj, ψj   are cluster-specific shrinkage parameters 

the introduction of Xijz  allows the model to capture cluster-specific effects associated with the novel (z) 

aspect, 
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εij is the individual − level error term. 

 

Assumptions of Hierarchical Bayesian Shrinkage 

Several assumptions are necessary for the estimates of the model to be reliable and valid. Assumptions of 

Hierarchical Bayesian Shrinkage include: 

1. The model assumes a hierarchical structure, where parameters are organized into different levels or 

clusters (e.g., individual-level, individual, and cluster-level parameters). By allowing for the 

borrowing of information across groups, this assumption facilitates the generation of more consistent 

and standardized estimates - an essential valuable feature when there are insufficient observations 

within particular units or groups. 

2. The clusters and levels in the hierarchy are assumed to be exchangeable, which implies that the 

statistical properties of one cluster are assumed to be identical to any other cluster. The exchangeability 

assumption is foundational for pooling information across clusters. Information sharing makes it 

possible to estimate group-specific parameters more accurately by borrowing strength from other 

clusters when data within the specific cluster is/are limited. 

3. The data distributions of the random effects at the cluster level are assumed to be normally distributed; 

that is the assumption is necessary when using shrinkage methods (Gaussian shrinkage priors). 

Normality makes the model so easy to control and allows for closed-form solutions. It also facilitates 

the prediction and interpretation of the hierarchical shrinkage process. 

4. The variance of the random effects is homogeneous across all clusters. The assumption of homogeneity 

is a simplifying device in the model and prevents the shrinkage procedures from overly favouring one 

particular cluster. This assumption can often be relaxed for more flexible models. 

5. Each cluster has enough observations to inform the estimation of group-level parameters adequately. 

When the number of observations is too small in a cluster or unit, hierarchical shrinkage may not result 

in much improvement and regularisation; the estimates might be dominated by the prior. 

6. Assuming independence among observations within each cluster and across the hierarchies is 

necessary for maintaining the meaningfulness of the hierarchical structure and accurate differentiation 

between variability within- versus between groups. 

 

Assumptions Underlying Hierarchical Modelling 

For hierarchical Bayesian modelling to perform well, it is essential not to ignore the underlying assumption 

which provides a concrete foundation. Avoiding the violation of the underlying assumption is by 

employing diagnostic tools to verify whether the model is devoid of bias estimates or inefficient parameter 

estimates. The following assumptions underlying hierarchical modelling need to be considered. The 

observations within each level of the hierarchy are assumed to be independent. This assumption is 

necessary for the model to accurately estimate the within-level and between-level variation by the 

researchers doing empirical validation. The random effects at each hierarchy level are assumed to be 

normally distributed; this assumption allows the model to estimate the mean and variance of the random 

effects. The relationships between the dependent and explanatory variables, at both the individual and the 

group levels, are assumed to be linear. This assumption means that the effects of the predictors of the 

outcome are additive.  The variance of the dependent variable is assumed to be constant across different 

levels of the hierarchy. This assumption ensures that the model captures the variation in the outcome 

variable. The variance of the random effects at each hierarchy level is assumed to be constant. This 
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assumption implies that the variation between groups is consistent across the hierarchy levels. The random 

effects at each level are assumed to be normally distributed with a mean of zero. The assumption allows 

the model to estimate the variation in the outcome variable attributable to the different levels of the 

hierarchy. 

 

Addressing Potential Bias/Missing Values in the Model 

It must be noted that implementing good strategies can minimize potential sources of bias in a model and 

enhance the reliability and validity of the hierarchical model framework. this can be achieved by ensuring 

more robust and accurate interpretation and inferences whenever data are involved. Conducting sensitivity 

analyses and exploring alternative model specifications can help to identify potential biases that may need 

to be addressed. Addressing missing values in the Bayesian hierarchical framework is essential to allow 

for the accuracy and robustness of the estimates which is an integral part. Missing values can be treated 

as unknown parameters (i.e latent variables) and make inferences to them alongside the model parameters 

by imputing the observed data distribution and its relationships with the Bayesian hierarchal framework.  

The mode will estimate the missing values iteratively by leveraging information from observed data within 

the cluster as well as other clusters due to information-sharing criteria in the hierarchical framework. When 

one’s data follows the normal distribution pattern or the missing one, normal information priors can be 

specified allowing the model to sample plausible values based on prior knowledge and observed data. 

Whenever a dataset includes non-linear patterns or complex interactions, one must adopt the use of 

Predictive Mean Matching (PMM) where missing values are imputed by drawing from observed data 

points that pertain to the data distribution pattern. 

 

Contributions to the Standard Bayesian Model (Findings) 

This paper is expected to address Zong & Bradley's (2023) limitation by implementing a straightforward 

and relatively easy-to-implement model. The estimation procedure and computational algorithms is 

simplified to facilitate its use by a wider gamut of researchers and practitioners. The authors’ model is 

flexible and adaptable to different datasets and modelling scenarios (e.g., national, urban, rural) and 

incorporate mechanisms that allow for sensitivity analysis and robustness checks to assess model 

performance under different conditions and assumptions. 

The authors’ model is expected to address Gómez-Méndez & Chainarong (2023) limitations by 

incorporating cluster-specific random effects (𝑢0𝑗) and shrinkage parameters (ϕj,   ψj).  The model 

accounts for variations at the group level (clusters); this allows for capturing heterogeneity among 

different groups (e.g., regions, communities) in terms of their impact on the dependent variable (e.g., 

income, poverty-related variables). These parameters control the degree of shrinkage applied to the group-

specific random effects, allowing for regularization and improved estimation. Introducing a novel 

predictor variable (Xijz) allows the model to capture cluster-specific effects associated with z. This helps 

to identify unique characteristics or factors (e.g., educational programs, healthcare interventions) that may 

have differential effects on the dependent variable across different clusters. The article does not explicitly 

mention such an aspect. The model operates within a Bayesian hierarchical framework, which allows for 

the incorporation of prior information and the estimation of uncertainty. This framework provides a 

flexible and principled approach to modelling complex relationships and dependencies in a data. 

Porter et al., (2022) limitation is expected to be addressed using the model by including both fixed effects 

(i.e., covariates) and spatial random effects (i.e., ϕj and ψj), allowing for the simultaneous selection of both 
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spatial dependence and covariate effects, thus addressing the limitation of separately selecting fixed and 

spatial effects, as described in the article.  With the inclusion of terms like Xij1, the model suggests that 

social context variables like those used in the participant selection process of the article could be included. 

The inclusion of such variables can help to capture additional spatial dependencies and can potentially 

improve the accuracy of spatial modelling. The model allows for flexibility in the spatial structure by 

including spatial random effects as represented by ϕj and ψj. This flexibility is important as it allows for 

different spatial dependencies to be explored and to help overcome the challenge of spatial confounding 

discussed in the article. 

The Bayesian hierarchical model developed by the authors overcomes the difficulties and shortcomings 

of the Standard Bayesian model by adopting a new approach that incorporates a unique variable  (Xijz) 

and interaction terms that explicitly account for unobserved heterogeneity and group-specific effects. This 

inclusion allows for a more accurate representation of the relationship between the dependent and the 

covariates especially in sparsely populated groups. Also, the model makes use of adaptive shrinkage priors 

(i.e. hierarchical shrinkage priors) that allow for more flexible regularization of random effects. These 

priors can be adjusted based on the magnitude and variability of the effects whilst improving on the 

parameter estimation and uncertainty quantification compared to traditional priors. Furthermore, by 

leveraging efficient sampling techniques, the model improves upon the scalability and computational 

feasibility of Bayesian hierarchical models, especially for high-dimensional data and complex hierarchical 

structures thereby enhancing transparency and interpretability. Lastly, the introduction of structured 

group-specific slopes and intercepts modulated by region-specific scaling factors 

(ϕj  and  ψj) random effects enhance the interpretability of the model by allowing an easy understanding 

of how the relationship between independent and dependent variables varies across different regions or 

groups. 

 

Conclusion 

The introduction of   ϕj  and  ψj as scaling parameters have brought several improvements over the 

standard Bayesian hierarchical approach. The  ϕj  and  ψj have been able to regularize the parameter 

estimates toward a common value, this model effectively mitigates overfitting and elevates the accuracy 

of estimates across diverse clusters. This innovative framework facilitates the reduction of variations 

within clusters while simultaneously drawing strength from other groups with high precision values 

thereby enhancing the degree of regularization applied to cluster-specific effects. The introduction of the 

parameters and the unique variable have brought advancement in the model characterized by superior 

predictive accuracy, enhanced interpretability and also offering clearer insights into the relationships 

among the variable.  The model’s ability to account for heterogeneity across clusters indicates that the 

specificity of each cluster is retained without compromising on the general structure. The model substan-

tially advances the Bayesian hierarchical frameworks as it manages to incorporate parameter estimation 

with an admirable level of complexity, generalizability, and accuracy in the presence of high levels of 

cluster heterogeneity. 

 

Recommendation 

The following are recommended for further studies: 

1. A comparative analysis should be conducted to verify whether indeed the current model 

outperformance the Standard Bayesian model with real-world datasets in the hierarchical framework. 
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2. A simulated study could be carried out to find which of the two models promotes more regularisation 

3. Other model selection methods like Nested Deviance Information Criterion (nDIC), Hierarchy-

Adjusted Cross-Validation (HACV), Clustered Bayesian Information Criterion (cBIC), and Bayesian 

Model Averaging (BMA) could be used in the empirical validation of the model 
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