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Abstract 

Landslides are a prevalent and devastating natural hazard in mountainous regions, particularly in high-

risk areas such as Uttarakhand and Meghalaya, India, where factors like intense rainfall, steep slopes, 

and changing land cover significantly contribute to landslide occurrences. Traditional ground-based 

monitoring methods provide limited coverage and scalability, underscoring the need for a more 

extensive and real-time approach to landslide prediction. This study addresses this gap by developing an 

advanced predictive model using neural network architectures and multi-source satellite data, including 

Synthetic Aperture Radar (SAR) from Sentinel-1 for ground deformation, optical imagery from Sentinel-

2 for vegetation and land cover analysis, and Digital Elevation Models (DEM) for slope assessment. 

Additionally, rainfall data from the Global Precipitation Measurement (GPM) mission was integrated to 

evaluate precipitation as a potential landslide trigger. 

Through a comparative analysis of Convolutional Neural Networks (CNNs), Long Short-Term Memory 

(LSTM) networks, and a hybrid CNN-LSTM model, we found that the CNN-LSTM hybrid model 

achieved superior performance, with an F1 score of 0.91. This model effectively captures both spatial 

and temporal patterns, enabling early detection of landslide-prone conditions and surpassing the 

predictive accuracy of traditional methods. The proposed approach provides a scalable solution for real-

time, large-scale monitoring, with the potential to enhance disaster preparedness and resilience in 

vulnerable communities. By advancing landslide prediction capabilities, this model contributes a 

valuable tool for proactive risk management and offers significant potential for integration into regional 

early warning systems. 

 

Keywords: Landslide prediction, neural networks, SAR, Sentinel-1, Sentinel-2, CNN-LSTM, DEM, 

disaster resilience, early warning systems, real-time monitoring. 

 

Introduction 

Landslides are a pervasive natural hazard in mountainous and hilly terrains, causing substantial damage 

to infrastructure, economies, and, most critically, human lives. In India, regions such as the Himalayas, 

Western Ghats, and Northeastern states are particularly susceptible to landslides, with annual monsoons, 

seismic activity, and anthropogenic land alterations contributing to increased landslide frequency and 

severity (Dai et al., 2002; Chandra and Vaidya, 2024). The growing impacts of climate change, which 

intensify weather patterns, are further heightening landslide risks, emphasizing the urgent need for a 

comprehensive, scalable, and real-time approach to landslide monitoring across the diverse terrains of 

India (Guerrero-Rodriguez et al., 2024). 
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Traditional landslide monitoring methods, such as field inspections and ground-based sensors, are 

effective for small-scale, localized assessments but are not feasible for nationwide coverage. These 

methods are limited by high costs, time requirements, and challenging terrain, particularly in remote and 

mountainous areas (Corominas et al., 2014). Recent advancements in satellite remote sensing technology 

offer a transformative approach, allowing for large-scale, continuous, and non-intrusive monitoring of 

landslide-prone regions. For instance, Synthetic Aperture Radar (SAR) from Sentinel-1 can capture 

ground deformation over vast areas, even under cloud cover, while optical data from Sentinel-2 provides 

valuable insights into vegetation and land cover changes—factors that influence landslide susceptibility 

(Chen et al., 2023). However, interpreting this complex and multidimensional data for landslide 

prediction remains challenging, especially on a national scale (Doerksen et al., 2023). 

Machine learning, particularly neural networks, provides a powerful solution to this challenge by 

integrating diverse data sources and capturing complex spatial and temporal patterns indicative of 

landslide risk. Convolutional Neural Networks (CNNs) are effective for analyzing spatial features, such 

as land cover, while Long Short-Term Memory (LSTM) networks are well-suited for identifying 

temporal patterns, like seasonal precipitation trends (Khalili et al., 2023; Jiang et al., 2020). Studies 

suggest that hybrid CNN-LSTM models, which leverage both spatial and temporal data, show superior 

predictive performance compared to traditional approaches (Gidon et al., 2023). However, while prior 

research has demonstrated the potential of neural networks for landslide prediction, no comprehensive, 

real-time, nationwide model has yet been implemented. 

This study aims to develop a CNN-LSTM-based predictive model for landslide monitoring across all 

regions of India, incorporating multi-source satellite data from Sentinel-1, Sentinel-2, Digital Elevation 

Models (DEMs), and precipitation data from the Global Precipitation Measurement (GPM) mission. By 

integrating ground deformation, land cover changes, slope data, and rainfall patterns, this model is 

designed to detect and predict landslide-prone areas in real time. Our objectives are threefold: (1) to 

assess the predictive accuracy of CNN, LSTM, and CNN-LSTM models for nationwide landslide 

detection, (2) to evaluate the effectiveness of combining multiple data sources for enhanced landslide 

susceptibility mapping, and (3) to provide a scalable, real-time monitoring solution that supports early 

warning systems for disaster preparedness. 

The results of this study have significant implications for disaster resilience, offering a robust, scalable 

model for landslide prediction across diverse terrains. By implementing this model, India’s disaster 

management authorities can better allocate resources, issue early warnings, and ultimately reduce the 

devastating impacts of landslides on vulnerable communities. 

https://www.ijfmr.com/
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Figure 1: Study Area Map 

 

Materials and Methods 

1. Study Area and Data Collection 

1.1 Study Area 

The study covers India’s diverse topography, focusing on landslide-prone areas across different regions, 

including the Himalayas, the Western Ghats, and the Northeastern states. Each of these regions 

experiences unique landslide triggers: 

• Himalayan Region: Landslides here are often triggered by tectonic movements, heavy monsoon 

rainfall, and steep slopes, which make the terrain highly unstable. 

• Western Ghats: Characterized by high rainfall and dense vegetation, landslides are commonly 

induced by rain saturation and land-use changes. 

• Northeastern States: In this area, rainfall-induced landslides are prevalent, worsened by 

deforestation and hilly terrain. 

This comprehensive coverage allows the model to learn from diverse environmental factors 

influencing landslides across India. 

1.2 Data Sources 

To build a robust prediction model, we utilized multiple satellite-based data sources, selected to cover  

different aspects of landslide dynamics. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240631933 Volume 6, Issue 6, November-December 2024 4 

 

• Synthetic Aperture Radar (SAR) Data from Sentinel-1: 

SAR data from the Copernicus Sentinel-1 mission was accessed via the Copernicus Open Access 

Hub. Sentinel-1 SAR images, available at a 10m spatial resolution, were chosen due to their ability 

to detect subtle ground movements and their robustness in all weather conditions. SAR data is ideal 

for interferometric analysis, helping to detect ground deformation, a precursor to landslide activity. 

• Optical Imagery from Sentinel-2: 

Sentinel-2 optical data, available at 10m resolution for visible bands, was used to assess vegetation 

health, land cover changes, and other surface-level changes. Vegetation analysis using the 

Normalized Difference Vegetation Index (NDVI) helps indicate vegetation loss due to soil instability, 

which may signal potential landslide-prone areas. 

• Digital Elevation Model (DEM): 

The Shuttle Radar Topography Mission (SRTM) DEM was used, providing a 30m resolution of 

elevation data. DEM data was essential for calculating slope and aspect, as steeper slopes are 

generally more susceptible to landslides. DEM data was processed in QGIS to derive the necessary 

terrain parameters for the model. 

• Rainfall Data from Global Precipitation Measurement (GPM): 

Rainfall data was acquired from NASA's Global Precipitation Measurement (GPM) mission, 

providing near-real-time global precipitation data. Monthly rainfall data, resampled to match the 

spatial scale of other datasets, was used to examine precipitation as a landslide trigger, given that 

landslides in India are often triggered by intense rainfall events. 

 

Data Type Source Spatial 

Resolution 

Temporal 

Resolution 

Purpose 

SAR (Ground 

Deformation) 

Sentinel-

1 

10m 12 days Detect ground deformation 

Optical Imagery 

(NDVI) 

Sentinel-

2 

10m 5 days Vegetation cover and land 

use changes 

DEM (Slope Analysis) SRTM 30m N/A Slope and elevation 

analysis 

Rainfall Data GPM 10km Daily Analyzing rainfall patterns 

Table 1: Data Sources and Specifications 

 

2. Data Preprocessing 

Each dataset required specific preprocessing steps to ensure compatibility and consistency across the 

data sources. All data were processed within Google Earth Engine (GEE) and Python. 

https://www.ijfmr.com/
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Figure 2: Data Processing Workflow 

 

2.1 Pre-processing Sentinel-2 Optical Data 

Optical data from Sentinel-2 was processed to remove cloud cover and calculate NDVI values, which 

aressential for assessing vegetation loss. 

• Cloud Masking: Sentinel-2 images were filtered for cloud cover using the 

"CLOUDY_PIXEL_PERCENTAGE" attribute, with images containing more than 20% cloud cover 

discarded. 

• Spectral Correction: Spectral adjustments were applied to normalize the red and near-infrared 

bands, ensuring accurate NDVI calculation. 

• NDVI Calculation: The NDVI was calculated using:  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

where NIR is the near-infrared band (Band 8) and RED is the red band (Band 4). NDVI values were 

used as a proxy for vegetation health, as low NDVI often correlates with disturbed or degraded land. 

2.2 Pre-processing Sentinel-1 SAR Data 

Sentinel-1 SAR data required specific processing to detect ground deformation accurately. 

• Interferometric SAR (InSAR) Processing: InSAR was used to identify ground movement over 

time by calculating phase differences between consecutive SAR images. Steps included: 

o Image Co-Registration: Aligning SAR images from different times to ensure that pixels represent 

the same location, minimizing misalignment errors. 

o Phase Differencing: Calculating the phase difference between images to detect displacement, which 

indicates ground instability. 

https://www.ijfmr.com/
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o Unwrapping and Filtering: The phase unwrapping process was conducted to address 

discontinuities, and a low-pass filter was applied to reduce noise, enhancing the clarity of 

deformation patterns. 

These processed deformation maps were subsequently exported and analyzed to determine regions with 

ground displacement, indicating potential landslide risk. 

2.3 DEM Processing and Slope Analysis 

DEM data from SRTM was processed to derive slope and aspect, key factors in landslide susceptibility 

analysis. 

• Slope and Aspect Calculation: Using QGIS, slope and aspect were calculated for each pixel. Slopes 

greater than 15 degrees were flagged as high-risk areas, following recommendations from prior 

studies (Dai et al., 2002). 

• Normalization and Resampling: The DEM was resampled to 10m to align with the spatial 

resolution of Sentinel-1 and Sentinel-2 data, ensuring compatibility for integration in the model. 

2.4 Rainfall Data Processing 

Rainfall data from the GPM mission was aggregated and processed to analyze monthly cumulative 

precipitation. 

• Aggregation: Daily GPM data was aggregated to monthly totals to match the temporal granularity 

of the model. 

• Rainfall Thresholding: Historical data was used to determine a rainfall threshold of 200mm per 

month, above which landslide probability was considered high. Pixels meeting this criterion were 

flagged for potential landslide risk. 

 

3. Model Development 

 
Figure 3: CNN-LSTM Model Architecture. 

 

3.1 Neural Network Architectures 

Three neural network architectures—CNN, LSTM, and CNN-LSTM—were developed to explore their  

effectiveness in landslide prediction. 

Layer 

https://www.ijfmr.com/
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• Convolutional Neural Network (CNN): The CNN model extracted spatial features from Sentinel-2 

images, focusing on texture, vegetation, and land cover changes. 

• Long Short-Term Memory (LSTM): The LSTM network was used to handle temporal patterns, 

processing time-series data from rainfall and SAR deformation to capture trends over time. 

• Hybrid CNN-LSTM Model: The CNN-LSTM model combined spatial and temporal inputs. The 

CNN layer processed spatial features, which were then fed into the LSTM layer to capture temporal 

trends, allowing for robust, sequential analysis of spatial-temporal landslide data. 

3.2 Model Training and Hyperparameter Tuning 

The dataset was split into training (70%) and testing (30%) sets, with historical landslide data used as 

labels. 

• Training Process: Training was conducted in Python with TensorFlow, using categorical cross-

entropy loss and the Adam optimizer. Models were trained over 50 epochs, and early stopping was 

applied to prevent overfitting. 

• Hyperparameter Tuning: Hyperparameters were optimized using grid search, with tested values 

including learning rate (0.001, 0.0005, 0.0001), dropout rate (0.2, 0.3, 0.4), and number of LSTM 

units (64, 128, 256). 

 

4. Statistical Analysis and Model Evaluation 

4.1 Evaluation Metrics 

The models’ performance was evaluated using precision, recall, F1-score, and accuracy. Definitions are 

as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

4.2 Statistical Testing 

A paired t-test was performed to compare the CNN-LSTM model with other models, setting a 

significance level of 0.05. The CNN-LSTM model achieved significantly higher F1 scores than the CNN 

and LSTM alone, supporting its superiority for landslide prediction. 

 

5. Real-Time Implementation and Monitoring 

The CNN-LSTM model was integrated into a real-time monitoring system using Google Earth Engine 

for data streaming and a Python backend for model inference. 

• Real-Time Data Processing: Incoming satellite data was processed in GEE, with updates every 

24 hours. 

• Alert System: High-risk areas were flagged, and notifications were generated, offering early 

warnings for regions surpassing threshold conditions. 

 

 

 

https://www.ijfmr.com/
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Results 

1. Model Performance and Comparative Analysis 

The CNN-LSTM model achieved a high predictive accuracy, with a mean F1-score of 0.91, precision of 

0.88, and recall of 0.93 across the test dataset. These metrics were notably higher than those of the CNN-

only (F1-score of 0.83, p < 0.05) and LSTM-only (F1-score of 0.79, p < 0.05) models, suggesting a 

statistically significant improvement in prediction accuracy with the CNN-LSTM architecture. 

Additionally, the CNN-LSTM model exhibited faster convergence during training and lower variability 

in performance across test regions, indicating its stability and adaptability to diverse Indian terrains. 

 

Model Accuracy Precision Recall F1-Score 

CNN 83% 0.80 0.85 0.83 

LSTM 79% 0.77 0.81 0.79 

CNN-LSTM 91% 0.88 0.93 0.91 

Table 2: Model Performance Metrics 

 

 
Graph 2: Model Performance Comparison. 

 

2. Spatial Patterns of Landslide Susceptibility 

Spatial analysis revealed that landslide susceptibility was highest in the following regions: 

• Himalayas: High slope gradients (>20 degrees) and frequent ground deformation were observed, 

especially along major fault lines. 

• Western Ghats: The model highlighted steep, deforested areas, particularly in regions that 

experienced recent land-use changes. 

• Northeastern States: Dense vegetation loss and increased ground deformation coincided with high 

monsoon rainfall, pinpointing areas highly prone to landslides. 

https://www.ijfmr.com/
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These findings are consistent with historical landslide data, confirming the model’s ability to identify  

regions where slope, vegetation, and deformation interact to heighten landslide risk. 

 

Figure 4: Ground Deformation and Slope Analysis Map 

 

3. Temporal Correlation with Monsoon Seasons 

Temporal analysis of the CNN-LSTM model outputs demonstrated a clear correlation between landslide 

risk and seasonal rainfall, with peak susceptibility identified from June to September (the Indian 

monsoon period). During these months, SAR data showed significant increases in ground deformation, 

and GPM data recorded cumulative monthly rainfall exceeding 200mm, correlating with the most 

landslide-prone conditions. 

 

 
Graph 1: Seasonal Landslide Risk vs. Rainfall. 
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4. Contribution of Each Data Source 

A sensitivity analysis was conducted to evaluate the contribution of each data source, confirming the 

essential role of multi-source data in landslide prediction: 

• SAR Data (Sentinel-1): Ground deformation analysis from SAR data alone achieved an F1-score of 

0.86, underscoring its importance in capturing subtle movements that precede landslide events. 

• Optical Data (Sentinel-2, NDVI): NDVI values contributed meaningfully to the model, with an 

independent F1-score of 0.81. Declines in NDVI often indicated vegetation loss due to ground 

disturbance, an early sign of potential landslides. 

• DEM and Slope: DEM data provided critical slope analysis, which correlated strongly with 

landslide risk. Areas with slopes greater than 15 degrees had a markedly higher probability of 

landslide occurrence. 

• Rainfall Data (GPM): Precipitation data captured seasonal trends that acted as significant landslide 

triggers. The model flagged areas with monthly rainfall above 200mm, a threshold associated with 

past landslide events. 

 

Data Source F1-Score Precision Recall 

SAR 0.86 0.84 0.88 

Optical (NDVI) 0.81 0.80 0.82 

DEM (Slope) 0.75 0.73 0.76 

Rainfall (GPM) 0.78 0.76 0.79 

Table 3: Contribution of Data Sources to Model Performance 

 

 
Graph 3: Impact of Data Source on Model Performance. 

 

Discussion 

1. Interpretation of Model Performance 

The CNN-LSTM model’s superior performance compared to CNN and LSTM models alone highlights 

the value of hybrid architectures that integrate spatial and temporal features. CNN layers effectively 

extracted spatial patterns in slope and vegetation, while LSTM layers captured temporal trends in 

https://www.ijfmr.com/
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rainfall and deformation data. The statistical significance of these improvements (p < 0.05) underscores 

the strength of this integrated approach, making it an effective tool for real-time landslide prediction in 

varied geographical contexts. 

2. Insights from Spatial and Temporal Patterns 

The spatial patterns identified by the model reflect well-documented landslide-prone regions in India. 

High-risk zones in the Himalayas align with tectonic fault lines, steep gradients, and regions with high 

vegetation disturbance. Similarly, the Western Ghats and Northeastern states showed increased 

susceptibility linked to rainfall-induced slope failures. The temporal alignment with monsoon seasons 

further validates the model, as intense rainfall has been widely recognized as a key landslide trigger in 

these regions (Dai et al., 2002). These insights demonstrate the model’s capacity to adapt to region-

specific factors, providing accurate predictions during high-risk periods. 

3. Implications of Multi-Source Data Integration 

The distinct contributions of SAR, optical, DEM, and rainfall data affirm the necessity of a multi-source 

approach to landslide prediction. SAR data was instrumental in capturing ground deformation, 

particularly in cloud-prone areas where optical data is often unavailable. NDVI values offered essential 

insights into vegetation loss due to ground instability, while DEM and slope analyses highlighted the 

topographical vulnerabilities of steep terrains. Rainfall data from GPM underscored the role of 

precipitation as a critical trigger, reinforcing the model’s sensitivity to seasonal trends. This holistic 

integration of data sources results in a more robust prediction model capable of real-time, large-scale 

landslide monitoring. 

 
Graph 4: Model Classification Performance. 

 

4. Practical Applications for Real-Time Monitoring 

The CNN-LSTM model’s scalability and real-time monitoring capabilities offer substantial benefits for 

India’s disaster management infrastructure. By identifying high-risk areas with precision, the model 

enables targeted allocation of resources, early warning notifications, and proactive evacuation measures 

https://www.ijfmr.com/
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during monsoon periods. The model’s adaptability also holds promise for application in other landslide-

prone regions globally, providing a framework for integrating remote sensing and neural networks in 

predictive hazard analysis. 

 

Conclusions 

This study presents a CNN-LSTM-based landslide prediction model that leverages multi-source satellite 

data to deliver high-accuracy predictions across India’s diverse terrains. With an F1-score of 0.91, the 

model successfully integrates SAR, optical imagery, DEM, and rainfall data to capture the complex 

spatial and temporal dynamics associated with landslides. Key findings highlight the importance of SAR 

and NDVI data in detecting early warning signs like ground deformation and vegetation loss, while 

DEM-based slope analysis and GPM rainfall data confirm the topographical and environmental 

conditions that elevate landslide risk. 

The implications of this model are significant for India’s disaster management systems, offering a 

scalable solution for real-time landslide monitoring. By integrating predictive modeling into early-

warning systems, this research can aid in timely disaster response, minimizing human and economic 

losses in landslide-prone areas. Future research should explore the integration of additional 

environmental variables, such as soil moisture and land use changes, to further enhance model accuracy. 

This study contributes a foundational framework for leveraging advanced neural network architectures 

and satellite data in landslide prediction, with potential applications for similar hazards worldwide. 
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