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Abstract 

This study enhances the Siamese Neural Network (SNN) in detecting signature fraud detection by 

addressing its critical challenges in feature extraction, difficulty handling class imbalances, and 

computational inefficiency. SMOTE was employed to balance the dataset, optimized training 

methodologies were applied, and the network architecture was redesigned to improve performance and 

scalability. Experimental evaluations were conducted using publicly available datasets, CEDAR and 

BHSig260, under a writer-independent setup, where the model was trained on one group of individuals 

and tested on unseen writers. The enhanced model demonstrated substantial improvements in performance 

metrics. The enhanced model achieved significant performance improvements, with accuracy rising from 

67.61% to 99.65%, and F1-score from 0.0000 to 0.9944, with ROC-AUC from 0.5000 to 0.9989, The 

findings highlight the enhanced model's effectiveness in real-world applications, reinforcing public 

document security associated with signature forgery. This research contributes to the growing field of 

biometric verification, offering a scalable and adaptable solution tailored for the evolving demands of 

signature authentication. 
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1. Introduction 

Siamese Neural Networks (SNNs) have emerged as a powerful deep learning algorithm designed for tasks 

requiring pairwise comparisons, such as signature verification. By mapping similar inputs closer together 

and dissimilar inputs farther apart in a high-dimensional vector space, SNNs enable highly accurate 

similarity-based analysis. This architecture relies on two identical subnetworks with shared weights that 

extract features from input pairs, followed by a distance metric to measure their similarity. Its capability 

to capture intricate patterns and distinguish subtle geometric variations makes SNNs particularly well-

suited for detecting forgeries. 

One notable implementation of SNNs in signature verification is the SigNet architecture, a convolutional 

Siamese network proposed by Dey et al. (2017). SigNet has demonstrated exceptional performance in 

writer-independent offline signature verification by leveraging convolutional layers for effective feature 
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extraction and employing a distance-based comparison for decision-making. Despite its success, 

challenges such as the imbalance of training data and the sensitivity of key parameters in the model reveal 

the need for further refinement. Imbalanced datasets, often characterized by a disproportionate 

representation of genuine and forged signatures, can bias the model towards the majority class, reducing 

its ability to generalize effectively. Furthermore, the performance of Siamese Neural Networks heavily 

depends on the careful tuning of hyperparameters, including learning rates and margin thresholds in the 

distance metric, which can significantly impact the network’s robustness and accuracy. 

This research builds upon the foundational principles of Siamese Neural Networks and proposes a series 

of enhancements to improve their performance in real-world signature verification scenarios. The refined 

model introduces advanced feature extraction techniques to better capture the unique characteristics of 

signatures, optimized training strategies to reduce computational overhead, and structural modifications 

to improve the network's robustness against diverse forgery styles. These improvements aim to address 

the increasing risk of digital forgery, particularly in high-stakes environments such as public document 

security in Metro Manila, where the integrity of electronic records is crucial for maintaining trust and 

transparency. 

 

2. Related Literature  

In the field of cybersecurity, fraud detection is essential in ensuring the security of transactions especially 

when it comes to verifying signatures. Although digital signatures are frequently used to verify documents 

and stop illegal access, they are susceptible to fraud, particularly when papers are altered using fake 

signatures[1]. The goal of fraud detection in signature verification is to differentiate between authentic 

and fake signatures, which is essential for protecting financial and legal transactions.SNNs, compared 

with traditional neural networks, are made to compare two inputs by calculating how similar they are 

[3][17]. The Siamese network is a perfect model for differentiating between authentic and fraudulent 

signatures because of its structure, which consists of two similar sub-networks that share weights [16]. 

Offline verification is just as important in situations where signatures are captured in scanned documents 

or photos, even though online signature verification records real-time attributes like velocity and pressure. 

In these situations, looking at visual characteristics such as shape, size, and trajectory is necessary to 

confirm the legitimacy of a signature where it's easy to fraud because it can be easily imitated [4][10][12]. 

Dealing with unbalanced datasets is one of the most challenging aspects of detecting signature forgery. 

The dataset typically has a class imbalance that may affect the neural network model performance because 

there are a lot more authentic signatures than fake ones [9][20] that can lead to overfitting because of the 

unbalanced datasets [15]. The model might not be able to correctly identify forged signatures if the dataset 

is skewed toward the majority class [8]. Researchers have been exploring a number of strategies to balance 

the dataset as a result of this difficulty, including data augmentation techniques [19] like the Synthetic 

Minority Over-sampling Technique (SMOTE) [2]. To guarantee that the model is trained on a more 

balanced dataset and increase the precision of forged signature detection, SMOTE creates synthetic 

samples for the minority class [7]. Siamese neural networks have shown significant performance in offline 

verification of signatures. SNNs can accurately detect minute distinctions between authentic and fake 

signatures by learning the similarity between signature pairs. According to recent research, SNNs can beat 

conventional machine learning models in terms of classification accuracy when paired with pre-processing 

methods to improve the quality of signature photos [16]. SMOTE, which solves the issue of imbalanced 

datasets and contributes to the model's increased robustness, has been added to these techniques in order  
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to improve them [18]. 

 

3. Research Method 

3.1 Siamese Neural Network Baseline 

The SigNet framework, a convolutional Siamese Neural Network (SNN), serves as the baseline 

architecture for this research. It is designed explicitly for writer-independent offline signature verification, 

a task known for its high complexity due to subtle variations in handwriting styles and potential forgeries. 

SigNet operates by embedding signature pairs into a learned feature space, minimizing distances between 

embeddings of genuine signature pairs while maximizing distances for forged pairs. 

The architecture of SigNet is composed of twin convolutional subnetworks with shared weights, ensuring 

consistent feature extraction across input pairs. Each subnetwork processes an input signature image, 

producing embeddings that are compared using the Euclidean distance. The shared weights ensure that 

similar inputs produce similar embeddings, effectively capturing the nuanced details of handwriting. Its 

architecture leverages a deep convolutional neural network (CNN) for feature extraction. Its configuration 

is inspired by Krizhevsky et al. (2012) and adapted for signature verification.  

 

 
Figure 1: Architecture of Signet 

 

The SigNet architecture begins with an input and preprocessing stage, where the input consists of a pair 

of signature images. These images are resized to 155×220 pixels to ensure uniform dimensions across the 

dataset. Pixel values are normalized by dividing by the standard deviation of pixel intensities, stabilizing 

gradient flow and improving convergence during training. This preprocessing stage ensures consistency 

in input dimensions and scales, preparing the data for feature extraction in the convolutional layers. 

The convolutional layers represent the backbone of the SigNet architecture. These layers employ a twin 

convolutional network with shared weights to extract hierarchical features from the input signature pair. 

The first convolutional layer uses 96 filters of size 11×11 with a stride of 4, capturing low-level features 

such as edges and corners. The second layer consists of 256 filters with 5×5 kernels and padding, focusing 

on mid-level features. Deeper convolutional layers, including Layers 3 and 4, refine the feature 
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representation using smaller 3×3 kernels, extracting high-level abstractions critical for distinguishing 

genuine and forged signatures. Pooling layers are applied after specific convolutional layers, reducing the 

spatial dimensions of feature maps and preventing overfitting by limiting the model's complexity. 

Following feature extraction, the network transitions to the fully connected layers. The flattened feature 

maps are passed to a fully connected layer with 1024 neurons and a dropout rate of 0.5, which reduces the 

risk of overfitting. The final fully connected layer compresses the representation into a 128-dimensional 

embedding, which serves as the feature vector for the signature. These embeddings are compared using 

the Euclidean distance, which quantifies the similarity between the input signature pair. The distance 

metric is used in conjunction with the contrastive loss function to train the network.  

The final step involves optimization, where the network parameters are updated using the RMSprop 

optimizer with a learning rate of 1e-4 and a batch size of 128. This iterative process enables the model to 

accurately capture nuanced differences in signature features while remaining robust to variations in 

handwriting styles and forgery techniques. The output of the network is a similarity score based on the 

computed distance, with a threshold applied to determine whether the pair belongs to the "genuine" or 

"forged" category. 

 

3.2 Dataset 

The experimental evaluation was conducted using CEDAR (Figure 1), a publicly available offline 

signature dataset. In this study, a 70:30 train-test split was adapted for each dataset, diverging from the 

dataset-specific splits utilized in the original SigNet paper.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Sample of CEDAR Dataset 

 

The CEDAR dataset consists of 55 writers, each contributing 24 genuine and 24 forged signatures. 

Following the 70:30 split, the training set includes signatures from 39 writers, while the remaining 16 

writers are reserved for testing. The dataset is widely used in signature verification research and includes 

both skilled and random forgeries. 

The datasets used in the study were organized to facilitate easier integration into the training pipeline. No 

additional manual preprocessing, such as cropping or resizing, was applied to the images to maintain 

consistency with the original dataset characteristics. Instead, the focus was on structuring and organizing 

the datasets for improved usability and readability. 
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3.3 Pseudocode of Enhanced Siamese Neural Network 

Load Images 

3.3.1.   Load signature images img1 and img2 using a custom image loader. 

3.3.2.   Ensure images have the same dimensions through resizing 

Preprocess Images 

3.3.3.   Convert images to grayscale for consistency. 

3.3.4.   Normalize pixel values by dividing by the dataset's pixel standard deviation. 

3.3.5.   Invert pixel values so the background has a value of 0. 

Apply SMOTE for Class Imbalance 

3.3.6.   Flatten image features 

3.3.7.   Separate the dataset into features (X) and labels (y) for genuine and forged classes. 

3.3.8.   Use SMOTE to generate synthetic samples for the minority class, resulting in a balanced dataset. 

3.3.9   Reconstruct the balanced dataset by pairing genuine and forged signatures to form (img1, img2) 

pairs. 

Define CNN Architecture 

3.3.10.   Construct a convolutional network: 

Layer 1: Apply 96 filters of size 11x11 with ReLU activation. 

Layer 2: Use 256 filters of size 5x5 with max pooling and dropout. 

Layer 3: Add 384 filters of size 3x3. 

Layer 4: Add 256 filters of size 3×3. 

Output Layer: Fully connected layers reduce features to 128-dimensional embeddings. 

Build Siamese Network 

3.3.11.   Define two identical CNN branches sharing weights. 

3.3.12.   Input img1 and img2 to the twin networks. 

3.3.13.   Compute feature embeddings from both branches. 

Define Loss Function 

3.3.14.   Calculate the Euclidean distance between feature vectors. 

3.3.15.   Apply Contrastive Loss 

Train the Network 

3.3.16.   Use the balanced pairs (from Step 3.4) for training. 

3.3.17.   Initialize parameters using Xavier Initialization. 

3.3.18.   Use the RMSprop optimizer with a learning rate of 1e-4  and momentum 0.9. 

3.3.19.   Train with a batch size of 32 over 20 epochs. 

Verify Signatures 

3.3.20.   Input new signature pairs img1,img2. 

3.3.21.   Compute distance D between their embeddings. 

3.3.22.   Compare D with a threshold to classify pairs 

Evaluate Performance 

3.3.23.  Compute metrics: True Positive Rate (TPR), True Negative Rate (TNR), Accuracy, Precision, 

Recall (Genuine Acceptance Rate or GAR), F1-Score, ROC-AUC, and False Rejection Rate (FRR). 

3.3.24.   Maximize accuracy 

Display Results 

3.3.25.   Visualize detected matches and mismatches using embedding distances. 
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3.3.26.   Display performance metrics for evaluation. 

 

3.4 Framework of Enhanced Siamese Neural Network 

This study adopts an experimental and developmental approach to enhance the Siamese Neural Network 

(SNN) for signature verification. The framework is designed to address key challenges in SNN 

applications, such as class imbalance, computational inefficiency, and scalability, which are critical 

obstacles to deploying SNNs in real-world tasks of signature fraud detection. The enhanced Siamese 

Neural Network is structured to tackle these challenges through a multi-step approach. 

 
Figure 3: Siamese Neural Network Operational Framework 

 

First, the network extracts embeddings from input signature pairs, generating robust feature 

representations. To address the class imbalance between genuine and forged samples, the Synthetic 

Minority Oversampling Technique (SMOTE) is applied, ensuring balanced training data and equitable 

learning across classes. Next, a contrastive loss function is employed to optimize the separation between 

embeddings of genuine and forged signatures, thereby improving classification accuracy. Computational 

efficiency is enhanced through batch-wise sampling strategies and optimized distance calculations, 

making the network scalable for large datasets. Finally, hyperparameter optimization for learning rates 

and batch sizes, prevent overfitting and improve the model’s generalization.  

 

3.4 Metrics for Evaluation 

To evaluate the performance of the enhanced Siamese Neural Network, the following metrics were used 

1. Accuracy - Represents the overall correctness of the model, calculated as the percentage of correctly 

classified pairs, including both genuine and forged signatures. 

2. Precision - Measures the model’s ability to correctly identify forged signatures, defined as the ratio of 

true positives (correctly identified forged signatures) to the total number of predicted positives (true 
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and false positives). This metric evaluates the model’s reliability in detecting forged signatures while 

minimizing false alarms. 

3. Recall (Genuine Acceptance Rate - GAR) - Assesses the model’s effectiveness in correctly identifying 

genuine signatures. It is computed as the ratio of true positives (correctly identified genuine signatures) 

to the total number of actual positives (all genuine signatures). GAR reflects the model's ability to 

accept authentic signatures accurately. 

4. F1-Score - Provides a balanced measure of the model's performance by calculating the harmonic mean 

of precision and recall. This metric is particularly useful when dealing with imbalanced datasets, as it 

accounts for both false positives and false negatives. 

5. ROC-AUC - Evaluates the model's discriminatory power by measuring the area under the ROC curve. 

This metric assesses the model's ability to distinguish between genuine and forged signatures across 

various threshold values, with higher values indicating better performance. 

6. False Rejection Rate (FRR) - Represents the proportion of genuine signatures incorrectly classified as 

forged. It is computed as the complement of GAR (FRR = 1 - GAR). A lower FRR indicates the 

model's reliability in accepting authentic signatures without unnecessary rejection. 

 

Results  

Table 1: Comparison of the Performance of the Enhanced Siamese Neural Network 

 Original Enhanced 

Accuracy 0.6761 0.9964 

Precision 0.0000 1.0000 

Recall (GAR) 0.0000 0.9889 

F1-Score 0.0000 0.9944 

ROC-AUC 0.5000 0.9989 

False Rejection Rate (FRR) 1.0000 0.0111 

The enhanced Siamese Neural Network (SNN) demonstrates a significant improvement in performance 

metrics compared to the original model (Table 1), particularly in addressing class imbalance in the dataset. 

Without Synthetic Minority Oversampling Technique (SMOTE), the model struggled to identify forged 

signatures due to an inherent imbalance, with genuine samples outnumbering forged ones by 

approximately 2:1. The inclusion of SMOTE successfully balanced the dataset, increasing the number of 

forged samples and mitigating bias. As a result, the enhanced model achieved a remarkable accuracy of 

99.64%, compared to 67.61% in the original model. Precision and recall also improved drastically, with 

the enhanced model reaching perfect scores of 1.00 and 0.9889, respectively, and an F1-score of 0.9944. 

The ROC-AUC metric rose from 0.5000 in the original model to 0.9989, demonstrating a near-perfect 

ability to distinguish between genuine and forged signatures. Furthermore, the False Rejection Rate (FRR) 

dropped significantly from 1.0000 to 0.0111, showcasing enhanced reliability. However, these 

improvements came at the cost of increased training time, which rose from 2988.22 seconds to 3100.87 

seconds, highlighting a trade-off between computational efficiency and performance. 

 

Conclusion 

This study addressed the growing concern of signature fraud by enhancing Siamese Neural Networks 

(SNNs) to improve accuracy and reliability in offline signature verification. Recognizing the critical need 

for good systems in safeguarding public records and official documents in Metro Manila, this research 
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tackled the existing class that hinders the algorithm’s performance. The proposed enhancements, balanced 

training using Synthetic Minority Oversampling Technique (SMOTE) and architectural refinements, led 

to substantial improvements across all performance metrics. The enhanced model achieved a near-perfect 

accuracy of 99.64%, with a precision of 1.0000 and a recall (Genuine Acceptance Rate) of 98.89%, 

demonstrating exceptional capability in distinguishing genuine signatures from forgeries. And with this, 

the False Rejection Rate dropped to 0.0111, ensuring the model reliably accepted genuine signatures while 

minimizing errors. These results give sight to the potential of the enhanced model to provide reliable and 

secure signature verification for critical applications. 
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