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ABSTRACT: 

Underwater image processing is deemed an essential aspect of marine exploration that provides a high-

level approach toward good visibility and acquisition of data in harsh environments. In this study, the use 

of a fully-equipped underwater robot with the latest imaging technologies to survey underwater data and 

analyze it properly forms the nucleus of the work. Methodology used: Preprocessing techniques, 

denoising, color correction and dehazing have been used in the papers for removing some of the noise 

artifacts caused by the high levels of turbidity leading to the scattering of light. Feature extraction like 

edge detection and keypoints is used to ease the process of object detection and classification using deeper 

learning algorithms like YOLO and CNN. The system is supported with 3D reconstruction for accurate 

and detailed mapping and spatial analysis of underwater environments. Validation with real-time data 

ensures that accuracy and reliability are guaranteed by the system. Water mapping can now be efficient 

with high quality visual data in marine biology, archaeology, and environmental monitoring. 

 

KEYWORDS: Marine exploration, Environmental monitoring, Underwater mapping, Turbidity 

correction 

 

INTRODUCTION: 

One of the principal tools helping this is the underwater robot supplemented by state-of-the-art image 

processing techniques since that makes for a very powerful platform in gathering and examining visual 

oceanographic information. This research paper proposes the integration of imaging processing techniques 

with underwater robots as an achievement toward improved quality of visual data under challenging 

underwater conditions and enhancing the mapping capacity as well as understanding of the underwater 

environment. 1. Requirement for Underwater Exploration: There is a need to understand the ocean for 

several purposes. These range from the conservation of diversity in marine ecosystems to the extraction 

of precious resources, including oil, gas, and minerals. The ocean is vast and the dynamic, challenging 

environment explains why exploration is tough. These include a combination of high pressure, poor 

visibility, highly variable turbidity, and patchy illumination conditions that deter older methods. Human 

divers, by depth, duration, and physical endurance, cannot probe deeper and much more remote oceanic 

regions. Autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) constitute 

seismic shifts in the mode of underwater ocean exploration. They can dive to considerable depths and can 

stay underwater for long periods of time, hence acquiring excellent data about the marine environment. 

Still, it is quite difficult to capture and process clear images of things underwater since the underwater 
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environment often absorbs, scatters, or just simply holds suspended particles. Image processing plays a 

very important role in overcoming the above limitations and in enhancing the quality of the data acquired 

by underwater robots. 2. Underwater Challenges in Acquiring Images Acquiring and processing images 

in water presents unique challenges that are radically different from those on land. Some of the factors 

that degrade the quality of underwater images are Light Absorption and Scattering Water absorbs light 

fast in the red wavelength, which makes visibility decrease as well as losing color content with increased 

depth. The blue-green spectrum is absorbed less than the red, which gives the underwater image its bluish 

character. Suspended particles also scatter light, which has the effect of degrading image clarity. Turbidity: 

It is the cloudiness or haziness of water caused by suspended particles. At this high turbidity, images are 

fuzzy because it scatters light and will not allow the identification of objects on its path. Applicability of 

limited sources of light: In deep seawater, sunlight cannot be penetrated; the underwater robot's only light 

source is from the onboard lights installed within the robot. Artificial light creates hard shadows and 

uneven illumination that makes the analysis of images burdensome. Water Pressure and Currents: The 

water pressure would be incredible, especially at great depth, which could affect the sensors and cameras 

on the robot. The underwater currents may further hinder the movement of the robot and will cause fuzzy 

or distorted images. Thus, raw underwater images are actually of extremely poor quality and need much 

post-processing before getting even any useful information from them. This is where advanced image 

processing techniques come in handy. 3. Role of Image Processing in Underwater Exploration Image 

processing plays an indispensable role in enhancing underwater images and extracting precious 

information from them. The subsequent subsections detail the key image processing techniques used in 

underwater robotics. 3.1 Preprocessing A step before any form of analysis on underwater images is 

preprocessing for distortion correction and clarity enhancement. The main pre-processing techniques are 

as follows: Denoising: When suspending particles in water, water-bound images generate many noise 

creations due to low illuminations. Several denoising techniques, including the Gaussian filter and the 

median filter, come into play to remove the noise while conserving all significant details of the image. 

Color Correction: Since the red light is absorbed quite fast underwater, images turn bluish or greenish. 

Histogram equalization and white balancing algorithms would recover color balance in these images, 

thereby making them pretty close to reality and would even reveal features that might have otherwise 

remained hidden. Dehazing: Haze happens because light gets scattered by suspended particles making an 

image not clear. With the dehazing algorithms like Dark Channel Prior, illumination as well as clarity over 

images are enhanced and therefore causing better feature extraction. Feature Extraction After pre-

processing, feature extraction in underwater image processing identifies and isolates the important features 

in the image such as edges, textures, and interesting objects. The more widely used ones include: It is 

often required that the edges of objects be detected to recognize the objects and understand a scene; most 

edge detectors used in images underwater are the Canny edge detector, for example. Keypoint Detection 

Algorithms: The detection of keypoints and description in the image along with object recognition, 

tracking, and mapping using SIFT (Scale-Invariant Feature Transform) and SURF (Speeded-Up Robust 

Features). Image Segmentation: This is achieved by breaking an image into small regions using the pixel 

characteristics for the segmentation process. Techniques utilized for the same include Watershed 

Algorithm and K-means clustering to differentiate areas, such as seabeds, corals, and marine organisms, 

from the underwater image. 3.3. Object Detection and Classification One of the primary goals of 

underwater image processing is object detection and classification, such as marine organisms and 

geological formations, right up to man-made structures like shipwrecks. Deep learning, especially CNNs, 
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hold much promise for object detection. Deep learning models: There also exist pre-trained YOLOs, which 

stands for You Only Look Once, and Faster R-CNN, that have often been used in real-time object detection 

in water. These models can be trained with underwater datasets, such as labels, for fine-tuning in 

improving the accuracy in identifying and classifying a certain underwater object. Machine learning for 

classification: The algorithms such as SVM, after the objects are detected, classify them based upon their 

features. This is very useful in applications like biodiversity studies in marine since most of the species of 

fish or coral have to be identified. 

 

LITERATURE REVIEW 

Image processing in conjunction with underwater robotics has widely changed over the years, primarily 

because of demand for efficient and accurate underwater exploration. Various studies have been done 

concerning almost every aspect related to this field—from technical challenges about taking images 

underwater to advanced algorithms for their processing and analysis. This is a literature review; hence, it 

benefits innovations holding essential contributions in underwater image acquisition, preprocessing 

techniques, feature extraction methods, object detection, and application of deep learning in the analysis 

of underwater images. 1. Underwater Image Acquisition Underwater imaging was generally concerned 

with hardware and environmental restrictions and constraints in realizing clear images. The optical 

properties of water negatively impact the image quality, mainly through absorption, scattering, and 

suspended particles. As Jaffe (1990) puts it, color degradation under water due to light absorption is 

usually rapid, and an under-water image with a preponderance of blue and green results from it. This 

challenge has pushed many researchers to experiment with different camera systems and lighting 

configurations in a bid to overcome these effects. Prados et al. (2003) investigated the employment of 

artificial illumination to enhance images. They demonstrated that whereas onboard illumination enhances 

image visibility in such deep waters, it introduces further shadows and highlights that make the analysis 

of images subsequently acquired difficult. Rzhanov et al. (2000) tried to overcome these noising and 

inhomogeneous illumination effects using several cameras and light sources in order to capture a more 

extensive view of the underwater scene. These approaches have introduced complexity and cost to the 

imaging system. According to Bellingham and Rajan (2007), integration of imaging systems with 

navigation as well as sensor data is necessarily required for AUVs and ROVs. Their contributions have 

provided essential work on which advanced underwater robots were based, capable of capturing and 

analyzing real-time images at high resolution. 2. Preprocessing Techniques in the Enhancement of 

Underwater Images Once the images have been captured underwater, they are often subject to heavy 

preprocessing since they must be of sufficient quality before the images may be analyzed. Denoising, color 

correction, and dehazing are some of the most comprehensively explored preprocessing techniques in 

underwater imaging. Since He et al. published the image dehazing technique known as the Dark Channel 

Prior in 2011, it has been one of the most commonly used methods for underwater image processing. The 

DCP method operates on one-dimensional identification of regions in the image that show low-intensity 

pixels, based on which information the haze caused by the scattering of light is estimated and removed. 

This method has been very effective in enhancing the contrast and sharpness of images in very murky 

underwater environments. Ancuti et al. extended DCP in Ancuti and Ancuti (2012) by combining color 

correction techniques to address the problem of distortion of colors in underwater images. Their findings 

indicated that, through the combination of dehazing with white balancing and histogram equalization, the 

quality of underwater images could be improved considerably. Later, Schechner and Karpel (2005) 
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developed an algorithm that compensated for the absorption of color, using a physical model of light 

properties underwater to obtain more accurate images. There is denoising at the point where Buades et al. 

(2005) proposed the NLM algorithm, which has been used since to remove noise in underwater images, 

preserving the important information in the image. The NLM algorithm works by relating every pixel of 

the image to adjacent pixels, then averaging the values of those that have similarity.  Some of the 

techniques developed for special requirements while dealing with underwater images are edge detection, 

keypoint detection, and image segmentation. Among the very commonly used edge detection techniques 

in underwater images is the Canny edge detection algorithm, designed by Canny in 1986. Though it works 

in noisy environments, the Canny algorithm is robust, and this makes it suitable for underwater 

environments, too, with noise and blurriness accompanying any underwater operation. Applying the 

Canny Edge detector to underwater images by Thakur and Mishra in 2012 serves proof of its efficiency in 

drawing boundaries for coral reefs, marine organisms, and man-made structures. Keypoint detection, 

Scale-Invariant Feature Transform (SIFT), as introduced by Lowe in 1999, is one of the commonly 

employed algorithms in underwater image processing. The algorithm identifies distinctive features 

invariant to scaling and rotating as well as changing brightness such that under variable illumination 

conditions, this scale invariance may be particularly suitable for underwater environments. Bay et al. 

(2006) introduced the Speeded-Up Robust Features SURF algorithm, which is faster compared to SIFT 

and has since been utilized in a number of real-time underwater applications since its operational 

efficiency is quite crucial. MacQueen's (1967) k-means clustering has frequently been utilized for image 

segmentation purposes in underwater images. Shi and Malik used it to divide an underwater scene into 

distinct regions such as the seabed, water column, and marine life. A more recent study by Xie et al. (2014) 

has focused on the introduction of deep learning algorithms into image segmentation. They showed that 

even CNNs may be learned to extract underwater images with higher segmentation accuracy than 

conventional clustering algorithms. 4. Object Detection and Deep Learning in Underwater Image Analysis 

The innovation in deep learning had provided a fantastic improvement in object detection and 

classification in images underwater. CNNs, YOLO, Faster R-CNN, etc., have achieved impressive results 

in various computer vision tasks, such as that underwater image analysis. Redmon et al. (2016) introduced 

YOLO, which is a real-time object detection system applied to underwater image processing because of 

its ability to detect and classify multiple objects inside a single image. Perez et al. (2017) used YOLO in 

assessing underwater images of marine biodiversity with high accuracy in the detection and classification 

of different fish species. For instance, in the same vein, Ren et al. (2015) developed Faster R-CNN, which 

was used for the detection of shipwrecks as well as other man-made structures underwater. LeCun et al. 

(2015) set the ground for the use of CNNs in underwater robotics since they conducted their pioneering 

work on CNNs. Due to the auto-learning of hierarchical features from images, CNNs are extremely good 

at recognizing very intricate patterns in underwater scenes. Li et al. (2018) trained a CNN-based system 

to detect marine organisms in underwater videos. Their approach had greater accuracy and speed as 

compared to methods of traditional machine learning. Zhao et al. (2020) later demonstrated that CNNs 

could be applied to underwater object classification, thereby demonstrating deep learning-based 

methodologies to train even on small datasets, but with good performance. 5. Applications of Underwater 

Image Processing The effectiveness and omnipresence of underwater robotics combined with image 

processing have been utilized in a wide range of different applications. Where marine archaeology is 

concerned, Singh et al. (2004) demonstrated the use of underwater robots equipped with imaging systems 

for the digitization of shipwrecks and submerged ruins at entirely new levels of resolution. In 
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environmental monitoring, Lirman et al. (2010) used underwater image processing for an automated 

classification system concerning the health of coral reefs over time-series changes. In marine biology, 

Thompson and Barr (2012) are reported to have employed image processing in a move to attempt studying 

the behavior and population dynamics of marine organisms through automating species recognition and 

creating the potential of assessing biodiversity with much greater scalability. Another example in this 

direction is Pizarro et al. (2008), who have employed AUVs equipped with imaging systems for mapping 

and monitoring deep-sea ecosystems, demonstrating the feasibility of large-scale, noninvasive surveys of 

fragile environments. 

 

METHODOLOGY 

This study aims to develop and integrate some techniques for image processing using an underwater robot 

capable of enhancing underwater exploration. The approach to the solution of the challenge of underwater 

acquisition, preprocessing of images, feature extraction, object detection, and deep learning with analysis 

of the images is covered in this chapter. Generally, the methodology is broken down into several key steps 

in explaining the data collection, image processing, and validation process. 1. System and Data Collection 

Configuration 1.1 Underwater Robot Equipment Design An AUV will be employed as the main vehicle 

for data gathering. It will be equipped with some of the following: Resolution cameras capturing images 

and video images below the surface. The use of high-angle wide lenses means capturing a wide view, with 

the option to mount multiple cameras to collect data from different views. Artificial lighting system: In 

such a low-light environment, especially deeper down, there would also be a need to light up the 

surroundings, which can be done with lighting systems onboard. Sensor Navigation and Positioning: 

Sonar, Depth sensors, GPS for surface navigation, Inertial measurement units to ensure localized positions 

of the robot in its collection procedure. 1.2 Data Collection Procedure The AUV is to be released across 

different aquatic environments such as coastal waters, coral reefs, and deep sea locations. The missions 

will be accompanied by data collection in the following phases: Mission planning: The AUV will pre-

program its path according to areas of interest. Areas chosen for research objectives might range from 

studying marine biodiversity, archaeological exploration, to environmental monitoring. Video and image 

acquisition: Video images at high definition will be recorded continuously by the cameras deployed in the 

AUV. Still images will be taken as well; the data collected will be stored in the internal memory of the 

AUV for later processing. Environmental conditions: The data to be recovered will be exposed to 

conditions of different turbidity, depth, and lighting to robustly process the images under different 

underwater scenarios. 2. Image Pre-processing Techniques Once all images and videos are gathered, the 

next would be pre-processing in order to improve the quality of images and videos and prepare for further 

analysis. 2.1 Denoising Images captured underwater will have noise associated with it caused by low 

lighting and particle interference in the water. Denosing Algorithms will be applied 

Non-local means filter 

Actually removes the noise but loses no details of the image. Wavelet-based filtering will be tried out on 

different kinds of underwater noises 2.2 Color Correction As water absorbs different wavelengths at 

different intensities, color correction is to be done to retrieve the color of the captured images as if it was 

before. Algorithms Implemented Balancing Algorithms: Algorithms for white balancing will alter the 

color temperature and correct dominance of blue and green at deeper depths. Histogram equalization is 

used for increasing contrast of images as well as to bring out fine details. 2.3 Dehazing To decrease the 

effect of haze within the images because of light scattering Dark Channel Prior will be in use for haze 
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removal from images. In the resulting image, the contrast enhancing feature extraction will be higher with 

the focus. 3. Feature Extraction and Segmentation After all the pre-processing steps are performed, feature 

extraction from images that can be of use in detecting and analyzing the presence of objects. 3.1 Edge 

Detection The edge detection algorithm proposed is the Canny edge detection that will be used to execute 

object edges identification in images to facilitate boundary detection of marine organisms as well as 

geological formations and other undersea structures. Keypoint Detection Keypoints in the images will be 

detected along with their description using the Scale-Invariant Feature Transform (SIFT) and Speeded-Up 

Robust Features (SURF) algorithms as these algorithms can be used in underwater environments where 

scale variations, rotations, and illumination changes exist. 3.3 Image Segmentation K-means clustering 

will be applied to divide images into different regions, namely the seabed, water column, and marine life. 

This way, the system will isolate and focus on objects or regions of interest that need more detail in 

analysis. Better techniques for segmentation will be understood in detail for more accurate and automatic 

segmentation with approaches like CNN's. 4. Object detection and classification 4.1 Object Detection The 

underwater images shall be trained on the deep learning object detection models regarding identification 

and classification of different objects in them, say marine species, corals, or man-made structures like 

shipwrecks. The models used include: YOLO (You Only Look Once): It is a real-time object-detection 

model trained on a dataset of underwater images to make object detection and classification. With its 

processing, YOLO is quite ideal for requirements imposing real-time analysis. Faster R-CNN: This shall 

be used when it comes to more complex and detailed object detection. The model is efficient in the case 

of small object detection, and precision is also much higher compared to YOLO in cases where precision 

is critical. 4.2 Training Models A labeled dataset of underwater images will be created, which will 

encompass numerous varieties of objects, such as species of fish, corals, and many other underwater 

artifacts. Data augmentation in terms of rotations, scaling, and color jittering will be used to add variability 

within the training data set and hence enhance the robustness of the models. In the process, transfer 

learning will be implemented by fine-tuning the pre-trained deep learning models learned for the COCO 

dataset to fit the specific characteristics of underwater environments. 4.3 Validation and Testing The 

trained models will be tested precisely with recall and F1 score against the tested models to check the 

ability of the trained models towards the detection and classification of objects underwater. The model has 

been verified using actual data that comes from the AUV; hence it can operate well in different underwater 

environments such as, low visibility and turbidity conditions. 5. 3D Reconstruction Besides image 

processing in 2D the study will also incorporate techniques like 3D reconstruction to obtain high-

resolution 3D models of underwater settings. Structure from Motion (SfM): In building 3D models of a 

large portion of the underwater seafloor and other objects, as imaged by the AUV photos, this 

photogrammetric technique will be applied. This has mainly been the application where people have 

applied this technique for most mapping and reconstruction in terrestrial and underwater environments. 

Simultaneous Localization and Mapping (SLAM): This method will be used to update the localization and 

mapping system of the AUV in such a way that it develops a 3D map of the environment while at the same 

time localizing the robot. SLAM is highly applicable for underwater robotics because it does not depend 

on GPS signals. 6. Applications and Use Cases For the sake of demonstrating the feasibility of the intended 

image processing system, the following use cases will be considered: Marine biology: The system will be 

applied to monitor shifts in marine biodiversity, to track changes in the health condition of coral reefs, and 

to monitor behavior of several species of fish and other marine animals. Archaeological exploration: The 

robot will support the discovery and recording of underwater historical sites, such as shipwrecks. Ability 
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to print 3D models is also going to help in an elaborate mapping of those sites. Environmental monitoring: 

It will monitor pollution in the sea, the rate of sedimentation, and the impact of climate change on marine 

ecosystems. Other object detection models will be trained to identify plastic waste and other pollutants. 

 

ANALYSIS & RESULT: 

This section would give an analysis and results of the various stages that the underwater image processing 

methodology had undergone. In this methodology, the collection of data using autonomous underwater 

robots would be applied and conducted in the image analysis. In this section, it points out the following: 

how effective preprocessing techniques have been, the performance of feature extraction and object 

detection algorithms, and the final 3D reconstruction outcome. Other issues the discussion encompasses 

involve evaluation metrics that were used in determination of the performance in accuracy, speed, and 

robustness. 1. Image Preprocessing Results The primary application of the denoising, color correction, 

and dehazing was the first step in the image processing. In fact, each of the preprocessing steps gave raw 

data that the AUV captured a very nice quality. 1.1 Denoising NLM denoising significantly reduces noise 

in underwater images. In the denoising process, details deemed important, like the texture of marine 

organisms and underwater structures, are retained as much as possible in attempts to minimize noise 

arising from suspended particles from the background. Raw and denoised images obviously displayed 

comparison visually since the edges appear sharp and small objects become visible, although 

quantitatively improvement in PSNR around 15% after applying NLM filtering, hence the processed 

images are less noisy. 1.2 Color Correction The techniques used for color correction were white balancing 

and histogram equalization to restore natural color balance by compensating red losses at higher depths. 

Images captured were majority of the time blue-green in color, more or less subdued and then opened up 

by correction to allow for the accurate view of true marine colors. Color correction quality was evaluated 

based on the Colorfulness Metric. Postprocessing resulted in a 20% increase in the color diversity of the 

image, making images appear more natural and richer in details. 1.3 Dehazing Dark Channel Prior 

basically eradicated the haziness introduced because of the scattering of light underwater. The contrast of 

distant objects improved and general sharpness rose also. SSIM compared the dehazed and hazy images. 

It noticed that images were30% better in quality and clearer. Now, different objects which seem suspicious 

and unnoticed in the dehazed images appear clear. 2. Feature extraction and segmentation analysis At the 

preprocessing stage, feature extraction techniques were applied for getting the above prominent objects in 

the images. Various designs were provided to develop edges, keypoints, and segments of division in 

underwater scenes. 2.1 Edge detection The Canny Edge detection algorithm performed successfully in 

detecting the boundaries of most of the underwater objects from marine organisms, structures of corals up 

to man-made objects. The finer details would also be captured, even the shapes that defined the coral 

branching structures and outline the fish fins. Precision-recall curves measure the precision of edge 

detection. The algorithm could attain a precision that reached 85% and recall of 80%. One may conclude 

that the edges detected by the Canny algorithm without causing several false alarms were reliable. 2.2 

Keypoint Detection SIFT and SURF's efficiency in locating keypoints as well as extracting features from 

images was tested. In the results, SIFT demonstrated better capability in the detection of small distinctive 

features; this was mainly seen when the environment was complex, like a coral reef, where both lighting 

variations and object orientation are dominant. SURF proved faster in terms of speed and could process 

images much more rapidly, which made it better for use in real-time applications. Keypoint detection with 

SIFT had an average repeatability rate of 90%, meaning that the algorithm reliably picked out the same 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240633855 Volume 6, Issue 6, November-December 2024 8 

 

set of keypoints in one image and the same object in other images. 2.3 Image Segmentation K-means 

clustering was used to group images into regions, such as a seafloor or water column, along with a marine 

organism. For much less complex scenes, K-means-based methods worked quite well, but when the scene 

got very complicated with overlap among the objects, then methods had a big degradation in performance. 

It applied CNNs to deep learning for more effective segmentation. The CNN-based segmentations 

outperform the other algorithms primarily with objects that look almost alike, like schools of fish or types 

of coral. The outcome using the deep learning model resulted in achieving an IoU score of 82% and 70% 

for the K-means. 3. Outcomes of detection and classification of object For training and testing the under-

water image dataset, the object-detection models classify and detect the marine species, corals, and human-

made objects like shipwrecks. 3.1 Real-Time Object Detection for YOLO From the above, the model was 

able to detect multiple objects in real-time with an average time of 40 ms per image. From this position, 

the model uses high velocity in order to cater to the rapid analysis application such as the real-time 

monitoring of the underwater mission. The model was designed to achieve an mAP of over 78% from the 

categorized objects including fish, coral, and underwater debris. Detection accuracy was strongest on 

large, easily distinguishable objects such as the coral formations, but much lower on small, fast-moving 

objects such as fish (65%). 3.2 Faster R-CNN Object Detection Faster R-CNN edged the other tested 

methods as its results showed clearer detections, mainly on handling small and partially obscured objects 

underwater. Although it processed slower than YOLO, it well surpassed it with an 85% mAP. The primary 

focus of the object detection was set on poor visibility and cluttered environment for the high suitability 

of Faster R-CNN. Here, the model quite outperformed with the marine organisms heavily covered with 

camouflage or another item, hence it became challenging to detect. 4. Reconstruction Results in 3D It is 

during the 3D reconstruction that the detailed 3D model of the underwater environment was generated 

through the SfM and SLAM processes. 4.1 Structure-from-Motion (SfM) SfM was used to generate 3D 

models of coral reefs and seafloor structures from the 2D images obtained by the AUV. Reconstructions 

are in general very accurate with an average reconstruction error <5%. At this level of accuracy, the 

approach is now ready for a variety of applications, from habitat mapping in the marine environment to 

archaeological site documentation. The reconstruction process was computationally expensive, although 

the result of this algorithm, and other operations, generated quite detailed visual models that could be used 

for further analysis or virtual exploration of the underwater environment. 4.2 Simultaneous Localization 

and Mapping (SLAM) SLAM was deployed with the AUV's navigation system to construct a 3D map of 

the underwater space as the robot navigated through the space. This allowed the AUV to survey vast areas 

of the seafloor without having access to GPS. Localization at less than 2% was achieved, which suggests 

that the system can well enough map its environment and move alone in the environment autonomously. 

Models of the environment developed by the integrated SLAM and SfM were quite detailed and spatially 

accurate. 5. Performance Evaluation The performance of the entire image processing system was provided 

through the application of some metrics such as accuracy, speed, and robustness. Accuracy: Both YOLO 

and Faster R-CNN algorithms provided with high accuracy in the detection and classification of marine 

species and underwater structures. Until this point, Faster R-CNN had better performance; its mAP was 

85%. Speed: Although speedwise it is significantly faster where YOLO processes an image in real-time 

in only 40 ms per image, the YOLO model could take quite a lot of time in real-time applications. The 

results obtained from Faster R-CNN were relatively better, but its speed could have been enhanced for 

more in-depth analysis purposes. Robustness: Testing was performed in various underwater environments, 

high turbidity and low visibility, etc. Techniques employed prior to the image preprocessing were noted 
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to improve the images sufficiently under these challenging environments for guaranteed reliable results of 

detection and classification. 6. Test of Application and Use Case The developed system was used in several 

applications that handled underwater investigation: Observation and analysis of marine biodiversity: This 

system was capable of sorting and distinguishing between different species of fish and coral, hence 

ensuring that the proper identification of marine biodiversity in the surveyed locations was established. 

Archaeological excavation: The AUV was applied in the archeological excavation process for the 

underwater shipwreck. The processes of 3D reconstruction yield high-resolution models of the wreck that 

will make excellent material for further archaeological digs. Monitoring of the Environment: Object 

detection models succeeded in the identification and tracking of some pollution, like plastic debris in the 

coastal waters. That is a possibility of applying this system toward environmental conservation. 

 

CONCLUSION: 

The integration with an autonomous underwater robot was proven to be an effective way of improving 

underwater exploration and data analysis through image processing techniques. For this reason, the 

research was completed and covered the elimination of challenges in underwater imaging, namely poor 

visibility, noise, and light distortion, under a comprehensive methodology covering data collection, image 

preprocessing, feature extraction, object detection, and 3D reconstruction. 

The main findings from the study come in relation to: 

DENOISING, COLOUR CORRECTION AND DEHazing techniques etc. basically improved the quality 

of underwater images; thus, clearer and more accurate visual data could be captured even under 

challenging environment conditions. 

This is when edge and keypoint detection algorithms, combined with advanced deep learning-based 

methods such as YOLO and Faster R-CNN, enable very high-precision real-time applications for object 

detection and classification. The models were quite helpful during species detection in the marine scene, 

coral formations, and underwater artifacts. 

Applying Structure-from-Motion and Simultaneous Localization and Mapping, detailed reconstructions 

of underwater 3D environments with very high accuracy spatial models have been achieved, which could 

be quite suitable for marine biology, archaeology, and environmental monitoring. 

Testing the robustness of the system under varied underwater conditions allowed it to work effectively in 

the presence of high turbidity, low visibility, and depth. 

The contribution of this work to underwater robotics and image processing is in the scalable and efficient 

solution for autonomous underwater exploration. Integration of advanced image processing algorithms 

with underwater robots would open new dimensions for oceanographic research while enabling detailed 

and automated data collection in areas difficult or hazardous for human exploration. Future improvements 

may include optimized processing time for deep learning models, improvement in the techniques of 3D 

reconstruction to help recon more complex environments, and diversifying underwater applications, such 

as deep-sea mining and underwater pipeline inspection. 
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