

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 1

Computational Study on Job Flow Shop

Scheduling Using MiniMax Optimizing Algorithm

Margia Yesmin1, Md. Abdul Alim2

1marzia.yesmin@ms.butex.edu.bd
2maalim@math.buet.ac.bd

Abstract

Shop scheduling is a critical part of manufacturing systems. The goal is to find an efficient schedule that

optimizes system performance. Finding a feasible schedule becomes more difficult as the number of jobs and

machines increases. The present research aims to study the computational study of different optimization

methods to solve job flow shop scheduling problems. This paper reviews computational research of varying

optimization methods to solve job flow shop scheduling problems. We discuss Johnson's algorithm,

Campbell, Dudek, and Smith's (CDS) Approach, and Gantt chart and propose a Minimax optimization. This

new method has the least processing time in the machine in the current situation. We present substantial

computational results using MiniMax optimization techniques. From the result, we can conclude that the

proposed algorithm gives less processing time and more frequently an optimal schedule than the other studied

methods.

Keywords: Job flow shop scheduling, Johnson's algorithm, CDS Approach, Gantt chart, MiniMax

Optimizing algorithm

1. Introduction

The job-shop scheduling problem involves scheduling n jobs to be processed by m dedicated machines. Each

job must go through all the machines in a specific order. The time required for each job on each machine is

predetermined and cannot be changed. Jobs cannot overlap on machines and no job can be processed

simultaneously by multiple machines. It is not allowed to interrupt a job once it has started. The primary

objective is to schedule the jobs in a way that minimizes the makespan, which is the maximum time taken by

any job to complete. Despite being a highly researched optimization problem, solving the job-shop scheduling

problem optimally remains a considerable challenge.

Some simplified versions of the job-shop scheduling problem are still classified as NP-Hard. For instance,

the problem of scheduling three machines and three jobs with an arbitrary number of operations per job (where

a job may have to visit a machine more than once) is NP-Hard [1]. Similarly, scheduling three machines and

unitary processing times or three machines and no more than two operations per job is also NP-Hard [1, 4].

However, there are some particular cases of the job-shop scheduling problem that can be solved in polynomial

time. For example, the problem of scheduling two machines and no more than two operations per job can be

https://www.ijfmr.com/
mailto:marzia.yesmin@ms.butex.edu.bd
mailto:maalim@math.buet.ac.bd

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 2

solved in polynomial time [3], as well as the problem of scheduling two machines and unitary processing

times [2].

According to the authors' understanding, all the proposed algorithms for solving the job-shop scheduling

problem are branch-and-bound procedures. Although not an exhaustive list, some notable works include those

of Applegate and Cook [10], Brucker et al. [5], Carlier and Pinson [6], Lageweg et al. [7], and Martin and

Shmoys [8].

A schedule is a plan that allocates a specific time interval for each operation. However, a more helpful way

of representing this is through the disjunctive graph model developed by Roy and Sussmann [9]. In this model,

the disjunctive graph is represented as G = (0, A, E), where O is the set of vertices that corresponds to the

operation set, A is the set of arcs that corresponds to the job precedence constraints, and E is the set of edges

that corresponds to the machine capacity constraints.

Several branch-and-bound methods have been developed for solving the job-shop scheduling problem to

optimality; the more recent ones were proposed by Carlier and Pinson [7,11], Applegate and Cook [10], and

Brucker, Jurish, and Sievers [5]. These methods require a large amount of computation time and therefore it

is not practical to apply them to many instances of even modest size. Carlier and Pinson [7] solved the famous

10-job 10-machine instance of the job-shop scheduling problem proposed by Fisher and Thompson [12],

which remained unsolved for a long period and largely motivated the development of algorithms for this

scheduling problem. Applegate and Cook presented 7 problems they could not solve optimally, where the

smallest one has 10 machines and 15 jobs. Recently, Louren [13] proposed a new lower bound for the job-

shop scheduling problem, which is a strengthening of one frequently used, and is based on solving a one-

machine scheduling problem with additional constraints corresponding to minimal lags of time between the

process of some pairs of jobs.

This paper proposes a new framework of job scheduling algorithm to decrease job completion time, improve

the load balance, and satisfy users’ priority demands. According to the result, the algorithms proposed in this

paper outperform the Minimum processing time MPT optimizing algorithm in terms of makespan, load

balancing, and user-priority awareness.

2. Combinatorial Optimization Problems

Optimization problems involve finding the best possible solution from multiple available solutions.

Combinatorial optimization is an optimization problem that aims to discover the optimal solution from a finite

set of solutions. It involves identifying an objective function's maximum or minimum value in a discontinuous

domain with a vast configuration space. The traveling salesman problem, job-shop scheduling, and Boolean

satisfiability are examples of combinatorial problems.

A combinatorial optimization problem is defined formally as a quadruple 𝐼, 𝑚, 𝑛, 𝑓 where 𝐼 is a set of

instances, 𝑚(𝑥) contains all possible solutions, given an instance 𝑥 ∈ 𝐼, 𝑥 is an instance and 𝑦 is a viable

solution, 𝑥, ℎ(𝑥, 𝑦) is the measure of 𝑦 which is usually a positive real number. 𝑓 is the goal function either

minimum or maximum.

The goal is to find an optimal solution 𝑦 for some instance 𝑥 with ℎ(𝑥, 𝑦) = 𝑓{ℎ(𝑥, 𝑦)⎸𝑦′ ∈ 𝑚(𝑥)}.

Solution Techniques for Combinatorial Optimization Problems

• Exact Methods (Branch and Bound, Dynamic Programming, Integer Programming)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 3

• Heuristics (Greedy algorithms, Rule-based algorithms)

• Metaheuristics (Genetic Algorithms, Simulated Annealing, Ant Colony Optimization)

2.1 Job flow shop problems

The Job Flow Shop scheduling problem is one of the most challenging scheduling problems manufacturers

face. It is unique because it caombines elements of both flow shop and job shop environments. With multiple

stages and one or more machines at each stage, all jobs must pass through these machines efficiently. The task

of scheduling jobs across multiple machines at each stage in an efficient manner is a daunting task that requires

careful planning and execution.

In a job flow shop, each stage may contain multiple identical or distinct machines, and the job processing

order can vary from stage to stage. This setup complicates the scheduling process, requiring mathematical

models to optimize job sequencing and machine allocation.

One common mathematical representation for hybrid flow shop scheduling is as follows:

Let:

• 𝑛 be the number of jobs to be processed.

• 𝑚 be the number of stages.

• 𝑚𝑗 be the number of machines in stage 𝑗.

• 𝑝𝑖𝑗 represent the processing time of job 𝑖 at stage 𝑗.

• 𝐶𝑖𝑗be the completion time of job 𝑖 at stage 𝑗.

• 𝑆𝑖𝑗 be the start time of job 𝑖 at stage 𝑗.

Decision Variables:

Binary decision variable 𝑥𝑖𝑗𝑘 represents whether job 𝑖 is processed on the machine 𝑘 at stage 𝑗.

𝑥𝑖𝑗𝑘 = {
 1, if job 𝑖 is processed on machine 𝑘 at stage 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Objective Function: The objective is typically to minimize some measure of the schedule's performance, such

as makespan (the time to complete all jobs) or total flow time.

Constraints:

1. Each job must be processed exactly once at each stage:

∑ 𝑥𝑖𝑗𝑘 = 1, ∀ 𝑖, 𝑗

𝑚𝑗

𝑘=1

2. Each machine can process at most one job at a time:

∑ 𝑥𝑖𝑗𝑘 ≤ 1, ∀ 𝑗, 𝑘

𝑛

𝑖=1

3. Precedence constraints to ensure that the processing order of jobs is respected between stages.

4. Non-negativity constraints: 𝑥𝑖𝑗𝑘 ≥ 0, ∀ 𝑖, 𝑗, 𝑘

These constraints ensure that each job is assigned to exactly one machine at each stage, each machine

processes at most one job at a time, and the processing order of jobs is maintained between stages.

Solving the job flow shop problem involves finding values for the decision variables that minimize the

objective function while satisfying all constraints. Various optimization techniques such as mathematical

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 4

programming (e.g., mixed-integer linear programming), heuristic algorithms (e.g., genetic algorithms,

simulated annealing), or metaheuristic approaches (e.g., tabu search, ant colony optimization) can be

employed for this purpose.

2.2 Johnson's Algorithm

 Johnson's algorithm is a way to find the shortest paths between all pairs of vertices in an edge-weighted

directed graph. It allows some of the edge weights to be negative numbers, but no negative-weight cycles may

exist. It works by using the Bellman-Ford algorithm to compute a

transformation of the input graph that omits all negative weights, allowing Dijkstra's algorithm to be used on

the transformed graph. It is named after Donald B. Johnson, who first published the technique in 1977.

A similar re-weighting technique is also used in Suurballe's algorithm for finding two disjoint paths of

minimum total length between the same two vertices in a graph with non-negative edge weights.

Johnson's algorithm consists of the following steps:

First, a new node p is added to the graph, connected by zero-weight edges to each of the other nodes.

The next step involves implementing the Bellman-Ford algorithm which starts from the new vertex p. It aims

to find the minimum weight g(v) of a path from p to every vertex v. However, if this step detects a negative

cycle, the algorithm must be stopped.

The Bellman-Ford algorithm recomputes the shortest path from a source vertex to all other vertices but with

negative edge weights allowed.

Finally, after removing the vertex p, Dijkstra's algorithm is applied to find the shortest paths from each node

to all other vertices in the re-weighted graph. To compute the distance in the original graph, the value of g(v)

- g(u) is added to the distance returned by Dijkstra's algorithm for each distance D(u,v).

 Example:

 The first three stages of Johnson's algorithm are depicted in the illustration below.

The graphic representation illustrates three graphs, each with unique characteristics. The first graph, located

on the left, features negative edges but no negative cycles. The second graph portrays the shortest path tree

calculated by the Bellman-Ford algorithm, with a new vertex 'p' as the starting point. The third graph is a re-

weighted graph generated by substituting each edge weight with w(u,v) + g(u) - g(v). Notably, the re-weighted

graph exhibits non-negative edge weights, and the shortest path between nodes is identical to that of the

original graph.

To conclude, Dijkstra's algorithm is applied to the four starting nodes within the re-weighted graph. In the re-

weighted graph, every path linking a pair of nodes s and t includes a uniform quantity added to it.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 5

2.3 Campbell, Dudek, and Smith (CDS) Approach

The CDS heuristic is an extension of the two-machine scheduling approach, generalizing it to scenarios

involving more than two machines.

CDS approach is a heuristic algorithm for solving flow shop scheduling problems. It works well for unrelated

parallel machines. It was proposed by Campbell, Dudek, and Smith in 1985.

Here's a brief overview of the CDS approach:

1. Initialization: Begin by randomly generating an initial sequence of jobs.

2. Local Search: Use local search to improve the solution by iteratively swapping job pairs to minimize the

makespan.

3. Neighborhood Structure: Neighborhood structure specifies which solutions are considered for local

search. In CDS, swapping adjacent job pairs in sequence form the neighborhood.

4. Stopping Criterion: Define a stopping criterion for the search, such as a maximum iteration limit, a

threshold for improvement, or a pre-defined computational boundary.

5. Restart Mechanism: Use a restart mechanism to explore different regions of the solution space by

periodically restarting the search from different initial solutions.

CDS is a heuristic approach for flow shop scheduling, ideal for unrelated parallel machines. It finds near-

optimal solutions quickly without using complex optimization methods. Though not optimal, CDS provides

good-quality solutions promptly, making it suitable for real-time scheduling decisions with limited

computational resources.

2.4 Gantt Chart

A generalized Activity Normalization Time Table (GANTT) chart is a type of chart in which a series of

horizontal lines are present that show the amount of work done or production completed in a given period

about the amount planned for those projects. It is a horizontal bar chart developed by Henry L. Gantt

(American engineer and social scientist) in 1917 as a production control tool. It is simply used for the

graphical representation of a schedule that helps to plan efficiently, coordinate, and track some particular

tasks in a project.

The purpose of the Gantt chart is to emphasize the scope of individual tasks. Hence set of tasks is given as

input to the Gantt chart. Gantt chart is also known as a timeline chart. It can be developed for the entire project

or it can be designed for individual functions. In most projects, after the generation of the timeline chart,

project tables are prepared. In project tables, all tasks are listed properly along with the start date and end date

and information related to it.

Gantt chart represents the following things:

• Gantt chart is a horizontal bar chart used to represent operating systems. The horizontal bars indicate the

required time by corresponding particular tasks.

• When occurring of multiple horizontal bars take place at the same time on the calendar. The diamonds

indicate milestones

This chart is a horizontal bar chart used to represent operating systems scheduling in a graphical view that

helps to plan, coordinate, and track specific CPU utilization factors like throughput, waiting time, turnaround

time, etc.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 6

3. Proposed MiniMax Optimizing Algorithm

The MiniMax optimizing algorithm is simple. It starts with a set S of all unmapped jobs J. Then the machine

M which has the minimum completion time for all jobs is found. Next, the job J with the minimum size is

selected and assigned to the corresponding machine R. Last, the job J is removed from set S and the same

procedure is repeated until all tasks are assigned (i.e., set S is empty). The pseudo-code of MiniMax

optimizing algorithm is represented assuming we have a set of n jobs (J1, J2, J3 … Jn) that need to be

scheduled onto m available machines (M1, M2, M3 … Mm). We denote the Expected Completion Time for

job k (1≤k≤n) on machines i (1≤i≤m) as 𝐶𝐽𝑖𝑘 that is calculated, where 𝑟𝐽𝑘 represents the ready time of the

machine 𝑀𝑖 and 𝐸𝑡𝑖𝑘 represents the execution time of jobs 𝐽𝑘 on machine 𝑀𝑖.

Input:

Vertex: machines, jobs consequently

Edges: Processing step of the corresponding job on the corresponding machine

Weight: Processing time

Output:

Minimize the make-span of FSSP

• All jobs visit all machines

• No idle time for the machine

• Machines ≥ Jobs

• Ignored machine set-up time

• Machine 𝑀𝑖; 𝑖 = 1,2, … . . 𝑚 𝑎𝑛𝑑 𝐽𝑜𝑏 𝐽𝑘; 𝑘 = 1,2, … , 𝑛

Algorithm:

For all submitted jobs in the set 𝐽𝑘;

For all machines 𝑀𝑖;

𝐶𝐽𝑖𝑘 = 𝐸𝐽𝑖𝑘 + 𝑟𝐽𝑘;

End;

End;

Do while jobs set is not empty

Find job 𝐽𝑘 that cost least processing time.

Assign 𝐽𝑘 to machine 𝑀𝑖 which gives least expected time

Remove 𝐽𝑘 from the jobs set

Update ready time𝑟𝐽𝑘 for select 𝑀𝑖

Update 𝐶𝑖𝑘 for all 𝐽𝑘

 End Do

4. Computational Results

Example 1. Solve 2 machines 6 jobs scheduling problems by (i) Jonhson’s Algorithm (ii) Gantt Chart (iii)

MiniMax Optimizing Algorithm

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 7

 Job

Machine

J1

J2

J3

J4

J5

J6

Total

M1 1 3 8 5 6 3 26

M2 5 6 3 2 2 10 28

(i) Johnson’s Algorithm:

If SPT (shortest processing time) is for 1st machine, do that job first and

If SPT is for 2nd machine, do that job last.

According to this algorithm, the job sequence will be

J1 J6 J2 J3 J4 J5

The In-Out table will be:

Machine

M1

M2

 Idle

time

M1

Idle

time

M2

Job In Out In Out

J1 0 1 1 6 - 1

J6 1 4 6 16 - -

J2 4 7 16 22 - -

J3 7 15 22 25 - -

J4 15 20 25 27 - -

J5 20 26 27 29 3 -

 total 3 1

Total Elapsed time = 29

Idle time for M1= 3 = 29-26

Idle time for M2= 1 = 29-28

(ii) Gantt Chart:

According to the Gantt Chart

Total Elapsed time = 28

Idle time for M1= 2 = 28-26

Idle time for M2= 0

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 8

(iii) MiniMax Optimizing algorithm

We implement the new algorithm and then compare.

According to the proposed MiniMax optimizing algorithm, the table becomes:

Job M1 M2

Sequence↓ In Out Delay In Out Delay

S1 J1 1 - J4 2 -

S2 J2 1+3=4 - J5 2+2=4 -

S3 J6 7 - J3 7 -

S4 J4 12 - J1 12 -

S5 J5 18 - J2 18 -

S6 J3 26 2 J6 28 -

According to the MiniMax optimizing algorithm

Total Elapsed time = 28

Idle time for M1= 2 = 28-26

Idle time for M2= 0

Example-2:

Solve 3 machine 7 jobs scheduling problems by (i) Campbell, Dudek, and Smith (CDS) Approach (ii) Gantt

Chart (iii) MiniMax Optimizing Algorithm

 Jobs

Machine

J1 J2 J3 J4 J5 J6 J7 Total

M1 3 8 7 4 9 8 7 46

M2 4 3 2 5 1 4 3 22

M3 6 7 5 11 5 6 12 52

(i) Campbell, Dudek, and Smith (CDS) Approach:

 Convert 3 machines into 2 machines:

 min(𝑡1𝑗)≥ max(𝑡𝑖𝑗) 𝑜𝑟 min(𝑡𝑘𝑗) ≥ max(𝑡𝑖𝑗);
 𝑖 = 2,3, … , 𝑘 − 1

 𝑘 = 𝑛𝑜. 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 9

Since the 2nd condition is satisfied, so according to this algorithm, we create two fictitious machines from

3, say MI and MII. Now

MI =𝑡1𝑗 + 𝑡2𝑗

MII =𝑡3𝑗 + 𝑡2𝑗

The problem is converted into 2 machine Problems:

 job

machine

J1 J2 J3 J4 J5 J6 J7

M1 7 11 9 9 10 12 10

M2 10 10 7 16 6 10 15

According to Johnson’s algorithm, the job sequence will be

J1 J4 J7 J2 J6 J3 J5

The In-Out table will be:

According to the CDS approach,

Total Elapsed time = 59

Idle time for: M1= 59-46=13, M2= 59=37, M3=59-52=7

(ii) Gantt Chart:

 M1

 M2

M3

 Idle time For

Sequence In Out In Out In Out M1 M2 M3

J1 0 3 3 7 7 13 - 3 7

J4 3 7 7 12 13 24 - - -

J7 7 14 14 17 24 36 - 2 -

J2 14 22 22 25 36 43 - 5 -

J6 22 30 30 34 43 49 - 5 -

J3 30 37 37 39 49 54 - 3 -

J5 37 46 46 47 54 59 13 19 -

 Total delay time 13 37 7

M3

M2
M1

 45 46 52

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 10

According to the Gantt Chart

Total Elapsed time = 52

Idle time for M1= 52-46= 6

 M2= 4+5+14+7= 30

 M3= 52-52= 0

(iii) MiniMax Optimizing Algorithm:

The In-Out table will be:

J7

J6

J5

J4

J3

J2

J1

Job M1 M2 M3

sequence↓ In Out Delay In Out Delay In Out Delay

S1 J1 3 - J5 1 - J3 5 -

S2 J4 7 - J3 7 4 J5 10 -

S3 J3 14 - J7 10 - J1 16 -

S4 J7 21 - J2 13 - J6 22 -

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 11

According to the MiniMax optimizing algorithm

Total Elapsed time = 52

Idle time for: M1= 6, M2= 30, M3= 0

5. Comparison and Analysis

1. Comparison tables for 2 machines n jobs and 3 machine n jobs:

Table-1

 Total elapsed time Idle time for M1 Idle time for M2

Johnson’s algorithm 29 3 1

Gantt chart 28 2 0

MiniMax optimizing

algorithm

28 2 0

2. machines n jobs comparison

Table-2

 Total elapsed

time

Idle time for M1 Idle time for M2 Idle time for M3

CDS Approach 59 13 37 7

Gantt chart 52 6 30 0

MiniMax

optimizing

algorithm

52 6 30 0

3. machines n jobs comparison

This comparative analysis aimed to evaluate the efficiency and cost of a production factory. Efficiency was

measured based on processing time and cost evaluations. The results indicated that the Gantt chart and

MiniMax optimizing algorithm were less time-consuming compared to other algorithms. Additionally, both

the Gantt chart and MiniMax optimizing algorithm produced the same result, but the MiniMax optimizing

technique was easier to calculate than the Gantt chart.

This study discovered that the MiniMax optimizing algorithm is the most efficient and cost-effective

production factory solution, providing reduced processing time and superior long-term efficiency. It's perfect

for those who prioritize long-term operational sustainability and user engagement.

6. Conclusion

This paper focuses solely on the MiniMax algorithm for job scheduling emphasizing makespan and user-

priority. Other scheduling algorithms, such as Round Robin, Max-Min, and Genetic Algorithm (GA), could

S5 J2 29 - J6 26 9 J4 33 -

S6 J6 37 - J1 30 - J2 40 -

S7 J5 46 6 J4 35 17 J7 52 -

 Total 46 6 35 30 52 0

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240634085 Volume 6, Issue 6, November-December 2024 12

be developed. However, there are many outstanding issues to address, such as job deadlines, the high

heterogeneity of interconnection networks, the geographic location of jobs and machines, and other quality

of service requirements that could be subjects of future research. Although the jobs in this paper are

independent, they may have precedence relations in real-life scenarios. We plan to investigate and enhance

this algorithm for such job types.

References

1. Brucker P. Scheduling algorithms. 2nd ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc.; 1998.

2. Hefetz N, Adiri I. An efficient optimal algorithm for the two-machines unit-time job shop schedule-length

problem. Mathematics of Operations Research 1982;7: 354–60.

3. Jackson JR. Scheduling a production line to minimize maximum tardiness. Technical report, Management

Science Research Project, University of California. Los Angeles; 1955.

4. Lenstra JK, Rinnooy Kan AHG, Brucker P. Complexity of machine scheduling problems. Annals of

Discrete Mathematics 1977;1:343–62.

5. Brucker P, Jurisch B, Sievers B. A branch and bound algorithm for the job-shop scheduling problem.

Discrete Applied Mathematics 1994;49:109–27.

6. Carlier J, Pinson E., "An algorithm for solving the job-shop problem", Management Science 1989;35:164–

76.

7. Lageweg BJ, Lenstra JK, Rinnooy Kan AHG. Job-shop scheduling by implicit enumeration. Management

Science 1977;24:441–50.

8. Martin P, Shmoys DB. A new approach to computing optimal schedules for the job-shop scheduling

problem. In: Proceedings of the fifth international IPCO conference on integer programming and

combinatorial optimization. London, UK: Springer-Verlag; 1996. p. 389–403.

9. Roy, B., and Sussmann, B., "Les probl~mes d'ordonnan- cement avec contraintes disjonctives", Notes DS

no. 9 bis, SEMA.

10. Applegate, D., and Cook, W., "'A computational study of the job-shop scheduling problem", ORSA

Journal on Computing 3/2 (1991) 149-156.

11. Carlier, J., and Pinson, E., "A practical use of Jackson's preemptive schedule for solving the job shop

problem", Annals of Operations Research 26 (1990) 260-287.

12. Fisher, H., and Thompson, G.L., "Probabilistic learning combinations of local job-shop scheduling rules",

in: J. Muth and G. Thompson (eds.) Industrial Scheduling, Prentice-Hall, Englewood Cliffs, NY, 1963,

225-251.

13. Louren~o, H.R. "A computational study of the job-shop and the flow-shop scheduling problems", Ph.D.

Thesis, School of OR& IE, Cornell University, Ithaca, NY, 1993.

https://www.ijfmr.com/

