International Journal for Multidisciplinary Research (IJFMR)

Certain Subclasses of Bi-Univalent Functions of σ , \in Using Gegenbauer Polynomials

B. R. Nandeesha¹, K. Sathisha², M. N. Chandramouleswara³, M. Sowmya⁴

^{1,2,3,4}Senior Scale Lecturer, Department of Science, Government Polytechnic

ABSTRACT

In this article, we introduce a new subclass of analytic functions by using fractional q-differential operator of bi-univalent functions, incorporating Gegenbauer polynomials. For functions within this subclass, we derive upper bounds for the second and third Taylor-Maclaurin coefficients.

Keywords:Analytic function; q-differential operator: bi-univalient function, GEGEX-BAUER POLYNOMIALS

MSC 2020: Primary 30C45; Secondary 30C50

1. INTRODUCTION AND PRELIMINARIES

Let \mathfrak{I} be an analytic function defined on the open unit disk $u = \{t \in C : |t| < 1\}$ satisfying the conditions $\mathfrak{I}(0) = 0$ and $\mathfrak{I}'(0) = 1$. Consequently, \mathfrak{I} can be expressed in the form of the following series expansion:

$$\Im(\mathbf{t}) = \mathbf{t} + \sum_{n=2}^{\infty} a_n t^n, \quad (\mathbf{t} \in \mathbf{u})$$
(1.1)

The class of all functions \Im given by this expansion is denoted by 21, and the class of all functions in 21that are univalent is denoted by S. It is well known that every function \Im in the class S has an inverse map \Im^{-1} given by

$$g(w) = \mathfrak{I}^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2a_3 + a_4) w^4 + \dots$$
(1.2)

In the context of analytic functions on the open unit disk, a function $\Im \in 21$ is termed bi-univalent if its inverse map \Im^{-1} is also univalent in u, For more details [9, 4].

For any two analytic functions in the unit disc u, an analytic function \Im is subordinate to an analytic function S, written \Im (t) \succ S (t), if \Im can be expressed as a composition of S and an analytic function w(t), such that $\Im(t) = S(w(t))$, where the function w(t) satisfies the conditions w(0) = 0 and |w(t)| < 1 for all $t \in U$.

Orthogonal polynomials hold significant importance in various applications spanning mathematics, physics, and engineering. Gegenbauer polynomials, in particular, form a specialized subclass of Jacobi polynomials. For a comprehensive understanding of their fundamental definitions and key properties, refer to [1, 3, 2]

Setting $\alpha > -\frac{1}{2}$, the Gegenbauer polynomials $S_0^{\alpha}(x)$ for n = 2, 3... are constructed using the following recurrence relation:

$$S_0^{\alpha}(x) = 1;$$
 (1.3)
 $S_0^{\alpha}(x) = 2\alpha x;$ (1.4)

$$S_0^{\alpha}(x) = 2\alpha x^2 + 2\alpha^2 x^2 - \alpha \tag{1.5}$$

Legendre polynomials and Chebyshev polynomials of the second kind arc specific instances of Gegenbauer polynomials. When $\alpha = 1$, the Gegenbauer polynomials reduce to the Chebyshev polynomials of the second kind, denoted by $U_n(x) = (S_n^1(x) \text{ and for } \alpha = \frac{1}{2}$. Similarly, setting $\alpha = \frac{1}{2}$

yields the Legendre polynomials, expressed as $P_n(x) = (S_n^{\frac{1}{2}}(x))$

The generating function for Gegenbauer polynomials is expressed as:

$$\mathbf{S}_{\alpha}(\mathbf{x},\mathbf{t})=\frac{1}{\left(1-2xt+t^{2}\right)^{\alpha}},$$

where $x \in [-1, 1]$. For a fixed value of *x*, the generating function S_a is analytic in U and can be represented as a Taylor-Maclaurin series

$$\mathbf{S}_{\alpha}(\mathbf{x}, \mathbf{t}) = \sum_{n=0}^{\infty} S_n^{\alpha}(x) t^n, t \in u \quad (\mathbf{t} \in \mathbf{u})$$

1.1. Peliminaries.

Definition 1.1. [5, 6] The. Jackson q-derivative (or q-difference) operator D_q for a function $\Im \in 21$ in a given subset of the set C of complex numbers is defined by

$$(\mathbf{D}_{q}\mathfrak{I})(t) = \begin{cases} \frac{\mathfrak{I}(qt) - \mathfrak{I}(t)}{(q-1)t} & \text{if } t \neq 0, \\ \mathfrak{I}'(o) & \text{if } t = 0, \end{cases}$$
(1.6)

Definition 1.2. [8] The fractional q- differintegral operator $\Omega_{q,t}^{\delta}$ for the function $\Im(t)$ of the form (1.1) is defined as

$$\Omega_q^{\delta}, \mathfrak{I}(t) = \alpha_q (2 - \delta) t^{\delta} D_q^{\delta}, \mathfrak{I}(t)$$

where $D_{q,t}^{\delta}$ denotes the fractional δ order q-integral of $\mathfrak{I}(t)$ when $-\infty < \delta <$ along with the fractional δ order q-derivative of $\mathfrak{I}(t)$ when $0 \le \delta < 2$.

The expression $\Omega_q^{\delta}, \Im(t)$ is given by:

$$\Omega_q^{\delta}, \mathfrak{I}(t) = t + \sum_{n=2}^{\infty} k_n (q, n, \delta) a_m t^m.$$
(1.7)

where

$$k_n(\mathbf{q}, \mathbf{n}, \delta) = \frac{\alpha_q(n+1) \,\alpha_q(2-\delta)}{\alpha_q(n+1-\delta)}$$

The following Lemma is required to show the main result.

Lemma 1.1 [7] Consider the power series representation $w(t) = \sum_{n=1}^{\infty} 1_n t^n$, subject to the condition |w(t)| < 1 for all $t \in U$. The objective is to demonstrate that $|w_1| \le 1$ and $|w_n| \le 1 - |w_1|^2$ for n = 1, 2...

2. MAIN RESULTS

Definition 2.1. For a function of the form (1.1) be in the class $\Im_{\Sigma}^{\sigma}(q, x, \sigma, \epsilon, \delta)$ if it satisfies the following conditions:

$$\left(\frac{tD_q\Omega_q^{\delta}\mathfrak{I}(t)}{\Omega_q^{\delta}\mathfrak{I}(t)}\right)^{\sigma}\left(\frac{tD_q\Omega_q^{\delta}\mathfrak{I}(t)}{\Omega_q^{\delta}\mathfrak{I}(z)}\right)^{\epsilon} \succ S_{\alpha}(X,t),$$

and

$$\left(\frac{wD_q\Omega_q^{\delta}h(w)}{\Omega_q^{\delta}h(w)}\right)^{\sigma}\left(\frac{wD_q\Omega_q^{\delta}h(w)}{\Omega_q^{\delta}h(w)}\right)^{\epsilon} \succ S_{\alpha}(X,w),$$

where $0 \le \epsilon = 1, 0 \le \sigma \le 1, 0 < q < 1, 0 \le \delta < 2, \alpha > -\frac{1}{2}$ w, $t \in U$ and the function g(w) is given by (1.2)

(2.1)

Theorem 2.1. Let $\mathfrak{I}(t)$ be of the form (1.1), then

$$|\alpha_{2}| \leq \frac{2\alpha \sqrt{2x}}{\left| \left| \left(\left[2q^{2}\alpha \in (\epsilon - 1) + 2q^{2}\alpha\sigma(\sigma - 1) - 4q\alpha \left[\frac{\epsilon}{1!}\right] + 4q^{2}\alpha\sigma\epsilon - 4q\sigma\alpha - 2(1 + \alpha) \left[q\left[\frac{\epsilon}{1!} + \frac{\sigma}{1!}\right]\right]^{2}\right]k_{2}^{2} + 4\alpha(1 + q + q^{2}) \left[\frac{\epsilon}{1!} + \frac{\sigma}{1!}\right]K_{3}\right]X^{2} + \left[q\left[\frac{\epsilon}{1!} + \frac{\sigma}{1!}\right]K_{2}\right]^{2} \right|$$

and

$$|\alpha_{3}| \leq \frac{2\alpha x}{(1+q+q^{2})\left[\frac{\epsilon}{1!}+\frac{\sigma}{1!}\right]K_{3}} + \left(\frac{2\alpha x}{Q\left[\frac{\epsilon}{1!}+\frac{\sigma}{1!}\right]K_{2}}\right)^{2}$$
(2.2)

where $0 \le \in 1, 0 \le \sigma \le 1, 0 < q < 1, 0 \le \delta < 2, \alpha > -\frac{1}{2}$,

$$K_{2}\left(\mathbf{q},\mathbf{n},\boldsymbol{\sigma}\right)=\frac{\left[2\right]_{q}}{\left[2-\delta\right]_{q}}$$

and

$$K_{3}(q, n, \delta) = \frac{[3]_{q}[2]_{q}[1]_{q}}{[3-\delta]_{q}[2-\delta]_{q}},$$

Proof: Suppose $\mathfrak{I} \in \mathfrak{I}_{\Sigma}^{\sigma}$ (q, y, σ , \in , λ , δ). According to Definition 2.1, this results in the existence of two analytic functions w and v υ in the unit disk U Possessing the following properties w(0) = 0 and v(-) = 0 with w (t) < 1, v(w) < 1 for all w, t \in U, and

$$\left(\frac{tD_q\Omega_q^{\delta}\mathfrak{I}(t)}{\Omega_q^{\delta}\mathfrak{I}(t)}\right)^{\sigma} \left(\frac{tD_q\Omega_q^{\delta}\mathfrak{I}(t)}{\Omega_q^{\delta}\mathfrak{I}(z)}\right)^{\epsilon} = S_{\alpha}(X, tv(t)),$$
(2.3)

and

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

$$\left(\frac{wD_q\Omega_q^{\delta}h(w)}{\Omega_q^{\delta}h(w)}\right)^{\sigma} \left(\frac{wD_q\Omega_q^{\delta}h(w)}{\Omega_q^{\delta}h(w)}\right)^{\epsilon} = S_{\alpha}(X, tv(w)),$$
(2.4)

Based on the equalities (2.3) and (2.4) for t, $w \in U$, it follows that

$$\left(\frac{tD_q\Omega_q^{\delta}\mathfrak{I}(t)}{\Omega_q^{\delta}\mathfrak{I}(t)}\right)^{\sigma} \left(\frac{tD_q\Omega_q^{\delta}\mathfrak{I}(t)}{\Omega_q^{\delta}\mathfrak{I}(z)}\right)^{\epsilon} = 1 + G_1^{\alpha}(x)d_1t + \left[G_1^{\alpha}(x)d_2 + G_2^{\alpha}(x)d_1^2\right]^2 + \dots,$$
(2.5)

and

$$\left(\frac{wD_q\Omega_q^{\delta}h(w)}{\Omega_q^{\delta}h(w)}\right)^{\sigma} \left(\frac{wD_q\Omega_q^{\delta}h(w)}{\Omega_q^{\delta}h(w)}\right)^{\epsilon} = 1 + G_1^{\alpha}(x)E_1w + \left[G_1^{\alpha}(x)E_2 + G_2^{\alpha}(x)E_1^2\right]w^2 + \dots \quad (2.6)$$

where
$$\operatorname{tv}(z) = \sum_{j=1}^{\infty} d^j z^j$$
 and $\operatorname{v}(w) = \sum_{j=1}^{\infty} E_j w^j$ (2.7)

Using Lemma 1.1, we achieved

$$|\mathbf{d}_j| \le 1 \text{ and } |\mathbf{E}_j| \le 1 \ \forall \ \mathbf{j} \in \mathbf{N}$$

$$(2.8)$$

Now, comparing the coefficients in equation (2.5) and equation (2.6), we have

$$\begin{bmatrix} \frac{\epsilon}{1!} + \frac{\sigma}{1!} \end{bmatrix} q a_2 k_2 = G_1^{\sigma}(x) d_1,$$

$$q \left[q \frac{\epsilon(\epsilon - 1)}{2!} - \frac{\epsilon}{1!} + q \frac{\sigma(\sigma - 1)}{2!} + q \frac{\sigma\epsilon}{1!} + \frac{\sigma}{1!} \right] a_2^2 k_2^2 + (1 + q + q^2) \left[\frac{\epsilon}{1!} + \frac{\sigma}{1!} \right] a_3 k_3 = G_1^{\alpha}(x) d_2 + G_2^{\sigma}(x) d_1^2,$$

$$- \left[\frac{\epsilon}{1!} + \frac{\sigma}{1!} \right] q a_2 k_2 = G_1^{\alpha}(x) E_1,$$
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(2.9)
(

$$\left\{ \left[\frac{\epsilon(\epsilon-1)}{2!} q^2 - \frac{\epsilon}{1!} + q + \frac{\sigma \epsilon}{1!} q^2 + \frac{\sigma(\sigma-1)}{2!} q^2 - q\frac{\sigma}{1!} \right] k_2^2 + 2(1+q+q^2) \left[\frac{\epsilon}{1!} + \frac{\sigma}{1!} \right] k_3 \right\} a_2^2 - (1+q+q^2) \left[\frac{\epsilon}{1!} + \frac{\sigma}{1!} \right] a_3 k_3 = G_1^{\alpha}(x) E_2 + G_2^{\sigma}(x) E_1^2.$$

$$(2.12)$$

Using (2.9) and (2.11), we have

$$D_1 = -E_1,$$
 (2.13)

with

$$2q^{2} \left[\frac{\epsilon}{1!} + \frac{\sigma}{1!}\right]^{2} a_{2}^{2}k_{2}^{2} = \left[G_{1}^{\alpha}(x)\right]^{2} \left[d_{1}^{2} + E_{1}^{2}\right].$$
(2.14)

Adding (2.10) and (2.11), we get

Using (2.14) and substituting the value of $(d_1^2 + E_1^2)$ in the right side of (2.15), we achieved $2\left\{ \left[\frac{\in (\in -1)}{2!} q^2 [G_1^{\alpha}(x)]^2 - \frac{\in}{1!} q [G_1^{\alpha}(x)]^2 \right] \right\}$

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

$$+ \frac{\epsilon}{1!} q^{2} [G_{1}^{\alpha}(x)]^{2} + \frac{\sigma(\sigma-1)}{2!} q^{2} [G_{1}^{\alpha}(x)]^{2} - \frac{\sigma}{1!} q [G_{1}^{\alpha}(x)]^{2} - q^{2} [\frac{\epsilon}{1!} + \frac{\sigma}{1!}]^{2} G_{2}^{\alpha}(x) \left] k_{2}^{2} + (1+q+q^{2}) [\frac{\epsilon}{1!} + \frac{\sigma}{1!}] [G_{1}^{\alpha}(x)]^{2} k_{3} \right\} \frac{1}{[G_{1}^{\alpha}(x)]^{2}} a_{2}^{2} = [G_{1}^{\alpha}(x)] (E_{2} + d_{2}).$$
(2.16)

By applying (1.4), (1.5), (2.8), and (2.16), we conclude that (2.1) satisfies. Now, subtract (2.12) from (2.10), we have

$$2(1+q+q^2)\left[\frac{\epsilon}{1!}+\frac{\sigma}{1!}\right]k_3\left(a_3-a_2^2\right) = G_1^{\alpha}(x)\left(d_2-E_2\right) + G_2^{\alpha}(x)\left(d_1^2-E_1^2\right) \quad (2.17)$$

Using (22) with (23) in (26), we get

$$a_{3} = \frac{\left[G_{1}^{\alpha}(x)\right]^{2} \left(d_{1}^{2} + E_{1}^{2}\right)}{2q^{2} \left(\frac{\epsilon}{1!} + \frac{\sigma}{1!}\right)^{2} k_{2}^{2}} + \frac{\left[G_{1}^{\alpha}(x)\right] \left(d_{2} - E_{2}\right)}{2(1 + q + q^{2}) \left(\frac{\epsilon}{1!} + \frac{\sigma}{1!}\right) k_{3}}$$
(2.18)

Applying (1.4) in (2.18), We readily achieve

$$|\mathbf{a}_{3}| = \frac{2\sigma x}{(1+q+q^{2})\left(\frac{\epsilon}{1!}+\frac{\sigma}{1!}\right)k_{3}} + \frac{(2\sigma x)^{2}}{q^{2}\left(\frac{\epsilon}{1!}+\frac{\sigma}{1!}\right)^{2}k_{2}^{2}}$$
(2.19)

This Completes the proof of the Theorem.

By applying equations (2.1) and (2.2) with the parameter $\alpha = 1$, we obtain the following notworthy corollary. The initial coefficient estimates are associated with the Chebyshev polynomials of the second kind. Since the proof follows a methodology similar to that of the preceding theorems, the detailed steps are omitted for conciseness.

Corollary 2.1. Let the function \Im , as defined by equation (1.1), belong to the class $\Im_{\Sigma}(q, x, \sigma, \in, \delta)$

$$|\mathbf{a}_{2}| \leq \frac{2x\sqrt{2x}}{\left|\left[2 \in (\epsilon - 1)q^{2} + 2\sigma(\sigma - 1)q^{2} - 4\frac{\epsilon}{1!}q + 4\sigma \in q^{2} - 4\sigma q - 4\left[q[\frac{\epsilon}{1!} + \frac{\sigma}{1!}]\right]^{2}\right]k_{2}^{2}}\right| + 4(1 + q + q^{2})\left[\frac{\epsilon}{1!} + \frac{\sigma}{1!}\right]k_{3}\right\}x^{2} + \left[q[\frac{\epsilon}{1!} + \frac{\sigma}{1!}]k_{2}\right]^{2}\right|$$

with

$$|\mathbf{a}_{3}| \leq \frac{2x}{(1+q+q^{2})\frac{\epsilon}{1!} + \frac{\sigma}{1!}k_{3}} + \left(\frac{2x}{q\left[\frac{\epsilon}{1!} + \frac{\sigma}{1!}\right]k_{2}}\right)^{2}$$

where $0 \le \epsilon \le 1$, $0 \le \sigma \le 1, 0 < q < 1$, $0 \le \delta < 2$,

$$\mathbf{k}_2(\mathbf{q},\mathbf{n},\boldsymbol{\delta}) = \frac{[2]_q}{[2-\boldsymbol{\delta}]_q} \ ,$$

and

$$k_{3}(q, n, \delta) = \frac{[3]_{q}[2]_{q}[1]_{q}}{[3-\delta]_{q}[2-\delta]_{q}}$$

By setting $\alpha = \frac{1}{2}$, an alternative corollary for Legendre polynomials can be derived, providing further insight into their properties and applications.

Corollary 2.2. Let the function \Im , defined by equation (1.1), belong to the class $\Im_{\Sigma}^{\frac{1}{2}}$ (q, x, σ , \in , δ).

$$|\mathbf{a}_{2}| \leq \frac{2x\sqrt{2x}}{\left|\left|\left\{\left[\in(-1)q^{2} + \sigma(\sigma-1)q^{2} - 2\frac{\epsilon}{1!}q + 2\sigma\epsilon q^{2} - 2\sigma q - 3\left[q[\frac{\epsilon}{1!} + \frac{\sigma}{1!}]\right]^{2}\right]k_{2}^{2} + 2(1+q+q^{2})\left[\frac{\epsilon}{1!} + \frac{\sigma}{1!}\right]k_{3}\right\}x^{2} + \left[q[\frac{\epsilon}{1!} + \frac{\sigma}{1!}]k_{2}\right]^{2}\right|$$

and

$$|\mathbf{a}_{3}| \leq \frac{x}{(1+q+q^{2})\left[\frac{\epsilon}{1!}+\frac{\sigma}{1!}\right]k_{3}} + \left(\frac{x}{q\left[\frac{\epsilon}{1!}+\frac{\sigma}{1!}\right]k_{2}}\right)$$

where $0 \le \epsilon \le 1$, $0 \le \sigma \le 1, 0 < q < 1$, $0 \le \delta < 2$,

$$\mathbf{k}_2(\mathbf{q},\,\mathbf{n},\,\boldsymbol{\delta}) = \frac{[2]_q}{[2-\delta]_q} \;\;,$$

and

$$k_{3}(q, n, \delta) = \frac{[3]_{q}[2]_{q}[1]_{q}}{[3-\delta]_{q}[2-\delta]_{q}} ,$$

REFERENCES

- 1. Agarwal, R. P. Agarwal and M. Ruzhansky, *Special Functions and Analysis of Differential Equations*, CRC Press, Boca Raton, FL, USA, 2020.
- 2. T. S. Chihara, An Introduction to Orthogonal Polynomials, Courier Corp. Mineola, NY, USA, 2011.
- 3. B. Dontan, The Classical Orthogonal Polynomials, World Scientific, Singapore, 2015.
- 4. B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24(9), 1569-1573, 2011.
- 5. F. H. Jackson, On q-defmitc integrals, Quart. J. Pure Appl. Math. 193-203, 1910.
- 6. F. H. Jackson, q-difference equations, Amer. J. Math. 305-314, 1910.
- 7. Z. Nehari, Conformal Mapping, McGraw-Hill, New York, NY, USA, 1952.
- 8. S. D. Purohit and R. K. Raina, *Certain subclasses of analytic functions associated with fractional q-calculus operators*, Math. Scand. 55-70, 2011.
- 9. H. M. Srivastava. A. K. Mishra and P. Gochhayat, *Certain subclasses of analytic and bi-univalent functions*, Appl. Math. Lett. 23(10), 1188-1192, 2010.