

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Real–Time Assistance Prototype: A New Navigation Aid for Blind people

Prof Harshith Chandrashekar¹, Kavana V², Ningaraju K³, Madhu L R⁴, Raksha R Ganapathi⁵

¹Assistant Professor, Department of Computer Science and Engineering in Artificial Intelligence and Machine Learning Vidyavardhaka College of Engineering Mysuru, India
^{2,3,4,5}Department of Computer Science and Engineering in Artificial Intelligence and Machine Learning Vidyavardhaka College of Engineering Mysuru, India

Abstract:

Visually impaired individuals encounter significant challenges in mobility, navigation, and performing everyday tasks. Traditional tools like canes and guide dogs are helpful but have limitations, especially in unfamiliar or complex environments. Recent advancements in technology have introduced innovative solutions to address these difficulties. This paper explores a range of assistive technologies designed to improve the lives of visually impaired people. These include wearable devices, mobile applications, and smart sensor systems that use cutting-edge methods such as Machine Learning (ML) and voice-based interaction. Tools like smart glasses equipped with sensors and cameras can detect obstacles and guide users safely. Mobile apps with features like text recognition and voice feedback enable visually impaired individuals to read, identify objects, and navigate their surroundings [3]. Voice-based systems further simplify interactions, allowing users to perform tasks hands-free. Many of these technologies depend on internet connectivity, raising concerns about accessibility and reliability. This paper highlights how these innovations are transforming mobility and independence for visually impaired individuals. It also emphasizes the need for further development to overcome existing limitations. By understanding the current state of assistive technologies, this study provides insights into how technology can continue to enhance the quality of life for visually impaired people [10].

Keywords: Visually Impaired Navigation, Voice Assistance, Object Detection, Text to- Speech, NLP, COCO dataset, Machine Learning, Deep Learning, Real-Time, Cameras, Obstacle Detection, Audio Feedback.

Introduction:

Visually impaired individuals encounter significant challenges in their daily lives, particularly with mobility and navigation. Traditional aids like white canes or guide dogs, though helpful, offer limited functionality in complex or unfamiliar environments. These individuals often struggle with tasks such as identifying obstacles, reading text, and recognizing objects, which hinders their independence. Safety concerns are also a persistent issue, as avoiding hazards and ensuring safe movement require constant vigilance and, at times, external assistance. These challenges emphasize the need for innovative technological solutions to empower visually impaired individuals.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Machine Learning (ML) has played a pivotal role in addressing the challenges faced by the visually impaired. Convolutional Neural Networks (CNNs) are extensively used for real-time object recognition and classification, providing accurate and reliable identification of obstacles like furniture and structural elements. Natural Language Processing (NLP) enhances voice-based interactions, converting environmental data into auditory feedback, and enabling intuitive command recognition [10]. Deep learning models contribute significantly by improving depth estimation and spatial awareness, which are critical for navigation. Additionally, dynamic learning techniques allow real-time adaptation to changing environments, utilizing datasets such as COCO for detailed object categorization and improved accuracy.

Advancements in technology have revolutionized the lives of visually impaired individuals by providing innovative tools to address their challenges. Wearable devices, such as smart glasses equipped with ultrasonic sensors and RGB- D cameras, offer real-time obstacle detection and spatial awareness. These devices use audio cues to guide users safely through their environments, enhancing their mobility and independence [9]. Similarly, mobile applications, particularly those designed for Android, integrate advanced functionalities like Optical Character Recognition (OCR) and Text-to-Speech (TTS). These applications enable visually impaired individuals to read text, recognize objects, and perform tasks such as financial transactions with ease, leveraging NLP- driven voice commands for seamless interaction.

Sensor technologies and voice interfaces further expand the scope of assistive tools for visually impaired individuals. RGB-D cameras, stereo vision cameras, and ultrasonic sensors work together to create detailed spatial maps and detect obstacles, providing comprehensive navigation assistance. Voice interfaces powered by Natural Language Processing (NLP) allow users to issue commands, receive auditory feedback, and interact with their devices hands-free. These technologies are designed to enhance the user experience by being intuitive and accessible. Together, these advancements enable visually impaired individuals to navigate their surroundings confidently, perform essential tasks independently, and significantly improve their quality of life.

In this paper, we survey a comprehensive review of innovative assistive technologies designed to address the challenges faced by visually impaired individuals. We examine wearable devices, mobile applications, and sensor systems that integrate advanced methodologies such as deep learning, NLP, and sophisticated sensor technologies [2]. The survey highlights the significant progress made in developing tools that provide real-time guidance and feedback, promoting autonomy and safety. However, it also addresses the limitations of current systems, such as dependency on internet connectivity, privacy concerns related to voice and camera usage, and high battery consumption. Ultimately, the paper underscores the transformative potential of these technologies to enhance the quality of life for visually impaired users while identifying areas for future improvement.

Literature Survey:

An Intelligent Guidance Stick system using IVR, which was designed to assist blind individuals. The stick incorporated two circuits: one with an Arduino Uno and ultrasonic sensors which detect obstacles and provided audio output, and another with an 8051 microcontroller and ultrasonic sensor which detect potholes, that alerted the user via continuous beeps. The system provided mobility through a wheel at its base and is powered by two 9V batteries. It aimed to aid visually impaired individuals and notified them about obstacles and potholes in real-time [1]. Navigational aid systems for the blind that utilized active laser profilometry and infrared proximetry with a real-time vibrotactile interface. The devices, named

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

"Teletact" and "Vigitact," were designed to enhance spatial perception, mobility, and safety for blind individuals. The Teletact, a handheld laser telemeter named "Teletact" and "Vigitact," were designed to enhance spatial perception, mobility, and safety for blind individuals. The Teletact, a handheld laser telemeter, provided accurate 3D spatial awareness up to ten meters, while the Vigitact, an infrared scanner, offered automatic vigilance from knee to head level up to two meters. The systems were commercially available, and the paper details their basic functionalities, feedback from users, and potential technological advancements [6]. A system is presented based on visual and range information. Instead of using several sensors, this chooses a device, consumer RGB-D camera and assisted using both range and visual information. The main contribution was the combination of depth information with image intensities which resulted in the robust expansion of the range-based floor segmentation. On the one hand, depth information, which was reliable but limited to a short range, was enhanced with the long-range visual information. On the other hand, the difficult and prone to error image processing is eased and improved with depth information. The proposed system detected and classified the main structural elements of the scenario which provided the user with obstacle-free paths in order to navigate safely across unknown scenarios. The proposed system was tested on a wide variety of scenarios and datasets, which gave successful results and showed that the system was robust and worked in challenging indoor environments [9].

The development of a low-cost, reliable, portable, and user-friendly smart glass designed for visually impaired individuals. This device used ultrasonic sensors which detected obstacles within a 5-6 meter range and a 30-degree angle. When an obstacle was detected, an automated voice alert was generated, which allowed users to navigate safely. The goal was to enhance mobility and independence for visually impaired individuals [2].

The use of Head-Mounted Displays (HMDs) in assistive and therapeutic applications for visually impaired individuals. It analyzes 61 research articles that utilize HMDs for vision assistance and therapy, with distinctions between Augmented Reality (AR) for assistive purposes and Virtual Reality (VR) for therapeutic applications. The review highlighted the trends in approaches, types of HMDs, targeted visual impairments, and the integration of user studies. Emerging trends and research gaps were also identified to guide future developments in this field[3].

An Integrated Machine Learning System which allowed the Blind Victims to identify and classify Real Time Objects and generated voice feedbacks and calculated the distance which produced warnings whether he/she is very close or far away from object. The project mainly focused on providing a visual aid to the visually impaired people. This project used an Android smartphone that used the camera that identified objects in surroundings and give an audio output. The hearing ability of the user tried to fulfil the seeing ability [8]. A virtual assistant which was tailored to support visually impaired individuals, that incorporated features like speech recognition, object detection, and navigation assistance. Users could interact with the system via voice commands for daily tasks, this provided independence in activities such as email, navigation, and information retrieval [10]. An Android- based application which was designed to assist visually impaired individuals that provided various features that could be accessed through voice commands and touch gestures. The application used a speech engine and a camera which allowed blind individuals to read printed text, identify objects, access weather and location information, check battery status, and made voice-based payments. The application's design integrated Text-to-Speech and voice recognition technologies, which aimed to complete daily activities such as reading, navigation, and financial transactions easier for the visually impaired [11]. A real-time navigation aid

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

prototype for the blind, which supplemented traditional aids like the white cane. The system used stereo cameras and a portable computer that processed environmental information, convert it into acoustic signals that communicated object proximity, direction, and trajectory through stereophonic headphones [12].

The advancements in navigation technologies which was designed for blind and visually impaired people. It focused on developments from early electronic travel aids to modern artificial vision systems. The study systematically analyzed 191 research articles published from 2011 to 2020, categorized them by approach, technology, and practical application. It highlighted key limitations of current technologies, such as limited range in infrared systems and potential safety issues in laser-based systems. The paper aimed to provide insights into trends, gaps, and future directions further to support more effective and safe navigation assistance for BVIPs [4].

A voice-controlled digital assistant which was designed to help blind and visually impaired individuals access online information without relying on Braille displays or keyboards, which are often expensive and inaccessible. This low-cost solution enabled users to send and receive emails, access news, check the weather, and maintain a personal diary which utilized Google's Speech Recognition API. This system operated via audio communication, which allowed users to interact with digital content in a more accessible manner [5]. The proposed system was designed to aid visually impaired persons with real-time obstacle detection, avoidance, indoors and out navigation, and actual position tracking. The gadget proposed is a camera-visual detection hybrid that performed well in low light as part of the recommended technique, this method is utilized to detect and avoid impediments, as well as to help blind persons to identify the environment around them. To identify things in the environment and convert it into speech for improved comprehension and navigation. It calculates the safe distance between the object and the person, which allowed them to be more self-sufficient and less reliant on others. It was able to achieve this model with the help of Tensor Flow and pre-trained models. The approach we suggest is dependable, inexpensive, practical, and reliable [7].

Paper	Methodology	Objective	Strengths
An IVR Based	Arduino Uno and	Aid visually	Uses IVR in a
Intelligent Guidance	ultrasonic sensors to	impaired individuals	Guidance Stick for the
Stick for Blind	detect obstacles and	and notified them	assistance of
	provide audio output.	about obstacles and	blind individuals.
		potholes in real-	
		time.	
Smart Glass for Blind	Ultrasonic sensors which	Enhance mobility and	Low-cost, reliable,
People	detected	independence for	portable, and user-
	obstacles within a 5-6	visually impaired	friendly.
	meter range and a 30-	individuals.	
	degree angle.		
A Scoping Review of	Head-Mounted Displays,	Targeted the visual	Identified research gaps
Assistance and	Augmented Reality (AR)	impaired people for	for the future
Therapy with Head-	for assistive purposes and	the guidance of them	developments in the blind
Mounted Displays for	Virtual Reality (VR) for	and assistance.	assistance.
People Who Are	therapeutic		

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Visually Impaired	application.		
Analysis of		Navigation	Insights of the
Navigation Assistants	blind and	technologies for blind	trends, gaps, and future
for Blind and Visually	visually impaired using	and visually impaired	directions to support
Impaired People: A	artificial	people.	more effective and safe
Systematic Review	vision systems.		navigation
			assistance.
Digital Assistant for the	Used Google's Speech	Enabled users to send	Enables users to
Blind	Recognition API.	and receive	interact with digital
		emails, access news,	content in a more
		check the weather, and	accessible manner.
		maintain a	
		personal diary.	
Guidance – Assist	Used devices	To enhance spatial	Provides accurate 3D
System for the Blind	named "Teletact" and	perception, mobility,	spatial awareness up to
	"Vigitact"	and safety for blind	ten meters and
	which uses active laser	individuals.	commercially
	profilometry and infrared		available.
	proximity with a		

	real-time		
	vibrotactile interface.		
Blind Assistance System	Real-time obstacle	Performs well in low light	More self-sufficient and
Using	detection,	and detected obstacles to	less reliant on others.
Machine Learning	avoidance, indoors and	avoid impediments, as	Inexpensive, practical,
	out navigation, and	well as to help blind	and
	actual position tracking	people to identify the	reliable approach.
	using a camera, Tensor	environment around	
	flow and pretrained	them.	
	models, calculates the		
	safe distance		
	between the object and		
	the person.		
Blind Assistance in Object	Detects the Real Time	Provides a visual aid to	The hearing ability of the
Detection and Voice Alerts	Objects and generate	the visually	user tried to fulfil the
	voice	impaired people	seeing
	feedbacks based on the		ability.
	calculated		
	distance to produce		
	warnings using an		
	Android smartphone.		
Navigation Assistance for	Used RGB-D camera	Detects and	The proposed
the Visually	and	classifies the main	system was robust and

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

r	1		,1
Impaired Using RGB- D	assisted using both	structural elements of the	worked in
Sensor with Range	range and visual	environments which	challenging indoor
Expansion	information.	provided the user with	environments.
		obstacle- free paths for	
		the	
		safe navigation across	
		unknown environments.	
Virtual Assistant for	Used speech	Virtual assistant to	Users could interact with
Visually Blind People	recognition, object	support visually	the system by voice
	detection, and	impaired	commands for daily tasks,
	navigation assistance	individuals.	this
	technologies.		provides
			independence in
			performing activities such
			as email,
			navigation, and
			information
			retrieval.
Voice Assistant for Visually	Android-based	Helped to complete daily	Provided various features
Impaired People	application was	activities such as reading,	that could
	developed using a	navigation, and financial	be accessed through voice
	speech engine and	1	commands and touch
	camera. Text-to-		gestures.

	Speech and voice	transactions easier for the	
	recognition	visually	
	technologies were used.	impaired.	
Real-Time Assistance	The system used stereo	A real-time	Provided real-time
Prototype – A New	cameras and a portable	navigation aid	assistance for the blind
Navigation Aid for Blind	computer that processed	prototype for the blind.	people to
People	environmental		provide the
	information and		directions and object
	provided		proximity.
	instructions using		
	stereophonic		
	headphones.		

Real-Time Assistance Prototype:

We conducted an extensive review of academic papers, research articles, technical reports, and case studies. This helped us gather information on various assistive devices, such as smart glasses, obstacle detection systems, mobile applications, and sensor technologies. We focused on technologies that leverage advanced methods like Machine Learning (ML), Natural Language Processing (NLP), and computer vision, which have been incorporated into devices to assist visually impaired users. The review

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

included both recent and earlier studies to understand the evolution of these technologies and their current capabilities. The advancements in assistive technologies for visually impaired individuals mark a significant leap toward enhancing their independence and quality of life. Wearable devices, mobile applications, and smart sensor systems offer unprecedented capabilities for navigation, obstacle detection, and daily task management [2][3]. Technologies like Machine Learning (ML), voice-based interaction, and real-time feedback have proven instrumental in addressing many challenges faced by the visually impaired. However, while these innovations provide considerable benefits, they also present notable limitations that must be addressed to ensure broader adoption and effectiveness [1].

A key challenge is the heavy reliance on internet connectivity, which can compromise the usability of assistive devices in areas with limited network access. Moreover, energy efficiency remains a pressing issue, as many of these technologies have high power demands, leading to frequent recharging and limiting their practicality for extended use. Privacy concerns also emerge as significant barriers, particularly in devices that use cameras or voice recognition, raising questions about data security and user consent [3]. The potential for future improvements is substantial. By integrating energy-efficient designs, offline functionalities, and stronger privacy safeguards, these technologies can become more accessible and reliable. Furthermore, collaboration among technologists, healthcare providers, and visually impaired users can ensure that solutions are tailored to real-world needs. Ultimately, addressing these challenges will not only enhance the usability of these tools but also empower visually impaired individuals to lead safer, more independent lives [4].

After gathering information on different assistive tools, we organized them into three main categories: Wearable devices, include technologies like smart glasses and other body-worn sensors that offer realtime navigation assistance [2]. Mobile applications, refer to smartphone apps that provide functions like text-to-speech, object recognition, and navigation assistance through voice commands. Sensor-based systems, are devices that use technologies like ultrasonic sensors, cameras, and other sensors to detect obstacles and map the environment, offering spatial awareness for users. This classification allowed us to better understand how each type of technology serves the needs of visually impaired individuals in different ways.

The advantages of this are, more independent features like assistive technologies allow visually impaired individuals to do more on their own, with tools like smart glasses and mobile apps, users can navigate unfamiliar places, read signs, and complete tasks without needing help from others. This increases their confidence and ability to manage daily activities independently. Better safety by technologies like obstacle detection and sensor systems help users avoid dangers such as curbs, stairs, or obstacles in their path. This makes moving around safer and reduces the risk of accidents. Easier daily tasks via mobile apps with features like text-to speech, object recognition, and navigation assist in making everyday activities, like shopping, reading, or traveling, much easier. These tools help visually impaired people perform tasks that might otherwise be difficult or impossible, improving their quality of life. Real-time assistance using many modern assistive technologies, like smart glasses and mobile apps, provide real-time assistance. Users can receive immediate feedback on their surroundings, whether it's identifying objects, reading signs, or navigating through unfamiliar locations. This helps individuals make quicker decisions and better adapt to their environment.

However, there are some challenges like high energy use where many assistive devices require a lot of power and need frequent recharging. This can be inconvenient for users who rely on these devices throughout the day, especially when they are away from charging options. Internet dependence where

some technologies rely on internet access to function properly. For example, some mobile apps or cloudbased systems need a stable internet connection to work in real- time. This can be an issue in areas with poor or no internet, making these devices less useful in certain locations. Cost and accessibility such as assistive technologies can be expensive, making them difficult to afford for some people. Devices like smart glasses or special sensors can be costly, and not everyone has access to them. Additionally, these technologies might not be available in all areas, which limits their accessibility. Learning to use the devices like assistive devices require users to learn how to operate them, which can be a barrier for some people. Although many devices are designed to be simple to use, there can still be a learning curve, especially for individuals who are not familiar with technology.

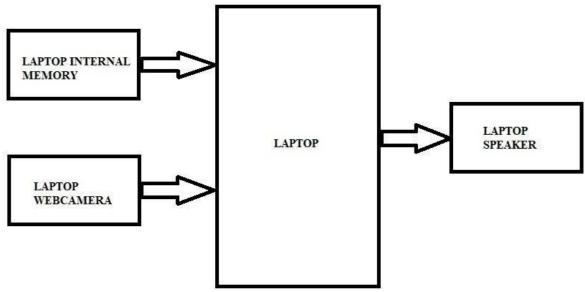


Figure 1: External Overview of Prototype

- Capture live video feed from the webcam.
- Preprocess the video stream for object detection.
- Convert detected objects into audio using text-to-speech conversion.
- Translate recognized text into audio output for the user

Conclusion:

Assistive technologies have made a significant difference in the lives of visually impaired individuals, improving their ability to navigate their environment, avoid obstacles, and carry out daily activities with greater independence. Tools such as smart glasses, mobile apps, and voice-activated systems offer valuable support by providing real-time feedback and guidance. These technologies, driven by advancements in Machine Learning and sensors, have the potential to address many of the challenges faced by visually impaired people.

However, there are still some issues to be resolved. Many of these devices rely on constant internet access, which can be limiting in certain areas, and they often have high energy demands that restrict their usability. Additionally, privacy concerns related to the use of cameras and voice recognition need careful consideration.

To make these technologies more effective and widely accessible, they need to be more energy-efficient, capable of working offline, and designed with better privacy protections. Involving visually impaired

individuals in the development process will help create tools that truly meet their needs.

Overall, assistive technologies are transforming the way visually impaired people live, offering them greater autonomy and safety. Continued development and innovation will further enhance these tools, helping visually impaired individuals lead more independent and fulfilling lives.

References:

- 1. Saraf, Mohit, Mohd Shehzad, and Neeraj Jadhav. "An IVR based intelligent guidance stick for blind." *International Journal of Current Engineering and Technology* 4, no. 3 (2014): 17.
- 2. Bhuniya, Ankita, Sumanta Laha, Deb Kumar Maity, Abhishek Sarkar, and Suvanjan Bhattacharyya. "Smart glass for blind people." *Amse J. Iieta* 38 (2017): 102-110.
- Li, Yifan, Kangsoo Kim, Austin Erickson, Nahal Norouzi, Jonathan Jules, Gerd Bruder, and Gregory F. Welch. "A scoping review of assistance and therapy with head-mounted displays for people who are visually impaired." *ACM Transactions on Accessible Computing (TACCESS)* 15, no. 3 (2022): 1-28.
- 4. Khan, Sulaiman, Shah Nazir, and Habib Ullah Khan. "Analysis of navigation assistants for blind and visually impaired people: A systematic review." *IEEE access* 9 (2021):
- 5. 26712-26734.
- 6. Bose, Prince, Apurva Malpthak, Utkarsh Bansal, and Ashish Harsola. "Digital assistant for the blind." In *2017 2nd international conference for convergence in technology (I2CT)*, pp. 1250-1253. IEEE, 2017.
- 7. Farcy, René, and Roland M. Damaschini. "Guidance-assist system for the blind." In *Biomonitoring and Endoscopy Technologies*, vol. 4158, pp. 209-214. SPIE, 2001.
- 8. Kumar, Naveen, Sanjeevani Sharma, Ilin Mariam Abraham, and S. Sathya Priya. "Blind assistance system using machine learning." In *International Conference on Image Processing and Capsule Networks*, pp. 419-432. Cham: Springer International Publishing, 2022.
- Thilanka, SA Nayana, GCH Vihanga Dimantha Jinadasa, Prasad M. Bandara, and WMM Tharindu Weerakoon. "Vision-Based Real-Time Object Detection and Voice Alert for Blind Assistance System." In 2023 IEEE 17th International Conference on Industrial and Information Systems (ICIIS), pp. 507-512. IEEE, 2023.
- 10. Aladren, Aitor, Gonzalo López-Nicolás, Luis Puig, and Josechu J. Guerrero. "Navigation assistance for the visually impaired using RGB-D sensor with range expansion." *IEEE Systems Journal* 10, no. 3 (2014): 922-932.
- 11. Yadav, Avanish Vijaybahadur, Sanket Saheb Verma, and Deepak Dinesh Singh. "Virtual Assistant for blind people." *International Journal* 6, no. 5 (2021).
- 12. Karthik, A., V. KAARTHICK RAJA, and
- 13. S. Prabakaran. "Voice assistance for visually impaired people." In 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT), pp. 465-468. IEEE, 2018.
- Dunai, Larisa, Guillermo Peris Fajarnes, Victor Santiago Praderas, Beatriz Defez Garcia, and Ismael Lengua Lengua. "Real-time assistance prototype—A new navigation aid for blind people." In *IECON* 2010-36th Annual Conference on IEEE Industrial Electronics Society, pp. 1173-1178. IEEE, 2010.