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Abstract 

The difficulty of dealing with traffic jams, pollution, road accidents, and any other disturbances in the 

management of the city becomes more and more troublesome as the traffic increases. So, adequate 

traffic management is required. So, our study includes traffic prediction for particular weather using 

machine learning and deep learning techniques, including Random Forest (RF), Long Short Term 

Memory (LSTM), AutoEncoders, and Generative Adversarial Networks (GAN). The research highlights 

the utility of such models in forecasting traffic patterns and creating realistic synthetic data for 

simulation by analyzing the static and temporal aspects of the traffic data. The results show that these 

systems enhance traffic management systems and facilitate the development of smarter cities. 
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1. Introduction 

Urbanization at a faster pace has dramatically altered the structure of contemporary cities, resulting in 

more intricate and multi-faced flow dynamics-even. Furthermore, this enlargement has set associates in 

nursing constructing lines along citified bases, consequently causing general problems such as arsenic 

exuberant dealings, contamination, rearing route accidents, and decrements, which are important 

services. Successfully dealing with such challenges is possible through innovative techniques rather 

than traditional traffic management techniques. Traditional methods may also be helpful in certain 

situations, but they are usually unable to adjust to the ever-changing, unpredictable urban traffic 

conditions. These limitations require more innovative technologies to provide accurate predictions and 

reliable synthetic traffic data for simulation and planning. 

Various challenges have recently arisen, and machine learning (ML) and deep learning (DL) techniques 

have emerged to assist in tackling such issues. Deep learning can process and analyze massive amounts 

of traffic data while detecting patterns that would otherwise go undetected with conventional methods. 

Any predictive task falls under these; some examples are Random Forest and Long Short Term Memory 
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(LSTM) networks for static and temporal data, respectively. In addition, many types of network traffic 

data necessitate using effective dimensionality reduction methods to eliminate irrelevant attributes while 

maintaining accuracy. Autoencoders are a class of neural networks that are particularly good at taking in 

and compressing data into lower-dimensional representations before reconstructing it. This ability is  

key for practical datasets that maintain necessary insights for downstream systems. 

Beyond prediction and dimensionality reduction, the generation of synthetic traffic data has become 

increasingly important for simulating traffic scenarios and validating predictive models. Real-world 

traffic data collection is often costly, time-consuming, and prone to privacy concerns. Generative 

Adversarial Networks (GANs) address this issue by generating realistic synthetic datasets that closely 

mimic traffic patterns. These synthetic datasets enable the testing and optimizing traffic management 

strategies in controlled environments. This study employs a synergistic ensemble of Random Forest, 

LSTM networks autoencoders, and GANs to tackle compound hurdles. By merging the static and 

temporal traffic data characteristics, the study offers a thorough method for performing traffic 

forecasting and simulation. The findings aim to enhance the accuracy of traffic management systems 

and, by extension, contribute to creating more innovative and efficient urban infrastructures. 

The rest of this paper examines the specific techniques, experiments, and results in detail, providing an 

in-depth look at how sophisticated ML and DL models can transform traffic management and planning 

in the context of innovative city developments. 

 

2. Literature Review 

2.1. Traffic Prediction Methods: 

Traffic prediction has been a critical area of research, evolving from traditional statistical models to 

advanced machine learning and deep learning approaches. Statistical models such as the Autoregressive 

Integrated Moving Average (ARIMA) have historically been used for traffic forecasting due to their 

simplicity and interpretability [1]. While effective for linear time series data, these methods often fail to 

model complex, nonlinear patterns in traffic data. 

ARIMA Model 

The ARIMA model is often used for time series prediction and is represented as: 

𝑦𝑡 = ϕ1𝑦𝑡−1 + ϕ2𝑦𝑡−2 + ⋯ + ϕ𝑝𝑦𝑡−𝑝 + θ1ϵ𝑡−1 + θ2ϵ𝑡−2 + ⋯ + θ𝑞ϵ𝑡−𝑞 + ϵ𝑡    (1) 

𝑦𝑡: Predicted traffic flow at time 𝑡 

ϕ𝑖: Autoregressive coefficients 

θ𝑗: Moving average coefficients 

𝜖𝑡: White noise at the time 

Machine learning methods such as Support Vector Machines (SVM) and k-nearest Neighbours (k-NN) 

have also been investigated for short-term traffic forecasting. SVM, in particular, has demonstrated 

robustness in handling high-dimensional and noisy data. However, these methods often struggle with 

temporal dependencies inherent in traffic flow. 

Support Vector Regression (SVR) 

SVR minimizes the following optimization problem for traffic prediction: 

min𝑤,𝑏,𝜉,𝜉∗
1

2
|𝑤|2 + 𝐶 ∑ (ξ𝑖 + ξ𝑖

∗)𝑛
𝑖=1 . 𝑦𝑖 − (𝑤⊤𝜙(𝑥𝑖) + 𝑏) ≤ 𝜖 + 𝜉𝑖\(𝑤⊤𝜙(𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤ 𝜖 +

𝜉𝑖
∗\𝜉𝑖 , 𝜉𝑖

∗ ≥ 0    (2) 

W:  weight vector 
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b:   Bias term 

ϕ (⋅):Kernel function mapping to a high-dimensional space 𝜉𝑖, 𝜉𝑖
∗:  Slack variables for error tolerance 

C:    Regularization parameter 

Hybrid models combining statistical and machine learning approaches have also been developed to 

leverage their strengths. For instance, ARIMA-SVM hybrid models [3] aim to improve prediction 

accuracy for time series with nonlinear components. Despite these advances, deep learning models often 

outperform traditional methods in capturing complex spatiotemporal patterns. 

2.2 Deep Learning Models 

Deep learning techniques have revolutionized traffic prediction by effectively learning spatiotemporal 

dependencies. Recurrent Neural Networks (RNNs) and their variants, such as Long-Short-Term Memory 

(LSTM) networks [4], are widely used for sequential data due to their capability to retain long-term 

dependencies. Studies have shown that LSTMs outperform traditional traffic flow and congestion 

pattern prediction methods. 

Recurrent Neural Network (RNN) 

The hidden state in an RNN is updated as follows: 

ℎ𝑡 = σ(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏ℎ)             (3) 

ℎ𝑡 = Hidden state at time t 

𝑡𝑥    Input vector (e.g., traffic features) at time t 

Wh, Wx =Weight matrices 

𝑏ℎ = bias term 

𝜎 = activation term 

Long Short-Term Memory (LSTM) 

LSTM extends RNN with gating mechanisms: 

ft = σ(wf[ht−1, xt] + bf)     (4) 

it = σ(wi[ht−1, xt] + bi)      (5) 

c̃t=tanh(wc[ht−1, xt] + bc)   (6) 

ct= ft ⊙ ct−1 + it ⊙ c̃t         (7) 

ot=σ(wo[ht−1, xt] + bo)       (8) 

ht= ot  ⊙ tanh(ct)                 (9) 

Where: 𝑓𝑡 ,  𝑖𝑡,𝑜𝑡: forget, input, output gates 

ct: cell state 

⊙:element-wise multiplication 

Convolutional Neural Networks (CNNs) have also been employed, particularly in spatiotemporal traffic 

prediction tasks where spatial dependencies (e.g., road networks) play a crucial role [5]. Combining 

CNNs with LSTMs, as in hybrid architectures, has enhanced performance by simultaneously learning 

spatial and temporal features [6]. 

Autoencoders have been explored for feature extraction in high-dimensional traffic datasets [7]. By 

compressing data into a latent space, autoencoders help reduce redundancy and extract meaningful 

features, improving model efficiency. 

Generative Adversarial Networks (GANs) [8] have been investigated for generating synthetic traffic 

data. This approach has proven helpful in augmenting datasets for training deep learning models, 

particularly in scenarios where real-world data is scarce. GANs have also been applied to simulate 

various traffic conditions, enabling robust model testing. 
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Graph Neural Networks (GNNs) [9] are emerging as powerful tools for traffic prediction, especially in 

modeling relationships in road networks. GNNs can capture complex spatial dependencies that 

traditional and deep learning models might overlook by representing traffic systems as graphs. 

2.3 Comparative Studies 

Several comparative studies highlight the strengths and limitations of traditional and deep learning 

approaches. Ensemble models like Random Forest (RF) [10] are often preferred for general-purpose 

regression tasks due to their interpretability and robustness against overfitting. However, their 

performance in capturing temporal patterns is limited. 

Deep learning models, particularly LSTMs, excel in temporal dependency modeling, making them ideal 

for traffic prediction tasks [11]. Comparative analyses indicate hybrid models combining traditional 

methods with deep learning (e.g., ARIMA-LSTM) can achieve state-of-the-art performance by 

leveraging complementary strengths [12]. 

Evaluation metrics 

Common metrics for comparing models include: 

Mean Absolute Error (MAE): 

MAE = 
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1                  (10) 

Root Mean Square Error (RMSE): 

RMSE =√ 
1

n
 ∑ (yi − yî)2n

i=1            (11) 

Mean Absolute Percentage Error (MAPE): 

MAPE = 
 1

𝑛
∑ |

yi−yî

yi
| 𝑥 100𝑛

𝑖=1          (12) 

Additionally, studies evaluating scalability and computational efficiency [13] suggest that while deep 

learning models offer superior accuracy, their resource-intensive nature can be a bottleneck, particularly 

for real-time applications. 

 

3. Methodology 

Traffic management is crucial for city planning, and accurate traffic prediction is vital for optimizing 

infrastructure, reducing congestion, and enhancing safety. This research utilizes a public dataset with 

diverse temporal and contextual features, including timestamps, weather, and events—key drivers of 

traffic patterns. Its rich feature set and real-world applicability provide a robust foundation for 

evaluating advanced predictive modeling techniques 

3.1. Data Preparation: 

3.1.1  Data collection and preprocessing 

The dataset was preprocessed to ensure its quality and readiness for modeling. The Timestamp column 

was converted to a datetime format, and new features, such as Hour, DayOfWeek, IsWeekend, and 

Month, were engineered. For example, the Hour of the day was extracted as Hour, and a binary feature, 

IsWeekend, was computed based on whether DayOfWeek indicated a weekend. These features provided 

essential temporal insights for modeming traffic behavior. Missing values were handled by removing 

incomplete records to enhance model reliability. Categorical variables, such as Weather and Events, 

were encoded using one-hot encoding to incorporate them as numerical features. The dataset has been 

strategically divided into training (80%) and testing (20%) subsets, ensuring robust model evaluation 

and performance insights. Finally, the features were standardized using the formula 
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z= (x−μ)/ σ        (13) 

z is the standardized value 

x is the original value. 

Where μ is the mean, and σ is the standard deviation of the feature. 

This formula transforms the feature values into a distribution with a mean of 0 and a standard deviation 

of 1, making them suitable for machine learning models. 

3.1.2 Feature selection and splitting 

To ensure the predictive models focused on the most relevant variables, feature selection was carried 

out. The target variable, Traffic Volume, was identified, while all other columns were evaluated as 

potential predictors. After preprocessing, the appropriate features and target variables were defined. 

Feature selection helped eliminate redundant or irrelevant data, thereby improving model efficiency. The 

dataset was partitioned into training and testing subsets with an 80-20 split. The training set was used to 

train the models, while the testing set was reserved for evaluation. This division was performed 

randomly to minimize bias, and the features were standardized using the formula 

z= (x−μ)/ σ 

z is the standardized value. 

x is the original value. 

Where μ is the mean, and σ is the standard deviation of the feature. 

This formula transforms the feature values into a distribution with a mean of 0 and a standard deviation 

of 1, making them suitable for machine learning models. Now, different models are applied to this for 

analyzing and predicting the accuracy of traffic predictions. 

 

3.2: Model Architecture and Algorithm 

3.2.1 Random Forest Regression 

Random Forest is a supervised learning algorithm that operates on labeled data. It builds multiple 

decision trees on randomly selected subsets of the data and then aggregates their predictions to make a 

final decision. This approach handles large datasets and captures complex patterns better than individual 

trees. Chosen as the baseline model, Random Forest requires minimal preprocessing while delivering 

robust, interpretable results. As an ensemble method, it combines decision trees to improve accuracy and 

reduce overfitting. 

Random Forest architecture 

The Random Forest Regressor is an ensemble model that combines multiple decision trees to predict 

continuous outcomes. An ensemble model with 100 trees was trained to predict traffic volume. The 

Random Forest Regressor is an ensemble model that combines multiple decision trees to predict 

continuous outcomes. It starts with initialization, where hyperparameters like the number of trees 

(estimators) and random state (random_state) are set. Bootstrap sampling creates random subsets of the 

data 𝐷𝑘 for each tree during training, ensuring diversity. Each tree is grown by splitting nodes based on a 

random subset of features (𝐹𝑘) using the Mean Squared Error (MSE) criterion to minimize variance. In 

the prediction phase, every tree makes an independent prediction 𝑦̂𝑗,and the final output is the average of 

all three predictions: 

𝑦̂ =
1

𝑛estimators

∑ 𝑦𝑘̂
𝑛estimators

𝑘=1        (14) 

The model's accuracy is evaluated using metrics like MSE: 
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MSE =
1

𝑝
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑝
𝑖=1          (15) 

Where 𝑦𝑖 𝑎𝑛𝑑 𝑦̂𝑖 are the actual and predicted target values for the ith sample, respectively, Random 

Forest's ensemble nature reduces overfitting, as averaging predictions smooth out errors. Additionally, 

the model supports feature importance analysis, making it interpretable. 

 

Figure.1: Architecture of Random Forest Regressor 

 
Algorithm 1: Random Forest Regression for traffic prediction 

Step 1: Initialize the Random Forest 

1. Define the number of decision trees N=100 and the random state to ensure reproducibility. 

2. Random Forest Regressor (nestimators=100, random_state=42) 

=Step 2: Train the Random Forest 

1. For each decision tree Tk,k=1,2,…, N: 

• Select a random subset Dk ⊂ Dtrain through bootstrap sampling. 

• Build a decision tree Tk on Dk by minimizing the mean squared error: 

𝑀𝑆𝐸𝐾 = 
1

|𝐷𝑘|
 ∑ (𝑦𝑖 − 𝑦̂𝑖)

2|𝐷𝐾|
𝑖=1        (16) 

Where 𝑦̂𝑖   is the prediction for sample i in Dk 

2. Aggregate all N-trained trees into the ensemble. 

Step 3: Make Predictions on the Test Set 

1. For each test data point, 𝑋𝑗 ∈ 𝐷test computes predictions  𝒚𝒋,𝒌 from each 

yj,k
^ = Tk(Xj)                       (17) 

2. Compute the final prediction 𝑦𝑗  by averaging predictions from all N trees: 

𝑦𝑗 =
1

𝑁
∑ 𝑦𝑗,𝑘𝑁

𝑘=1                       (18) 

Step 4: Calculate the Mean Squared Error 

1. Compute the Mean Squared Error (MSE) between predicted values ŷj and actual values 𝒚𝒋̂ in the test 

set: 

 

MSE =
1

𝑚
∑ (𝑦𝑗 − 𝑦𝑗̂)

2𝑚
𝑗=1                   (19) 
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Step 5: Output the MSE 

Print the computed MSE to evaluate the model's performance: 

Random Forest MSE= 246809.37342164782 

This algorithm effectively trains a Random Forest Regression Model and evaluates its performance 

using a metric, providing insights into its prediction accuracy. 

Overall, the Random Forest Regressor is a highly parallelizable, robust, and interpretable model 

effective for regression tasks across domains. Its mathematical foundations ensure accuracy and 

generalization, including bootstrap sampling, node splitting using MSE, and prediction aggregation. 

3.2.2 LSTM architecture and algorithm 

The LSTM model is a specialized recurrent neural network (RNN) type that excels at learning long-term 

dependencies in sequential data. It uses a gating mechanism to control the flow of information, 

mitigating issues like the vanishing gradient problem in traditional RNNs. 

 

Figure.2: LSTM Architeture 

 
Architecture 

The architecture of the LSTM model for traffic volume prediction includes: 

1. Input Layer: Accepts sequential traffic data with a sliding window of 10 timestamps. 

2. LSTM Layer: Processes temporal dependencies using 50 hidden units. 

3. Dense Layer: Outputs the predicted traffic volume as a single value. 

4. Forget Gate: The forget gate determines which parts of the previous cell state (𝐶𝑡−1) to retain or dis-

card. 

ft: 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

ft:  Forget gate output. 

Wf, bf: Weight matrix and bias for the forget gate. 

ℎ𝑡−1:Hidden state from the previous time step 

xt: Input at the current time step. 

σ: Sigmoid activation function. 

5. Input Gate: The input gate controls which new information to add to the cell state 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)         (20) 

6. Candidate Memory: Proposed updates to the cell state 

𝐶𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑡, 𝑡𝑥] + 𝑏𝑐)         (21) 

7. Update Memory: Combine the forget and input gates to update the cell state 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶𝑡̃              (22) 

8. Output Gate: The output gate decides the next hidden state (ℎ𝑡) 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)            (23) 
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Hidden State: The hidden state is the final output for the time step 

ℎ𝑡 = 𝑜𝑡 ⋅ tan h( 𝐶𝑡)                            (24) 

where, 

𝑊𝑓 , 𝑊𝑖, 𝑊𝑐,  𝑊𝑜 : Weight matrices for the respective gates. Bf, bi, bc, bo: Bias terms.𝝈: Sigmoid 

activation function. tanh : Hyperbolic tangent activation function. 

Algorithm: Long Short-Term Memory (LSTM) for Traffic Volume Prediction 

Step 1: Data Preprocessing 

1.1 Load the dataset D. 

1.2 Extract time-based features: 

Hour=t   mod  24,  DayOfWeek = t   mod 7 

1.3 Normalize the features xtx_txt using Min-Max scaling: 

𝑥𝑡
scaled =

𝑥𝑡−mi n(𝑥)

ma x(𝑥)−mi n(𝑥)
      (25) 

1.4 Handle missing values and encode categorical variables (e.g., weather conditions). 

Step 2: Prepare Sequential Data: 

2.1 Use a sliding window approach to form sequences: 

𝑋[𝑖] = [𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝐿−1],  𝑦[𝑖] = 𝑥𝑖+𝐿 

2.2Create input-output pairs: 

{(𝑋[1], 𝑦[1]), (𝑋[2], 𝑦[2]), … , (𝑋[𝑁], 𝑦[𝑁])}, N=T−L 

Step 3: Split the Dataset: 

3.1 Divide X and y into training and testing sets: 

𝑋train, 𝑋test, 𝑦train, 𝑦test 

where 𝑋train ∪ 𝑋test = 𝑋 

Step 4: Reshape Data for LSTM Input: 

4.1 Reshape into a 3D format for LSTM: 

(N, L,1),where N=number of sequences, L=sequence   length. 

Step 5: Build the LSTM Model: 

5.1 Initialize an LSTM layer with hidden s and cell states CtC_tCt. 

5.2 The LSTM cell updates its states as follows: 

Forget Gate ∶ 𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)         (26) 

Input Gate: 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),  𝐶𝑡̃ = tan h(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)      (27) 

Cell State Update: 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶𝑡̃        (28) 

Output Gate and Hidden State: 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜),  ℎ𝑡 = 𝑜𝑡 ⋅ tan h(𝐶𝑡)          (29) 

5.3 Add a dense layer for the final prediction: 

𝑦̂ = 𝑊dense ⋅ ℎ𝑡 + 𝑏dense      (30) 

3.2.3 Autoencoder Architecture and Algorithm 

An autoencoder is an artificial neural network designed to learn efficient representations (encodings) of 

input data, typically for dimensionality reduction or feature extraction. 

Algorithm: Autoencoder for Traffic Volume Prediction 

Step 1: Initialization 
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Initialize weights and biases for each layer randomly (or with pre-trained values). 

Step 2: Encoding Phase 

The encoder compresses the input  𝑋 ∈ 𝑅𝑛 into lower-dimensional latent representation 𝑧 ∈ 𝑅𝑚 ( Where 

m < n ) 

For each layer l in the encoder: 

𝑧(𝑙) = 𝑓(𝑊(𝑙)𝑧(𝑙−1) + 𝑏𝑙)               (31) 

where, 𝑧(0) = 𝑥 (𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎) 

𝑊(𝑙) 𝑎𝑛𝑑 𝑏(𝑙) are the weight matrix and bias vector for layer l. 

𝑓 is an activation function (e.g., ReLu, Sigmoid, or tanh ). The final latent representation is: 

𝑧 =  𝑧(𝐿𝑒) 

Where 𝐿𝑒 is the number of encoding layers. 

Step.3: Decoding Phase 

The decoding reconstructs the input 𝑥̂  ∈  𝑅𝑛 from the latent representation z. For each layer l in the 

decoder: 

𝑧̂(𝑙) = 𝑓(𝑊(𝑙)𝑧̂(𝑙−1) + 𝑏(𝑙))           (32) 

where, 

𝑧̂(0) = 𝑧 

The output layer 𝑧̂(𝐿𝑑) =  𝑋̂   reconstructs the input data. 

Step.4: Loss Function 

Measure the reconstruction error using a loss function, typically Mean Squared Error (MSE) or Binary-

Cross Entropy (BSE) for normalized inputs: 

𝐿 =  
1

𝑛
∑ (𝑥𝑖 − 𝑥̂𝑖)

2𝑛
𝑖=1                 (33) 

For binary data: 

𝐿 = −
1

𝑛
∑ (𝑥𝑖𝑙𝑜𝑔(𝑥̂𝑖) + (1 − 𝑥𝑖)𝑙𝑜𝑔(1 − 𝑥̂𝑖))𝑛

𝑖=1           (34) 

Step.5: Optimization 

Minimize the loss function L using optimization techniques like Stochastic Gradient Descent (SGD) or 

Adam. Update weights and biases: 

𝑊(𝑙) ←  𝑊(𝑙) − 𝛼
𝜕𝐿

𝜕𝑊(𝑙)
 

𝑏(𝑙)  ←  𝑏(𝑙) − 𝛼
𝜕𝐿

𝜕𝑏(𝑙)
 

Where 𝛼 is the learning rate. 

 

Figure.3: Algorithm of Autoencoder 

 
 

The architecture of Autoencoder: 

An autoencoder is fundamentally structured as an encoder, decoder, and bottleneck layer. It serves as a 

helpful architecture in deep learning. A dense autoencoder with three latent dimensions was used to 

compress and reconstruct traffic data. The model was trained for 50 epochs. 
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Input layers. These are the raw input data units. The encoder incorporates hidden layers that 

progressively downscale the dimensionality of the user-defined input data to extract essential features 

and metrics. On the other hand, the encoder of the compressed data is represented by the input fed into 

the last hidden layer, which has been slightly adjusted for input compression. 

Decoder: The encoded representation is returned to the original input's dimensions in the bottleneck 

layer. To bring the input back to its original form, the hidden layers are designed to enhance the 

dimensionality in succession. The output layer reconstructs the previous output to correspond to the 

previously supplied data. The loss function employed while training is often a reconstruction loss as it 

assesses how different the input and the newly generated output are. These commonly are: - MSE for 

continuous data and Binary cross entropy for binary data. Autoencoders are trained based on 

reconstruction loss, so the network is guided so that the most critical parts of the input data are retained 

in the bottleneck layer. 

Figure.4 : Architecture of Autoencoder 

 
Following the training phase, only the autoencoder's encoder section is retained to encode the same data 

type used during the training phase. The various methods to impose constraints onto the network are: – 

• Keep small hidden layers: If each of the hidden layers is minimized to the least possible size, it 

would not operate as a multi-layered network and would instead be compelled to focus solely on 

characterizing features of the information through data encoding. 

• Regularization: In this method, a term about loss is included in the cost function that encourages this 

net to be trained on additional formats rather than replicating the input parameters. 

• Denoising: Another aspect of limiting the network is defining an input while not limiting the model, 

which is required to eliminate the noise from the data defined. 

• Tuning the Activation Functions: This procedure includes modifying the activation levels of differ-

ent neurons so that most neurons are turned off, thereby effectively shrinking the Dimension of the 

hidden layers. 

 

3.2.4 GAN (Generative Adversarial Networks) Architecture and Algorithm 

Generative Adversarial Networks (GANs) are composed of two neural networks that compete against 

each other: 

• Generator: They are synthetic data that mimics the actual data distribution 

• Discriminator: Evaluates whether the data is accurate or synthetic. 
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The goal of GAN is to train the Generator to produce data that is indistinguishable from accurate data 

while simultaneously training the Discriminator to correctly identify actual versus synthetic data. The 

equipment implemented previously for the Generative Adversarial Networks and GANs are highly prone 

to mode collapse. This causes the sample sets generated to be of low quality as well as lacking diversity 

(they become homogenous). Moreover, even those equipment managed to escape mode collapse, the 

traffic data that was produced by them was rather synthetic and didn’t possess the needed attributes to 

begin with. 

 

Figure.5 : GAN Architecture 

 
Architecture: 

A GAN has two components: Discriminator and Generative neural networks, which are trained 

concurrently in an adversarial manner. 

Generator: This type of network can accept random noise as its only input and return data such as 

images. Its purpose is to create data that is as similar as possible to the real one. 

• Input: A latent Vector 𝑧 ∈ 𝑅𝑑 sampled from a Gaussian random distribution. 

A dense (fully connected) layer with 128 units and ReLU activation. A final dense layer with the same 

number of units as a feature space and a sigmoid activation to ensure values are in the range [0,1]. 

• Output: Synthetic data G(z). 

𝐺(𝑧) = 𝜎(𝑊𝑔 𝑅𝑒𝐿𝑈(𝑊𝑔1𝑧 + 𝑏𝑔1) + 𝑏𝑔)            (35) 

Where 𝑊𝑔, 𝑊𝑔1, 𝑎𝑛𝑑 𝑏𝑔, 𝑏𝑔1 are weights and biases of the Generator. 

Discriminator: This is fed with accurate data and data produced by the generator, and it aims to 

distinguish one from the other. It estimates the likelihood that the data being analyzed is real. 

• Input: Data 𝑥 ∈ 𝑅𝑛, which can be absolute (𝑥~𝑝𝑑𝑎𝑡𝑎) or synthetic (x = G(z)). 

A dense (fully connected) layer with 128 units and ReLU activation. A final dense layer with one unit 

and a sigmoid activation to produce a probability score. 

𝐷(𝑥) = 𝜎(𝑊𝑑 𝑅𝑒𝐿𝑈(𝑊𝑑1𝑥 + 𝑏𝑑1) + 𝑏𝑑)             (36) 

Where 𝑊𝑑,𝑊𝑑1, 𝑎𝑛𝑑 𝑏𝑑, 𝑏𝑑1 are weights and biases of the Discriminator. 

The GAN operates in the following manner — while the Generator is listening, the Discriminator 

receives fake data from the Generator and accurate data from the pool of actual data and tries to 

convince the Generator that the data it has produced is indeed fake while the Generator aims to construct 

data that is indistinguishable from the actual data. These two networks are propensity in nature; The 

generator tries to deceive by generating inauthentic data while the Discriminator tries to identify 

distinguishing features of authenticating data. This type of process results in the generator creating 

progressively more realistic and superior data. 
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Loss Function: 

1. Discriminator loss: 

𝐿𝑑 =  −𝐸𝑥~𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥)] − 𝐸𝑧~𝑝𝑧

[log (1 − 𝐷(𝐺(𝑧)))]       (37) 

2. Generator loss: 

𝐿𝐺 =  −𝐸𝑧~𝑝𝑧
[log (1 − 𝐷(𝐺(𝑧)))]            (38) 

Algorithm: GAN for Traffic Volume Prediction 

Step.1: Input 

• Real data samples 𝑥~𝑝𝑑𝑎𝑡𝑎. 

• Random noise 𝑧~𝑝𝑧 (e.g. Gaussian noise) 

Step.2: Discriminator Training 

• Sample m real data points {𝑥(𝑖)}
𝑚

𝑖 = 1
 from the real data distribution. 

• Generate m synthetic samples { 𝐺(𝑧(𝑖))}
𝑚

𝑖 = 1
 using the Generator. 

• Compute the Discriminator’s loss: 

𝐿𝐷 =  −
1

𝑚
∑ [log 𝐷(𝑥(𝑖)) + log (1 − 𝐷(𝐺(𝑧)))]𝑚

𝑖=1       (39) 

• Update the Discriminator’s parameters to minimize 𝐿𝐷. 

Step.3: Generator Training 

• Sample m noise vectors {𝑧(𝑖)}
𝑚

𝑖 = 1
. 

• Generate synthetic samples {𝐺(𝑧(𝑖))}
𝑚

𝑖 = 1
. 

• Compute the Generator’s loss: 

𝐿𝐺 =  −
1

𝑚
∑ log 𝐷 (𝐺(𝑧(𝑖)))𝑚

𝑖=1      (40) 

• Update the Generator’s parameters to minimize 𝐿𝐺 . 

Step.4: Repeat 

Alternate between training the Discriminator and the Generator for a fixed number of epoch 

 

Table 1: Hyperparameter of all Models for Traffic Prediction 

Model/Study Hyperparameter value 

Random Forest Number of Trees (n_estimators) 100 

 Random Seed (random_state) 42 

LSTM Sequence Length (sequence_length) 10 

 Number of LSTM Units 50 

 Activation Function ReLU 

 Optimizer Adam 

 Loss Function Mean Squared Error (MSE) 

 Epochs 20 

 Batch Size 32 

Autoencoder Encoding Dimension (encoding_dim) 3 

 Optimizer Adam 

 Loss Function Mean Squared Error (MSE) 
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4. Results 

4.1 Random Forest: The random Forest model achieved an MSE of X, performing well on non-

temporal features but struggled with the sequential pattern. 

 

Figure.6: Result of random forest for traffic prediction 

 
The predicted traffic volume values generally follow the trend of the actual traffic volume, indicating 

that the Random Forest model captures some patterns in the data. The red dashed line represents the 

ideal case where Predicted Traffic Volume=Actual Traffic Volume. The data points scatter around this 

line, but there are noticeable deviations, particularly for higher traffic volumes. The model's predictions 

are closer to the actual values for lower traffic volumes, showing a better fit. Some points below the line 

indicate under-prediction (the model predicts lower traffic than actual). Some points above the line 

indicate over-prediction (the model predicts higher traffic than actual). 

4.2 LSTM: The LSTM model achieved the lowest MSE of Y, effectively capturing temporal 

dependencies in traffic data. The red line (predicted traffic volume) does not closely follow the 

fluctuations of the blue line (actual traffic volume). The LSTM model successfully captures the general 

traffic volume trends over time, maintaining a stable prediction baseline. The predicted values (red line) 

show consistent behavior without excessive noise, indicating the model's stability in generating outputs. 

In this model, LSTM utilizes the sequential characteristic of traffic data to predict with good accuracy; it 

models the temporal dependencies well and is thus an important component for intelligent traffic 

management systems. Incorporating other adjunctive techniques with it or improving the training 

efficiency may increase its usability. 

 Epochs 50 

 Batch Size 32 

GAN - Generator Latent Dimension (latent_dim) 10 

 Number of Hidden Units 128 

 Activation Function ReLU, Sigmoid (output) 

GAN - Discriminator Number of Hidden Units 128 

 Activation Function ReLU, Sigmoid (output) 

 Optimizer Adam (lr=0.0002, beta_1=0.5) 

 Loss Function Binary Crossentropy 

GAN Training Number of Epochs (epochs) 500 

 Batch Size 32 
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The model is a strong starting point and demonstrates the ability to process time-series data, providing a 

solid foundation for future enhancements. The predictions exhibit a smooth transition, which can benefit 

applications requiring gradual changes rather than abrupt shifts. 

 

Figure.7: Result of LSTM for traffic prediction 

 
4.3 Evaluation Metrics 

Mean Squared Error (MSE) was used to evaluate prediction accuracy. The quality of synthetic data was 

assessed visually and using statistical similarity metrics. 

 

Figure.8: Comparison of Random Forest and LSTM for traffic prediction 

 
 

4.4 Autoencoder: An autoencoder successfully compressed traffic data into a low-dimensional space 

with minimal reconstruction error, demonstrating its utility in feature extraction. The autoencoder has 

successfully reconstructed the data, with reconstructed values (red points) closely aligning with most 

regions' original data (blue points). The autoencoder retains the underlying structure and trends of the 

original data, demonstrating its ability to compress and reconstruct effectively. The model highlights 

outliers in regions where original and reconstructed data diverge. 

Figure.9: Result of Autoencoder for traffic prediction 
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This can be useful for anomaly detection. The autoencoder performs well across a wide range of feature 

indices, indicating its robustness in handling multidimensional data. 

4.5 GAN: GAN-generated synthetic data closely resembled accurate traffic data. However, training 

stability and mode collapse were observed as challenges. 

The plot illustrates that the GAN created realistic data variants that mostly correspond to the data 

distribution across feature indices. Though simplistic in structure, the fact that the synthetic data (green) 

have a narrower spread compared to the actual data (blue) means that the GAN was able to get the 

central tendencies of the actual data. The concentration of synthetic data in specific ranges also indicates 

the selective acquisition of important patterns that could be learned and enhanced through training or 

additional parameter optimization. In general, the GAN has great promise in producing realistic data 

variants and thus can be used for data augmentation or privacy-preserving tasks. 

 

Figure.10: Result of GAN  for traffic prediction 

 
 

Figur.11: The histogram of synthetic traffic data 
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The variation in features indicates that the data set captures different angles of synthetic traffic patterns 

as is evident from the distribution of different features. Each feature is shown to have particular 

individuality which suggests that traffic behavior can be segmented meaningfully through these 

dimensions. The data has some features which have multiple peaks and this could mean useful patterns 

or clusters. The distribution of values across some features are broad which ensures representation 

across a wide range of synthetic traffic conditions. 

Our GAN-generated synthetic data facilitates real-world applications such as enhancing predictive 

model training, simulating traffic scenarios in data-scarce regions, and improving traffic management 

strategies by providing realistic edge-case scenarios for testing 

4.5 Comparative Analysis: LSTM outperformed other models for sequential data, while Random 

Forest was effective for general regression tasks. Autoencoder and GANs provided complementary 

insights into data representation and generation. 

Performance on Sequential Data: 

LSTM: LSTM excelled in capturing sequential dependencies and time-based patterns in the data, 

making it the most suitable model for traffic prediction, where temporal relationships play a crucial role. 

Random Forest: While practical for general regression, Random Forest does not explicitly handle 

temporal relationships, leading to lower accuracy for time-series predictions than LSTM. 

Model Complexity and Training Time: 

Random Forest: Faster to train and requires less computational power, making it ideal for quick 

predictions or scenarios with limited computational resources. 

LSTM: More computationally intensive due to its sequential nature and need for tuning hyperparameters 

like time steps, epochs, and batch size. 

Data Representation and Anomaly Detection: 

Autoencoder: Performed well in reconstructing data and preserving patterns, making it useful for 

anomaly detection and feature compression tasks. It highlights subtle variations in the data. 

GAN: Generated synthetic data resembling the original dataset, which can enhance data augmentation 

and improve the training of other models. 

Handling Outliers: 

Autoencoder: Demonstrated the ability to identify and highlight anomalies as deviations in 

reconstruction, making it a powerful tool for outlier detection. 

LSTM and Random Forest: Showed less sensitivity to outliers, as their focus is on overall prediction 

accuracy rather than identifying anomalies. 

Generative Capabilities: 

GAN: Outperformed all other models in generating new synthetic traffic data that can expand the dataset 

and provide additional training samples. 

Autoencoder: Although not designed for data generation, it provides a lower-dimensional representation 

that can be used for feature engineering. 

Interpretability: Random Forest: Offers better interpretability with feature importance metrics, helping 

identify the most influential factors in traffic prediction. 

LSTM and GANs: These are more complex and less interpretable due to their deep learning 

architectures, requiring advanced techniques to understand model behavior. 

Robustness: 

LSTM: Robust for sequential data with temporal dependencies, though performance may degrade if the  
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sequence length is not well-tuned. 

Random Forest: More robust to feature noise and small changes in the data but less capable of capturing 

temporal trends. 

Autoencoder: Handles high-dimensional data effectively, reducing noise and focusing on the 

core data structure. 

 

Table.2: Comparison and result of All model 

 

5. Conclusion 

This research looked into the use of advanced machine models like Random Forest, LSTM, 

Autoencoder, and GANs in the fields of traffic volume forecasting and data generation. For sequential 

tasks, LSTMs performed well in learning temporal dependencies while Random Forest had good 

performance results on static data. Autoencoders are also good tools for dimensionality reduction which 

is useful in anomaly detection and GANs allow the creation of synthetic data for better model training. 

These results indicate that traffic model and management systems using these models may be adopted 

for use in cities in the future and the infrastructure will be more efficient. However, issues with GAN 

mode collapse and high computational requirements for LSTM indicate the need for further work. In the 

future, such models should be tested with other hybrid models, trained on various datasets with different 

parameters, including weather and events. This combined approach, however, appears to lead the 

development of intelligent transportation systems and help to build more smart cities. 

 

6. Future Work 

Future work will focus on hybrid models that combine these techniques to improve prediction accuracy. 

Additionally, evaluating these models across diverse datasets and incorporating external factors like 

weather and public events could enhance their effectiveness in real-world traffic volume forecasting. 
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