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Abstract: 

In this study synthesized manganese oxide (α-MnO2) nanoparticles with dual doping of cobalt (Co) and 

copper (Cu) nanorods. We investigated optimal conditions in Cu-Co nanorods doped with α-MnO2. The 

successful incorporation of cobalt and copper was anticipated using X-ray diffraction. The average 

particle size of dual doped α-MnO2 nanoparticles was estimated using XRD analysis. The functional 

group analysis was evaluated using FTIR Spectroscopy. 

                This co-precipitation approach provides advantages such as a simple and speedy preparative 

method, as well as easy control of particle size and composition, making it commercially frequently 

utilized due to its cost effectiveness. MnO2 is one of the most popular catalysis materials because to its 

unique qualities such as high activity, low cost, low toxicity, and environmental compatibility. 
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Introduction: 

Nanotechnology is the study and technology of materials with at least one of three dimensions less than 

one hundred nanometers. [1] Particles are important in study because of their distinct optical, structural, 

and magnetic properties. Several factors determine nanoparticle properties, including shape, size, 

composition, and structure [2]. Nanoparticle size is determined by their dimension and form, resulting in 

materials with consistent properties. Nanoparticle formation is dependent on a regulated core structure 

and size [3, 4]. Metal nanoparticles having a significant specific surface area have been extensively 

studied due to their distinct physical and electrical properties [5]. Manganese oxide nanoparticles have 

good physicochemical properties and can be employed in a wide range of applications, including 

catalysts, molecular sieves, batteries, magnetic materials, and more. The optical and electrical properties 

of produced manganese oxide nanoparticles are important aspects to consider for future research in solar 

cells [6]. 
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Transition metal oxide nanostructures have emerged as a viable electrode material for energy storage 

[7]. Manganese is a transition element with three different valence states, and its oxides are regarded 

very complicated [8]. Among the transition metal oxides, manganese exhibits multiple oxidation states 

and hence forms distinct oxides (MnO, Mn2O3, Mn3O4, Mn5O8, and MnO2) [9]. Nanoparticles, due to 

their large surface area, can perform both Faradic and Non-Faradaic charge transfer mechanisms. Kumar 

et al. and Balamurugan generated nanocrystalline manganese oxide nanoparticles with tetragonal 

structure via co-precipitation with two distinct anions salts (sulphate monohydrate and oxalate) [10, 11]. 

Wu et al. found that hydrothermal synthesis could generate many morphologies of MnO2 nanostructures, 

including α-MnO2 nanorods, nanotubes, and nanowires [12]. In this regard, manganese oxide (MnO2) 

with its tetragonal structure and (2x2) tunnelled type Hollandite (alpha) network makes it a promising 

option for supercapacitor applications [13]. α-MnO2 is most relevant due to its great chemical stability 

and long cycle life when used in electrochemical capacitors. [14]. 

Co oxidation was also observed on copper and manganese oxide, with the presence of Cu2+ and Mn3+ 

[15] Copper doped MnO2 is the insertion of copper ions (Cu2+) into the crystal structure of MnO2. This 

doping procedure involves replacing some of the Mn atoms. With Cu atoms, changing the composition 

and characteristics of MnO2. Copper doping can improve total conductivity by enabling charge transport 

inside the crystal lattice [16]. Cobalt is thought to be one of the most promising metal cations. Cobalt 

was discovered to be one of the most promising metal cations. Incorporating Co ions into MnO2 

produces a greater pseudo capacitance of cobalt oxide. Co-doped MnO2 nanoparticles show a significant 

increase in electrode conductivity, and studies based on Co-MnO2 suggest that it could be a viable 

electrode material for several high capacitive applications. [17] MnO2 has various structural forms, 

including α, β, γ, δ, ε, and λ. The fundamental structural unit (MnO6 Octahedron) is linked in various 

ways. [18] 

MnO2 nanoparticles can be prepared using either top-down or bottom-up processes. The top-down 

technique is not commonly used due to the high preparation cost and structural defects in the generated 

nanoparticles [19]. Most researchers prefer the bottom-up technique, which produces particles of 

homogeneous size and morphology. The wet chemical method is utilized to synthesize MnO2 

nanoparticles. This study focuses on summarizing the most commonly used wet chemical procedures, 

including hydrothermal [20], redox process [21], sol gel method [22], thermal reflex process [23], 

chemical precipitation method [24], and green synthesis method [25]. 

 

2. Experimental part 

2.1. Chemical 

The chemicals Manganese chloride tetrahydrate (MnCl2.4H2O), copper nitrate trihydrate 

(Cu(NO3)2.3H2O), cobalt nitrate hexahydrate (Co(NO3)2.6H2O)  and sodium hydroxide (NaOH) were 

used the raw materials. 

2.2. Synthesis of pure and dual doped  -MnO2 nanorods 

For the synthesis of dual doped α-MnO2 nanorods, 0.98 g of MnCl2.4H2O was dissolved in a beaker 

containing 50 ml of distilled water under ambient temperature. Then, 0.14 g of Cu(NO3)2.3H2O prepared 

in 20 ml aqueous was mixed with the above solutions drop by drop under a magnetic stirrer for 20 mins. 

Further, Co(NO3)2.6H2O  of preferred molar ratios like 0.01, 0.02, 0.03, and 0.04 M prepared in 20 ml 

aqueous were mixed drop by drop. Finally, 0.2M of NaOH pellets were added and poured into the above 

solution till the pH value reached ~9. The entire solution was continuously agitated for 2 hrs and heated 

https://www.ijfmr.com/
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at 80oC. To remove contaminants, the precipitate was washed multiple times with distilled water and 

ethanol after being filtered. The obtained final product was dried in hot air oven for 6 hours at 60°C and 

samples were subsequently calcinated at 450oC for 7 hrs. The annealed powders were pulverized into 

fine particles using an agate mortar for further characterization. 

 

3. Characterization techniques 

The structural properties of prepared pure and dual doped α-MnO2 nanorods was studied by  

X-ray diffraction technique using Philips powder diffractometer (1729 PW) equipped with a 

monochromatic CuK radiation source (λ=1.5406Å) for 2 varying from 20o-60o. The FTIR 

spectroscopy with the Thermo Nicolet 380 equipment was used to investigate the vibrational bands of 

synthesized materials. 

Results and discussion 

3.1. Structural analysis 

The structural analysis of  pure and α-MnO2(0.95-x) Cu2+
(0.05) Co(x) nanorods with different concentration 

levels of cobalt doping (x= 0.01, 0.02, 0.03 and 0.04 M) are displayed in Fig. 1. The observed diffraction 

peaks are widened and high intensity suggested that prepared samples are well crystalline in nature. 

Also, the XRD spectra of all diffraction peaks were well accordance with the tetragonal crystal structure 

(JCPDS card no. 41-0141). The pure sample showed the diffraction peaks were related to the 

characteristic peaks of α-MnO₂ nanorods [26]. The characteristic peaks intensity was increased with 

increasing Co concentration upto 0.03M. The observed diffraction peaks located at 18.08o, 28.74o, 

36.58o, 37.72o, and 49.90o, corresponding to the (220), (310), (400), (211) and (411) planes, 

respectively. These results indicated that the Co doped samples did not alter the crystal structure of -

MnO2:Cu nanoparticles at lower concentrations. The lack of secondary peaks demonstrated the 

successfully incorporation of Co2+ ions into the host lattice, where they occupied Mn2+ without 

disrupting the tetragonal structure. Additionally, no characteristic peaks of cobalt oxide or cobalt 

hydroxide were observed up to 0.03M Co incorporation, which revealed that the dopant is well 

integrated into the lattice site during the preparation process. Further, the Co concentration was slightly 

raised to 0.04M, and the diffraction peaks intensity decreased. 

The Debye-Scherrer’s formula was used to evaluate the crystallite size of prepared samples [27]. 

D= 
kλ

βcosθ
     (1) 

where, λ was wavelength of the X-ray (λ=1.5406 Å),  was the angle of the diffraction, k was shape 

factor, and  was full width half maxima of the peak. According from the Table. 1 indicated that the 

crystallite size of the dual doped α-MnO2 nanorods decreased from 18 to 10 nm with increasing Co 

concentrations. The decreased crystallite size with increasing Co concentrations due to the observed 

diffraction peaks was broader. Also, the lattice constant was significantly raised when dual doped into 

the α-MnO2 crystal structure, which results in lattice distortion and a further decreased crystallite size. 

The lattice constant of the synthesized samples were estimated using the equation [28], 

𝑎 =  
𝜆√ℎ2+𝑘2+𝑙2

2 𝑆𝑖𝑛𝜃
     (2) 

where, hkl is the miller indices of the crystal and d is interplanar spacing. The estimated values for 

lattice constant were observed to be in the range of (a) 9.772–9.787 and (c) 2.853-2.866 Å for pure and 

dual doped α-MnO2 nanorods, respectively.  A small variation was observed in the lattice constant 

values with an increase in the Co2+ ratio, and it was in reasonable agreement with the JCPDS values. 

https://www.ijfmr.com/
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The dislocation density and microstrain of pure and dual doped α-MnO2 samples were determined by 

following the formulae [29,30], 

𝛿 =  
1

𝐷2      (3) 

(ε) = 
β

4 tan θ
      (4) 

The dislocation density values increased with raising Co content attributed to decreased crystallite size. 

The calculated strain values increased with increased Co ratio due to the radius of Co2+ ions is 

significantly higher than that of Mn2+ ions, resulting in system instability. 

 

 

Fig. 1. XRD pattern of pure and dual doped - MnO2 nanorods. 

 

 

Table 1. The structural parameters for dual Cu-Co doped  α-MnO2  nanoparticles. 

Samples Crystallite 

size 

(D) nm 

Dislocation 

density (δ) x 

1015  

(lines/m2) 

Micro 

strain (ε) 

Lattice 

constant  (a)  Å 

a c 

Pure α-MnO2 

 

18 3.0864 0.5087 9.772 2.853 

α-MnO2:Cu(0.02M) :Co(0.01M) 

 

15 4.4450 0.7906 9.776 2.855 

α-MnO2:Cu(0.02M) :Co(0.02M) 13 5.9172 0.8214 9.781 2.860 
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α-MnO2:Cu(0.02M) :Co(0.03M) 12 6.9445 0.8472 9.784 2.865 

α-MnO2:Cu(0.02M) :Co(0.04M) 10 10.0012 1.0245 9.787 2.866 

 

3.2. FTIR analysis 

 

Fig. 2. FTIR spectra of pure and dual doped -MnO2 nanorods. 

 

The molecular vibration characteristics of the α-MnO2 nanorods with varying structures were 

investigated by recording FT-IR spectra. Fig. 2 displays the absorption bands measured in the range of 

400–800 cm-1 were caused by the vibrations of Mn–O and Mn–O–Mn, which were clearly observed in 

the spectra of all four samples. The stretching vibration of the H2O molecule and OH− in the lattice was 

responsible for the broad peak at 3434 cm-1. The Co2+ and Cu2+ dual doped α-MnO2 nanorods exhibited 

the strongest stretching vibration, while the OH−/H2O stretching peak of the α-MnO2 nanorods was 

nearly impossible to distinguish [31,32]. The phenomena can be attributed to the direct binding of 

hydroxyl groups and interlayer hydrates to the intercalated metal ions in the interlayer. The absorption 

band detected at 1646 cm-1 which is due to bending vibration.  Also, the small absorption band detected 

at 2925 cm-1 can be attributed to the C-H stretching mode [33]. Compared to pure  α-MnO2 sample, dual 

doped samples intensity decreases along with characteristic peaks were shifted in lower angel side. The 

aforementioned phenomenon indicates that the phase of α-MnO2 varies with metal intercalation, and the 

structure change was activated in a different content or manner by Co2+ and Cu2+ due to their varying 

valence and doping amounts. The XRD results were further confirmed by the FTIR results, which 

showed that no impurity phase was observed. 

 

4. Conclusion 

https://www.ijfmr.com/
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-MnO2 nanorods. Co-Cu-doped MnO2 nanorods were produced using chemical precipitation and 

examined for structural and functional groups. Structural investigation revealed the tetragonal structure 

of -MnO2, supporting XRD findings at all Co concentrations. We successfully developed an electrode 

material for supercapacitor applications that utilizes pure and cobalt-copper dual doped  Nanorod-like 

structures were seen in both pure and dual-doped -MnO₂ samples. The length/diameter of the nanorods 

decreased as Co concentration increased. 
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