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Abstract

In this paper, we discuss all the Hamming distances of (a + uf)-constacyclic codes of 4p° length over
the finite chain ring R = F,m + uF,m with u® = 0. Using the structures of (a + uf)-constacyclic
codes of length 4ps over R, the Hamming distances of all constacyclic codes of length 4p® over R are
determined. We provide some parameters of good codes over R as examples, from which some are new
in literature.
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1 Introduction

The constacyclic codes make a most important class of linear codes in theories of error-correcting codes
because they generalize the structural properties of cyclic codes, which are the most studied family of
linear codes till now due to their rich algebraic structures. These codes also have practical fulfillment due
to their encoding simply with shift registers. Nowadays, there has been a great curiosity in the study of the
constacyclic codes for the coding theorists.

Let A be a unit in a finite commutative ring R = Fpm 4+ ulF,m; u® = 0. Then A-constacyclic codes of

Rlx] > Constacyclic codes are said to be simple-root

(oc4P° -
constacyclic codes if gcd(n, p) = 1 and repeated-root constacyclic codes if gcd(n,p) = p.

The repeated-root constacyclic codes were first introduced by Castagnoli et al. [18] and van Lint [19] in
1991. Although these codes are asymptotically bad but there exist some optimal codes which motivate
researchers to work further on these codes. Later, lot of researchers studied the repeated-root constacyclic
codes over finite fields [13, 14, 15, 16, 17, 18, 19] and finite chain rings [1, 2, 8, 9, 10, 11, 12].

The structures of constacyclic codes of p®, 2p®,3p®, 4p® over [F,m were determined by Dinh in a series
of papers [12, 13, 14, 15]. In [12], Dinh obtained all the Hamming distances of cyclic codes of length p®
over F,m. Later, in [16], Ozadam et al. computed the Hamming distances of all cyclic codes of 2p®
length . The Hamming distances of cyclic codes of length 3p® were determined in [17]. In [3], based on
the weight-retaining property of polynomials, Lopez-Permouth et al. determined the Hamming distances
of some classes of constacyclic codes of length np® over the finite field [F,=. Later, in [5], Dinh et al.
computed all the Hamming distances of the constacyclic codes of length 4p° over [F,m.

length 4p° are ideals of the ambient ring R, =
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The class of finite commutative chain rings of the form F,m + ulF,» has been widely used as alphabets
of specific constacyclic codes.

In a series of studies [1, 8, 9, 10, 11, 12], Dinh et al. established the structures of some classes of
constacyclic codes of certain lengths over [F,m + ulF,m. In [2], Guenda et al. determined the algebraic

F_m
structures of constacyclic codes of length wp*® in generalized form over the finite ring ’ETF;L] However, a

minimal amount of work has been done on the computation of the Hamming distances of constacyclic
codes due to computational complexity. In [1], Dinh determined all the Hamming distances of (a +
upf)-constacyclic codes of length p® over R using the results of [3, 15]. Later, in [4], Dinh et al.
determined the Hamming distances of all y-constacyclic codes of prime power length over R.

The rest of this paper is organized as follows. Section 2 contains the structures of all (a + uf)-
constacyclic codes of length 4p* over F,m + ulF,m and some other preliminary results. In Section 3, we
compute all the Hamming distances of (a + uf)-constacyclic codes of length 4p® over R. In section 4,
we provide some examples for different units of R. In section 5, we explore all maximum distance
separable (a + uf)-constacyclic codes of length 4ps over R and we conclude the paper in section 6.

2 Preliminaries

Let R = F,m 4+ ulF,m;u® = 0 be a finite commutative ring, where p is an odd prime. The ring R can
_ lem[u]

also be expressed as R = e

ub | a,b € Fym,u? = 0}. THe ring R has p™(p™ — 1) units, which are of two types 1 = (a + up)

and A =y; where a,,y €F ,m. Acode C of length n over R is a non-empty subset of R™ and C is

linear over R if it is an R-submodule of R™. Let A be a unit in R and t; be a map from R™ to R"
given by

, Where p is prime. The elements of R can be represented as {a +

72(Co, €15+, Cn—1) = (ACp—1,Co) - -+, Cn—2)
A linear code C over R is A-constacyclicif 7,(C) = C. The code C is called cyclic and negacyclic code
over R accordingas 1 =1 and A = —1 respectively.

The codeword e = (ey,eq,...,e,-1) EC can be expressed as the polynomial e(x) =e, +
R[x]

(xm=2)’

Let C be a code of length n over R and a codeword e = (e, ey, ..., €,—1) € R™. Then, the Hamming

weight wty(e) of a codeword e is the number of nonzero components i.e.
n—1

wty(e) = Z wty(e;) ; where wty(e;)) =1 if e; # 0 and wty(e;) =0 if ¢; = 0.
0

e x+...+e,_1x" 1 of

The minimum weight of a code C is denoted by wty(C) and is the smallest weight among all its nonzero
codewords. The Hamming distance of C is defined by dy(C) = min{wty(e)|e # 0,e € C}.
The following proposition is one of the important result for the constacyclic codes.

Proposition 2.1 [7] Alinear code C of length n over R is A-constacyclic code over R ifandonlyif C
R[x]

(xm=2y

In [2], Guenda et al. discussed the structure of repeated-root constacyclic codes of general length wp*®
over Fp' +uFy' +--4+u'Fy' with u®=0 . Here, we present those structure for (a+

uf)-constacyclic codes of length 4p° over R.

is an ideal of
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Theorem 2.2 [2] Let gcd(w,p) =1 and A = (a + up) suchthat @ = a;”" € Fym

and B # 0. Then, x**° —a = [1,g; fl”s factors uniquely as the product of irreducible polynomials in
F,m and R is a principle ideal ring whose ideals are generated by

(| ] A

lejcI
where 0 < s; < 2p°.
From the above Theorem, structures of all (a + uf)-constacyclic codes of length 4p° over R are
summarized as following in Table I:

Table I: Strucures of (a + up)-constacyclic codes of length 4p*

Structure |p,m Type of A Generator of (a + ufl)-constacyclic codes
| p™ = 3(mod4) R isasquare ((x — ap)'(x + ag)’ (x? + ap?)¥)
T p™ = 3(mod4) |4 is non-square ((x? 4 26x + 28%)!(x? — 26x + 252)7)
I p™ = 1(mod4) R is a square of the| ((x — ay) (x + @)’ (x — nay)*(x + nay)t)
form 1 = A¢
\Y; p™ = 1(mod4) W is a square of the ((x% — ap) ' (x? + ap)’)
form A= 1% such
that Ao IS
non-square.
vV p™ = 1(mod4) |1 is a non-square. ((x* — ap)")

Theorem 2.3 Let C be a (a + up)-constacyclic code of length 4p® over R, then the number of
codewords of C, is determined as follows.

o If € = ((x — ap)'(x + ap)’ (x2 + ay?)¥), then |C| = p™@P°~i=j=2k),

o If C = ((x? + 26x + 26%)(x? — 26x + 26%)7), then |C| = p™@P ~2i=2)),

+1If € = ((x — )" (x + o) (x = nag)* (x + 1ag)"), then [C| = pmEP*=i=kD),

“If € = ((x® — ap)'(x* + ap)’), then |C| = pm(@P°~2i2]),

« If C = ((x* — ap)’), then |C| = pmEP* 4D,
The Hamming distances of A-constacyclic codes of length 4p® over F,m have been given in [3, 5]. We
are listing those results here as follows-

Theorem 2.4 [5] Let C = ((x — Ao) (x + A0)  (x2 + 2,2)¥)
dy(C) is determined by

Fpm [x]
(x*P°=2)

for 0<k<j<i<p*, and

o dy(C)=1ifi=j=k=0
e dy(C)=2/if k=0and 0<j<i<p’(butnoti=j=0)
¢ dy(C) = min{(p, + Dp"°, 2(p, + Dp"2},if p* —p*7 + (po — Dp* 07 +1 < i
<SP —p T popTTO TP —pT (- DT 415
Sp —pT TP = p TR 4 (o~ DT A 1<k
< ps _ pS—K2 + ,szS_KZ_l
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o dy(C) =2(p + Dp*2,if i =p°,p° —p* ™+ (py —Dp* ™ 1 +1<
SPLP =P TR (o — DpTTE T+ 1S k< pt—ptT 4 ppptTET
e dy(C)=0,ifi=j=k=p°
where 1 < pg,p1, 02 <p—1, 0<kKk, <K <Kky<s-—1
Remark 2.5 [5] It is easy to check that the corresponding case with k < i < j has the same Hamming
distances as Theorem 2.4 by symmetry.

Theorem 2.6 [5] Let C = ((x — Ao)!(x + A0)/ (x% + 1,2)¥) €

dy(C) is determined by
e dy(O)=1,ifi=j=k=0
e dy(C)=2/if j=k=0and 1<i<porj=0and 1<k<i<ps?
e dy(C)=3,if j=0, 1<k<2p5tand p1+1<i<2ps?
e dy(C)=4,if j=0and 1<k <psand 2p51+1<i<p’
¢ dy(C) =min{(p, + D)p*°, 2(p; + Dp*1,4(p, + Dp'2},if p* —p* 0 + (p — Dp* ™t +1 <
Sp—pT +pop TP —pT A+ (DT + 1<k
Sp =Pt pp TP = pTR 4 (o~ DT A1 S
< ps _ pS—Kz + pzps—}cz—l
 dy(C) =min{(2(p; + Dp', 4(p; + Dp"2},if i = p*,p° —p* ™ + (o, — Dp* 7t + 1<k
Sp =P T ppT LT =T+ (o - DT+ 1S
< ps _ pS—Kz + pzps—xz—l
o dy(CQ)=4(p, + Dp2,if i=k=p%p°—p* "+ (p, —Dp* ™1 +1<
< ps _ ps—xz + pzps—xz—l
e dy(C)=0,ifi=j=k=p°
where 1 < pg, p1, P2 <p—1, 0<Kk, <kKk; <Kky<s—1.
Remark 2.7 [5] It is easy to check that the corresponding caseswith i <j <k,i<k<jand j<i<k
have the same Hamming distances as case j < k < i in the above Theorem 2.6. Theorem 2.8 [5] Let

_ 2 2Nif2 24 Fpm[x]
C={((x"+2x+25°)(x 286x +26°)) T
by

e dy(C)=1,if i=j=0

Fpm[x] . . s
D) for 0<j<k<i<p’, and

for 0 <j<i<p® and dy(C) is determined

e dy(C)=2ifj=0and 1<i<ps!
dy(C)=3,If j=0, and pS1+1<i<p’
dp(€) = min{(p, + 1)p*°,3(p; + Dp"1},if p°* —p*70 + (po — Dp* ™01 +1 < i
<SPS —p T popTTO TP —pT A+ (- DT 415
< ps _ pS—K1 + ,01pS_K1_1
du(C) =3(pr + Dp",if i=p°p*—p ™+ (pr —Dp* "7 +1<
< ps _ pS—K1 + ,01pS_K1_1
dy(C)=0,if i =j =p*
where 1 < pp,p1 <p—1,0<kKk; <ky<s—1.
Remark 2.9 [5] It is easy to check that the corresponding case with i < j has the same Hamming
distances as case j < i in the above Theorem 2.8.

Theorem 2.10 [5] Let C = ((x — ag)'(x + @)’ (x — nag)*(x + nay)t) €

[Fpm[x]

T for 0<l<k<

N
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j<i<p® and dy(C) is determined by
e dy(O)=1ifi=j=k=1=0
e dy(C)=2/if k=1=0and 0<j<i<p® (butnoti=j=0)orl=0and 1<k<j<i
< ps—l
o dy(C)=4,if 1=0, 1<k<j<pSand p'+1<i<p’
¢ dy(C) = min{(pe + 1)p*°, 2(p; + 1)p"?,4(ps + Dp*s},if p* —p 0 + (pp — p* " 1 +1 < i
<pS—p O+ pep T pt —pST + (py - DptTT 4 1<
S pS _ pS—K1 + plpS—Kl—l’pS _ pS—KZ + (pZ _ 1)pS—K2—1 + 1 S k
S pS _ pS—KZ + psz—Kz—l’pS _ pS—K3 + (p3 _ 1)pS—K3—1 + 1 S l
< ps _ pS—K3 + p3ps—1c3—1
« dy(C) = min{2(p; + 1)p"2,4(ps + Dps}if i =p°,p° —p* ™ + (py — Dp* ™71+ 1<
<pSp*—p T+ (b, - DpFTT + 1<k
S —p TR A popTTE L P —pTR 4 (o — DT T+ 1<
< ps _ pS—K3 + p3ps—x3—1
o dy(C)=4(ps+ Dpsif i=j=k=p°p°—p 7+ (p3 —Dp* ™1 +1<1
< ps _ pS—Kg + p3ps—1c3—1
« dy(C)=0,ifi=j=k=1=p°
where 1 < pg,p1, 02,3 <P—1, 0<Kk3 <k, <Ky <Kky<s—1.
Remark 2.11 [5] It is easy to check that the corresponding caseswith k < I <j<i, k<I<i<]j, I <
k<i<j,j<i<I<k,i<j<k<!l,i<j<IlI<kand j<i<k<! have the same Hamming
distancesas | < k < j < i in the above Theorem.

Theorem 2.12 [5] Let € = ((x — ag)*(x + ag)’ (x — nag)*(x + nay)') S

k <i<p® and dy(C) is determined by
e dy(C)=1)ifi=j=k=1=0
o dy(C)=2,if j=k=1=0and 1<i<porl=0and 1<j<k<i<ps!
e dy(C)=3,if j=1=0, 1<k<psand ps'+1<i<pSor =0,
1<j<k<2psland p>1+1<i<2ps?
e dy(C)=4,ifl=0, 1<j<k<p’and 2p'+1<i<p’
* dy(C) = min{(py + 1)p"°, 2(p; + 1)p"1,3(p2 + Dp*2,4(ps + Dp™3},if p* —p* 7 + (po
_ 1)ps—xo—1 +1<i< ps _ pS—KO + popS_KO_l,pS _ pS—Kl + (pl _ 1)ps—x1—1 +1
<SSP P A pptTTLp - pT 4 (o — DpT T + 1<k
<SP P TR A pepTTE L P —p TR (o — DT T+ 1<
< ps _ ps—x3 + pgps—x3—1
e dy(C) = min{2(p; + 1)p™, 3(p2 + 1)p"2,4(p3 + Dp*s},if i
=p5p*—p* T+ (o - Dp*T T+ 1<
< ps _ pS—K1 + plps—xl—l’ps _ ps—xz + (pz _ 1)ps—xz—1 +1 < k
< ps _ ps—xz + pzps—xz—l’ps _ pS—Kg + (P3 _ 1)ps—x3—1 +1 < l
S pS _ pS—K3 _|_ p3pS_K3_1
« dy(C) =min{3(p, + Dp"?,4(ps + Dp*s}if i =j =p°,p° —p° ™+ (p, - Dp*™ '+ 1<k
S pS _ pS—K2 + ,szS_KZ_l,pS — pS—K3 + (p3 _ 1)pS—K3—1 _|_ 1 S l
< ps _ ps—x3 + pgpS_K3_1

IFpm [x]
(x*P°=2)

for 0<1<j<
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© dy(C) =4(ps + Dp™,if i =j =k =p°p°—p*™ + (p3 -~ Dp* 71 +1<1
Sps_ps—x3+p3ps—x3—1

e dy(C)=0,ifi=j=k=1=p°
where 1 < pg,p1, 02,3 <P—1, 0<Kk3 <Ky, <Ky <Ky<s—1.
Remark 2.13 [5] It is easy to check that the corresponding cases with j <[ <k <i,j<k<I<i,k <
JSISLI<i<k<},i<k<I<j,k<i<I<},i<I<k<j,Il<i<j<klI<j<i<ki<
JS<I<kj<I<i<kk<j<i<li<k<j<Lk<i<j<landj<k<i<I have the same
Hamming distances as case | < j < k < i in the above Theorem.

i . F._m
Theorem 2.14 [3] Let C = ((x? — ay?)!(x? + ay?)’) S (xfps[_x,]n

for 0<j<i<p® and dy(C) is

determined by
e dy(C)=1,ifi=j=0
e dy(C)=2,if j=0and 1<i<p°
* du(C) = min{(po + 1)p*°, 2(py + Dp"1},if p* —p 7" + (po — Dp* ™ 1 +1 <
<p°—p O+ pep* Tt —pST U+ (py — DptTTT 4 1<
< ps _ pS—K1 + plps_Kl_l
« dy(0) =2(py + Dp"if i=pSp° —p* "+ (p —Dp* "7 +1<
< ps _ pS—K1 + plps_Kl_l
e dy(C)=0,ifi=j=p°
where 1 < pg,p1 <p—1,0<K; <Ky <s-—1.
Remark 2.15 [3] It is easy to check that the corresponding case with i <j has the same Hamming
distances as case j < i in the above Theorem.

Theorem 2.16 [12] Let C = ((x* — ap)') S (Fpm[x]), for i € {0,1,...,p"}, then the Hamming distance

(4P —q)
dy (C) is completely determined by

e dy(C)=1,ifi=0

o dy(C) =po + Dp*e,if p* —p*7 + (pg — Dp* 071 + 1 < i < p’ —p 0 + pop* 7ot

e dy(C)=0,if i =p°

where 1<p,<p—-1,0<kK, <s-—1

In the following, we consider the Hamming distances of (a + uf)-constacyclic codes for all structures in
Table I.

3 Hamming Distances of (a + up)-constacyclic codes of length 4p® over R = Fp,m + ulF,m
Structure I: p™ = 3(mod4) and A = (a +up) isasquarein R.

In this case, there exists a, € F,m such that a = agps. Also, (x* + ay?) is irreducible in F,m[x], and

the factorization of x*”° — & into product of monic irreducible factors is x*?° — a = (x — a)?’ (x +
ap)?” (x% + ap?)P".

Thus, the ring R4, is @ principal ideal ring whose ideals are € = ((x — a)"(x + @)’ (x* + ap2)*) ,
where 0 < i,j,k < 2p°. Equivalently, each (a + uf)-constacyclic code of length 4p° over R has the
form € = ((x — ap) (x + ap) (x% + ag®)¥), 0 < i,j,k < 2p*. Then the following lemma follows:
Lemma 3.1 In Rypup, {((x—ao)? (x + ao)?’ (x2 + 2p?)P’) = (u). In particular, (x — ao)(x +
ap)(x* + ap®) isnilpotent in Ry, with nilpotency index 2p°.
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Proof. In Ryiyp , (x— ap)? (x + ag)? (x% + ap2)? = x*?° —qy**’ = a +uf —a = up. Thus,
((x — )P (x + ag)P (x + ao?)P’) = (u). Since u has nilpotency index 2 in Ryyyp, the last
statement is straightforward.

Now, we consider the Hamming distance of € = ((x — ap)'(x + ap)’ (x? + a,?)*) for the case
0<k<j<i<2ps
Theorem 3.2 Let 1<pppLp<p—-1, 0<Kk, <Kk <Kko<s—1. Let C=((x—ay)'(x+

a)! (x? + ag?)k)y c (xfp[ﬁl) for 0 <k <j<i<2p®and dy(C) is determined by

e dy(0)=1,if0<k<j<i<p’
e dy(C)=2,if 0<k<p5 0<j<2p’and p°*+1<i<2p®
* dy(C) =min{(p, + Dp*°,2(p; + Dp"?},if 2p° —p*70 + (pg — Dp* 0t +1 < i
< 2p° —p°TIO + pop* T, 2p% —p*TF 4 (pp = DptTT 1<
S2p° —p T+ pptTTL 2pT =TT+ (o — DpTTT 4 1Sk
< zps _ pS—Kz + pzps—}cz—l
o dy(C) =2(p, + Dp'2,if i = 2p%,2p° —p*™ + (p — Dp* ™71+ 1<
< 2pS,2pS —pSTFe 4 (p, — 1)ps—1c2—1 +1<k<2p’S—pS*2 4 pzps—xz—l
e dy(C)=0,ifi=j=k=2p°

Proof.

Casel i =j =k = 0. Then, trivially C has a Hamming distance of 1.
Case2 j=k=0andi=+0.

Subcase 2.1 1 <i < p°.

From 3.1, Clearly we have, u € ((x — a;)). Thus ((x — ay)') has a Hamming distance of 1.  Subcase
22 p*+1<i < 2p°.

Then, from 3.1 and subcase 2.1, we have ((x — ay)’) 2 (u(x — ag)i?°).

IFpm[x]

(x4P°~a)’

So, ((x — ay)!) has the same Hamming distances as the code ((x — a,)"?") in multiplied by

u. Thus, the code has a Hamming distance of 2 from Theorem 2.4.

Case3 k=0andi#0,j#0

Subcase3.11<j<i<p°

Then, by 3.1, clearly, u € ((x — ay)'(x + ap)’) and thus ((x — ap)'(x + ay)’) has a Hamming
distance of 1.

Subcase 3.2 p*+1<j<i<2p’.

Then ((x — ap)'(x + ap)’) 2 (u(x — ag) P (x + @)’ P)

So, ((x — ap)(x + ay)’) has the same Hamming distances as the code ((x — @)™ (x + @y)’~?") in
F_m[x]
<xfp5—a>’
Subcase33 p*+1<i<2p®and 1<j<p’.

Then ((x — ay)(x + ay)’) 2 (u(x — ay)"""") by Subcase 3.1 and Lemma 3.1.

multiplied by u. Thus, the code has a Hamming distance 2 from Theorem 2.4.

lem[x]
(x*P°~a)’
multiplied by u. Thus, the code has a Hamming distance 2 from Theorem 2.4. Case 4 i #0,j #0
and k # 0
Subcase4.1 1<k <j<i<p’

So, ((x — ag)i(x + ay)’) has the same Hamming distances as the code ((x — ay)' ™’} in
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Then, by 3.1, we have u € ((x — ap)'(x + ag)’ (x? + apy>)*) and thus ((x — ag)*(x + ag)’ (x% +
ay?)*) has a Hamming distance 1.

Subcase 42 p*+1<k<j<i<2p’—1.

Then, ((x — @o)'(x + @)’ (x* + @o?)*) = (u(x — ag) ™7 (x + @) 77" (x% + @) 7).

So, the code ((x — o) (x + ap)’ (x? + @y?)¥) in Ry4yp has the same Hamming distances as the code

i S i S S\ - F,m T -
((c — ag) P (x + ) P° (2% + 2p2)*P%) in (xfps[_xc]{), multiplied by u. Thus, C has the Hamming

distances computed as

dp(€) = min{(p, + 1)p*°, 2(p; + Dp*2},if 2p° —p*~ 0 + (pp — Dp* "t +1<i < 2p° -

piTO + pop T 2p° —pT 4 (o — P + 1 S < 2p° —ptTM 4+ pyptT T, 2p° -

pSTF2 + (p, — DpS*27 1+ 1 < k < 2p5 — pS7%2 + p,pS~*21 from Theorem 2.4.

Subcase43 1<k<pSand p°+1<j<i<2p°

Then, clearly ((x — ap) (x + o)’ (x2 + a?)*) 2 (u(x — ay)' P (x + a,)’~7°) by subcase 4.1. Thus,
C has a Hamming distance of 2 from Theorem 2.4.

Subcase4.4 1<k <j<p®and p®+1<i<2p°

Then, clearly ((x — ap)'(x + @)’ (x2 + ap2)¥) 2 (u(x — ay)'"P°) by subcase 4.1. Thus, C has a
Hamming distance of 2 from Theorem 2.4.

Subcase45i=2pand p°+1<k<j<2p°—1.

Then, ((x — ap) (x + o) (x% + ap?)¥) = (u(x — ag)? (x + @)’ 7" (x% + ax?)*P°) by Lemma 2.1.
So, the code ((x — )" (x + ap)’ (x% + @p?)¥) in Ryiyp has the same Hamming distance as the code

N i N N - F m - - -
((x — )P (x + o) P (2% + 2p2) P’y in (vas[—ﬂ)’ multiplied by w. Thus, € has the Hamming

distances of 2(p, + 1)p*z from Theorem 2.4.

Subcase 4.6 i =j=2p°and p°+ 1<k <2p°—1.

Then,((x — ao) (x + @)/ (x? + ap®)¥) = (u(x — ag)?’ (x + ag)P” (x? + ay?)* 7).

So, the code ((x — ap)'(x + @)’ (x? + ay*)*) in Ryyyp has same Hamming distances as the code

N N S - F,m - - . .
((x — ap)? (x + ag)? (x%2 + ay®)*P°) in (xfps[_xi), multiplied by u. Thus , the Hamming distances

computed as Theorem 2.4.

Subcase 4.7 i=j =k = 2p?® then C has Hamming distance of 0.

Combining all the cases we get the Hamming distances of all (@ + uf)-constacyclic codes when k < j <
i.m

Remark 3.3 Using the same technique as above, it is easy to check that the corresponding case with k <
i <j hasthe same Hamming distances as k < j < i in the above Theorem.

Now, we consider the case 0 < j < k < i < 2p*®. For this case, Hamming distances of C is determined
by the following Theorem.

Theorem 3.4 Let C = ((x — ay)'(x + ap)’ (x% + ay?)¥) <

dy(C) is determined by
e dy(0)=1if0<j<k<i<p’
e dy(C)=2,if 0<j<k<p*and p°+1<i<2p%r 0<j<p’p°+1<k
<pS+p>ltand p+1<i<pS+p5?
e dy(C)=3,if 0<j<p’p +1<k<p +2p°tand p*+p*t+1<i<p’+2ps?

R[x]
(x*P°—a)

for 0<j<k<i<2p® and

IJFMR250136646 Volume 7, Issue 1, January-February 2025 8
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e dy(C)=4,if 0<j<pS, p +1<k<2p°andp’+2p*'1+1<i<2p°
* dp(C) = min{(po + 1)p*°, 2(py + 1)p*, 4(p, + 1)p*2},if 2p° —p*7™0 + (pp — Dp* 7' +1
<i<2pS—pSKo 4 popSTHoTL 2pS —pSTHKL 4 (p, — DpSTFTl 4+ 1<k
<2p° —p T 4 pypt T2 —pST + (pp = DT+ 1 <
< zps _ pS—Kz + pzps—}cz—l
« dy(C) = min{(2(py + Dp"t, 4(p, + Dp"2}if i = 2p°,2p° —p* ™ + (p, — Dp* 71+ 1<k
<2p° —p T+ ppt T 2T = pTT + (p - DT 1 <
S 2pS _ pS—K2 + psz—KZ—l
o dy(C) =4(py + Dp'?If i =k =2p°2p° —p*™2 + (p, - Dp* ™27  + 1<
< 2ps _ pS—Kz + pzps—xz—l
e dy(C)=0,ifi=j=k=2p°
where 1 < pg, p1, P2 <pPp—1, 0<Kk, <kKk; <Kky<s—1.
Proof.
Casel i =j =k =0.Then, C has Hamming distance of 1.
Case2 j=k=0andi=+0.
Subcase 2.1 1 <i < p°.
Then, clearly u € ((x — ag)?). Thus ((x — a,)*) has a Hamming distance of 1.
Subcase 2.2 p*+1<i< 2p°.
Then, clearly ((x — ap)) 2 (u(x — ay)i~P") from subcase 2.1.

So, ((x — ap)!) has the same Hamming distances as the code ((x — ap)*™?’) i n [

multlplled by

u. Thus, the code has Hamming distance of 2 from Theorem 2.6.

Case3 j=0andi#0,k+0

Subcase 3.1 1 <k <i <p°®.

Then, clearly u € ((x — ap)*(x? + a2)¥) and thus ((x — ap)*(x? + a2)*) has a Hamming distance of
1.

Subcase 3.2 p°+ 1<k <i < 2p°.

Then, we have ((x — ag)(x2 + ad)*) 2 (u(x — ag) P (x% + ad)*?°).

So, the code ((x — oco)"(x2 + a5)¥) in Ryyp has Hamming distances same as the code ((x —

a0) P (e + a2) Py in 2l

4p5
o dy(C)=2,if j=0,p* +1Sk£l£p + ps71

e dy(C)=3,if j=0, p+1<k<p’+2pStandpS+psl+1<i<pS+2ps?

e dy(C)=4,if j=0and p*+1<k <2p° and p°+2p* 1 +1 < 2p°

from Theorem 2.6.
Subcase33 1<k <p’and p°+1<1i< 2p°.
Then, ((x — ao) (x% + ad)*) 2 (u(x — ay)"°).
So, the code ((x — ap)!(x? + ad)¥) in Ryyyp has Hamming distance same as the code ((x — a)'™P")
. Fymlx]
in
Cased i#0,j#0and k=0
Subcase 4.1 1<j<k<i<p’

Then, clearly u € ((x — ap)'(x + ap)’ (x? + a?)*) and thus ((x — ap)'(x + ap)’ (x? + a?)*) has a

multlplled by u. Thus,

multiplied by u. Thus, the code has a Hamming distance of 2 from Theorem 2.6.
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Hamming distance of 1.
Subcase 42 p*+1<j<k<i<2p°—1.
Then, we have ((x — ao) (x + ag)/ (%% + ap?)*) = (u(x — ap) P (x + @) 7P (%% + ay?)k 7).
So, the code ((x — @) (x + ap)’ (x? + @y?)¥) in Ry4yp has the same Hamming distances as the code
(0 = @) 7" (x + @) ?') in L
Theorem 2.6,
dp(€) = min{(p, + 1)p*°, 2(py + Dp', 4(p, + Dp’2},if 2p° —p* 0 + (pg — Dp* ™07t +1 < i
< 2p° —p T 4 poptTROT 2pT —pTT 4+ (o — DpTT 415k
S2p° —p T4 T 2pT — T 4 (0 — DptT T 4 1S
< zps _ ps—xz + pzps—xz—l
Subcase43 i=2p°and p*+1<j<k<2p°—1.
Then, we have ((x — ag)i(x + a) (%% + ap2)¥) = (u(x — a)?’ (x + a) 7" (2% + a,2)kP°).
So, the code ((x — @) (x + @p)’ (x% + @p*)*) in Ryiyp has the same Hamming distances as the code
F m[x]

((x — ap)? (x + @)’ ™P (x? + ap2)* 7P’y in (xfps—a)’

, multiplied by u. Thus, Hamming distances computed as

multiplied by u. Thus, from Theorem 2.6, the

Hamming distances computed as
dy(C) = min{(2(p; + Dp"t,4(p, + Dp*2},if i = 2p°,2p° —p* "1 + (py — Dp* ™'+ 1<k
S2p° —p A ppTT T 2pT —pTT 4 (0 — DT 4 1S
< zps _ pS—KZ + pzps—}cz—l
Subcase 4.4 i =k =2pS and p°+1<j <2p°—1.
Then, ((x — ao) (x + @o)/ (x? + @p?)*) = (u(x — )P (x + )P (x? + @p?)*7°).
So, the code ((x — ap)'(x + @)’ (x? + ay*)*) in Ryyyp has same Hamming distances as the code

s ; sy - F,m - . .
((x — ag)? (x + ap) (x? + ap®)P’) in ﬁ multiplied by u. Thus, the Hamming distances

computed as
du(C) = 4(p2 + Dp'2,if i =k = 2p°,2p° —p*72 + (p, — Dp* 271 +1<j < 2p° —p*'2 +
pop*~*2~1 from Theorem 2.6.
Subcase451<j<p’and p°+1<k <i<2p°
Then, ((x — o) (¥ + ad)*) 2 (u(x — a) P (22 + ad)* 7).
So, the code ((x — ag)'(x? + a2)¥) in Re+up has Hamming distance same as the code ((x —
@) P (6% + ad)* P’y in
2.6,
e dy(C)=2,if 1<j<p® ,p°+1<k<i<p’+p°*

e dy(C)=3,if 1<j<p% P +1<k<p’+2p5tand pS+p*1+1<i<p’+2p5?

e dy(C)=4,if 1<j<pSand p°+1<k<2p° and pS+2pS1+1<i<2p°

Subcase46 1<j<k<pSand p°+1<i<2p’
Then, ((x — ap) (¥ + a2)¥) 2 (u(x — ay)' 7).
So, the code ((x — ap) (x? + a®)*) in Rg4+up has Hamming distance same as the code ((x — ao)i‘ps)
Fym[x]
(x4 —a)

Subcase 4.7 i = j = k = 2p?, then the code has Hamming distance of 0.

F.m - . .
L [x]), multiplied by u. Thus, the Hamming distances computed as Theorem

(x4P°—q

in , multiplied by u. Thus the code has a Hamming distance of 2 from Theorem 2.6.
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Combining all the cases we get the result.m

Remark 3.5 Using the same technique as above, it is easy to check that the corresponding cases with i <
k<j,i<j<k,j<i<k havethe same Hamming distances as case j < k < i in the above Theorem.
Structure IlI: p™ = 3(mod4) and 4 = a + uf is non-square unitin R.

In this case, there exist @y, § € F,m such that a = a? and ay = —48*. And x*?° — q is factorized

into product of irreducible factors as x*?° — a = (x2 + 26x + 26%)P° (x2 — 26x + 262)P°.
S0, C = ((x% 4+ 26x + 26%)"(x? — 26x + 262)7), 0 < i,j < 2p° are (a + upB)-constacyclic codes of
length 4p° over R. Then, we have the following lemma:
Lemma 3.6 In Rypyp, ((x2 + 26x + 262)P° (x% — 28x + 26%)P°) = (u). In particular, (x? + 28x +
26%)(x* — 28x + 26%) is nilpotent in R4, with nilpotency index 2p®. Now, we consider the case
0 <j <i<2p® Thefollowing Theorem provide the Hamming distance of C for this case.
Theorem 3.7 The (a + uf)-constacyclic codes of length 4p° over R,
C = ((x? 4+ 26x + 26 (x? — 26x + 262))
for 0 <j < i < 2p°® have the following Hamming distances
e dy(C)=1,if0<j<i<ps’
dy(C)=2,if 0<j<pSand p°+1<i<pS+p5?
e dy(C)=3,if 0<j<pSand p>+pS1+1<i<2p°

dp(€) = min{(p, + D)p*°,3(p; + Dp"1},if 2p° —p*~ 0 + (pp — Dp* "ot +1<i

< 2p° —p°T0 + pop*Ti0T, 2pS —p T+ (pp — DptTT 4+ 1<

< zps — ps—zc1 + plps—K1—1
dy(C) = 3(py + Dp"s,if i = 2p°,2p° —p* "1 + (p — Dp* ™7 + 1<

< zps _ pS—K1 + ,D1PS_K1_1
dy(C) =0,if i =j = 2p°
where 1 < py,p1 <p—1,0<kKk; <ky<s—1.
Proof.
Casel i =j = 0. Then, the code C has Hamming distance of 1.
Case2 j=0andi=+0.
Subcase 2.1 1 <i < p°.
Then, clearly from 3.6, we have u € ((x? + 28x + 262)!) and thus ((x? + 26x + 26%)%) has a
Hamming distance of 1.
Subcase 2.2 p°+ 1 <i < 2p°.
Then, clearly ((x2 + 28x + 262)%) 2 (u(x? + 26x + 262)17P%),
So, ((x2 4 26x + 26%)!) has the same Hamming distances as the code ((x2 + 26x + 262)""7°) in

]Fpm [x]

(x*P°~a)

, multiplied by u. Hence, from Theorem 2.8, we have

e dy(C)=2/if j=0and pS+1<i<pS+ps?
e dy(C)=3,if j=0and p>+pS1+1<i<2p°
Case3i+#0,j#0
Subcase3.1 1<j<i<p°
Then, u € ((x? + 26x + 262)1(x% — 26x + 26%)’) and thus ((x2? + 26x + 262)}(x? — 26x + 26%)7)
has a Hamming distance of 1.
Subcase3.2 p*+1<j<i<2p°—-1.
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Then ((x2 + 26x + 262) (x% — 26x + 262)7) = (u(x? + 26x + 262)7P° (x2 — 26x + 26%)17P°),
So, the code ((x? + 26x + 26%) (x? — 26x + 26%)7) in Ry4yp has the Hamming distances same as the

. s . s . F._m R
code ((x2 + 26x + 262)17P°(x% — 26x + 262)77P°) in ﬁ multiplied by . Thus, from Theorem

2.8, the Hamming distances computed as
dp(C) = min{(py + Dp'°,3(py + Dp™1},if 2p° —p 0 + (pp — Dp* ™ 1 +1 <
S 2p° —p T 4 pop TR 2pT =TT 4 (o — DpT T+ 1<
< 2ps _ pS—K1 + plps—xl—l
Subcase 3.3 i=2p%,p*+1<j<2p°—1.
Then, ((x2 — 26x + 262) (x% + 26x + 26%)7) = (u(x? + 26x + 262)P° (x% — 26x + 262)/7P%),
So, the code ((x? + 26x + 262)"(x? — 26x + 26%)7) in Ry4yp has the same Hamming distance as the
code ((x2 + 26x + 262)P° (x2 — 26x + 26%)1P%) in 2oL
(x4P” —a)
2.8, the Hamming distances computed as
du(C) = 3(py + Dp",if i = 2p°,2p° —p* ™ + (p, - Dp* 71+ 1<
< zps _ pS—Kl + P1pS_K1_1
Subcase34 1<j<p’and p°+1<i<2p°
Then, ((x? + 28x + 26%) (x2 — 26x + 26%)7) 2 (u(x? + 28x + 282)17°),
S0, ((x2 4 268x + 26%)"(x? — 26x + 262)7) has the same Hamming distances as the code ((x? +

sy . Fymlx] - . ;
26x + 26%)17P7) in ( L multiplied by u. Thus ((x? + 26x + 26%)'(x? — 26x + 26%)’) has a

x4 —q)’

multiplied by u. Thus, from Theorem

Hamming distance
e dy(O)=2/if 1<j<pSand p°+1<i<ps+p5!

e dy(C)=3,if 1<j<pSand p>+pS1+1<i<2p°
Subcase 3.5 i =j = 2p°
Then, ((x? + 26x + 252)}(x? — 26x + 26%)7) has Hamming distance 0.
Combining all the cases we get the Hamming distances of all (a + uf)-constacyclic codes when j < i.
|
Remark 3.8 Using the same technique as above, it is easy to check that the corresponding case with i < j
has the same Hamming distances as j < i in the above Theorem.
Structure 111: p™ = 1(mod4) and A = a + uf is a square of the form 4 = A3 in R.
Then, there exist ay,n € F;m such that a = agps and n2 = —1. x*° — « is factorized into product of
irreducible factors as x*?° — a = (x — )P’ (x + ap)?’ (x — nay)P’ (x + nay)”’.
Let C = ((x — ag)'(x + ag)’ (x — nag)*(x + nay)ty, 0 <i,j,k 1 <2pS be a (a+ up)-constacyclic
code of length 4p® over R. Then, the following lemma follows:
Lemma 3.9 In Rypup, {((x — ao)? (x + ag)P’ (x — nae)?” (x + nag)P’) = (u). In particular, (x —
@) (x + ag) (x — nay) (x + nay) is nilpotent in R, 4,5 With nilpotency index 2p°. Here, we consider

thecase 0 <1<k <j <i<2p® tocompute the Hamming distance of C.

Theorem 3.10 Let 1<py,puLpupP3<p—1, 0<kKk3<kKk,<k; <Kky<s—1. Let C=((x—

) (x + ) (x — nag)*(x + nag)ty € (xfp[j‘il) for 0<l<k<j<i<2p® and dy(C) is

determined by
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e dy(C)=1if0<I<k<j<i<p’
e dy(C)=2,if 0<I<k<p50<j<2pSand p°+1<i<2pSor 0<I<p°and p°+1<k
<j<si<pS+pst
o dy(C)=4,if 0<1<ps5, pS+1<k<j<2pSand p’+p*1+1<i<2p’
* du(C) = min{(po + 1)p"0, 2(p, + 1)p*2,4(ps + Dp'*},if 2p° —p*7"0 + (po — Dp* "7t +1
S i 2pT —p T4 popt T 2p% —pTT 4 (py — DT+ 1<
<2p° —p T+ pptTTL 2pT =TT+ (0 — P 4 1Sk
< 2p° =P 4 ppptTe T 2pT —pTTR + (o3 — DptT T 41
< 2ps _ ps—x3 + pgps—x3—1
« dy(C) =min{2(p; + Dp"?,4(p; + Dp"s},if i = 2p°,2p° —p* "1 + (o — Dp* ™' + 1<
<2p5,2p5—pST2 + (p,— DpST2l+ 1<k
< 2p° — PS4 ppptTe T 2pT —pTTR + (o3 — DptTRT 41
< zps _ pS—K3 + p3ps—1c3—1
o dy(C) =4(ps + Dp's,if i=j=k=2p°2p° —p° "5+ (p3 = Dp* ™71 +1<1
<2pS—pSTHs 4 p3ps—1c3—1
e dy(C)=0,ifi=j=k=1=2p°

Proof.

Casel i=j=k=1=0,then C hasaHamming distance of 1.

Case2 j=k=10l=0andi=0.

Subcase 2.1 1 <i < p°.

From Lemma 3.9, Clearly we have, u € ((x — a,)").Thus ((x — a,)*) has a Hamming distance of 1.

Subcase 2.2 pS+1 <i < 2ps.

Then, from Lemma 3.9 and subcase 2.1 clearly, we have ((x — ay)?) 2 (u(x — ag)i~?°).

. . o5 . F.m ..
So, ((x — ay)') has the same Hamming distances as the code ((x — a)*"?") in ﬁ multiplied by

u. Thus, the code has a Hamming distance of 2 from Theorem 2.10.

Case3 k=I1=0andi#0,j#0

Subcase3.11<j<i<p°

Then, by Lemma 3.9, u € ((x — ap)i(x + ap)’) and thus ((x — ay)i(x + ay)’) has a Hamming
distance of 1.

Subcase32 pS+1<j<i<2ps.

Then, ((x — @o)"(x + ap)’) 2 (u(x — @)™ (x + ag)/™7")

So, ((x — ap)!(x + ay)’) has the same Hamming distances as the code ((x — @)™ (x + @y)’~?") in
F m[x
Subcase3.3 p*+1<i<2p°®and1<j<p°.

Then ((x — ap) (x + @)’y 2 (u(x — ay)""?") by Subcase 3.1 and Lemma 3.9.

, multiplied by u. Thus, the code has a Hamming distance 2 from Theorem 2.10.

lem[x]
(x4’ ~a)’
multiplied by u. Thus, the code has a Hamming distance 2 from Theorem 2.10. Case 4 [ =0,i #
0,j#0and k#0

Subcase4.1 1<k <j<i<p’

Then, by Lemma 3.9, we have u € ((x — ag)'(x + @)’ (x — nay)*) and thus ((x — ag)i(x + ay)’ (x —

S0, ((x — ap)i(x + ay)’) has the same Hamming distances as the code ((x — ap)™™?’) in
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nay)*) has a Hamming distance 1.

Subcase 42 pS+1<k<j<i<2p’

Then, ((x — @) (x + @)’ (x — na)¥) 2 (u(x — ap) ™ (x + o)/ P (x — nag) 7).

So, the code ((x — ap)'(x + @)’ (x — nap)*) in Ryyyp has the same Hamming distances as the code
F_m[x]

((x — )P (x + ap)’ P (x = nag)* Py in <xf,,—s_a>,

multiplied by u. Thus, € has the Hamming
distances computed as
e dy(C)=2,ifl=0, p +1<k<j<i<pS+ps?
e dy(C)=14,ifl=0, p +1<k<j<2pSandp’+p>l1+1<i<2p’
from Theorem 2.10.
Subcase43 1<k<pSand p°+1<j<i<2p°
Then, clearly ((x — ap)i(x + ap)’ (x — nay)*) 2 (u(x — ag)i =P’ (x + ay)’~P°) by subcase 4.1. Thus,
C has a Hamming distance of 2 from Theorem 2.10.
Subcase4.4 1<k <j<p®andp®+1<i<2p°
Then, clearly ((x — ag)i(x + ap)’ (x — nag)®) 2 (u(x — ay)™?’) by subcase 4.1. Thus, C has a
Hamming distance of 2 from Theorem 2.10.
Case5 i#0,j#0,k+0and [ #0.
Subcase5.1 1<I<k<j<i<p°
Then, we have u € ((x — ap)'(x + ag)’ (x — nay)*(x + nay)t) and thus ((x — ag)i(x + ay)’ (x —
nagy)*(x + nay)') has a Hamming distance 1.
Subcase52 p°+1<I<k<j<i<2p°—1.
We have, ((x = @) (x + @) (x — nag)*(x + nag)') = (u(x — ao) ™7 (x + @) 77" (x —
nae)* P’ (x + nap) P°). So, the code ((x — ag)i(x + @)/ (x — nag)¥(x + nag)') In Ryyyp has the
same Hamming distances as the code ((x — ap)'™ (x + ap)? P (x — nay) 7 (x + nay)~?") in
F_ m[x]
<xfp5—a>
dy(C) = min{(po + 1)p', 2(p; + Dp*?,4(ps + Dp'},if 2p° —p*~ 0 + (pp — Dp* ™0t +1 <
< 2p° —p¥T0 + pop T 2p° —pSTr 4 (py - Dt +1 <
< Zps _ pS—K1 + ,01PS_K1_1, zps _ pS—KZ + (pz _ 1)ps—}c2—1 +1< k
< zps _ ps—xz + psz_Kz_l, Zps _ ps—x3 + (P3 _ 1)ps—1c3—1 +1< l
< zps _ ps—x3 + p3pS—K3—1
Subcaseb3i=2p*and p*+1 <1<k <j<2p°—1.
We have, ((x — @) (x + @o)/ (x = nao)* (x + nae)') = (u(x — @)?" (x + ag) ™" (x — nae) P (x +
nag)'~P°). So, the code ((x — ao) (x + ao)’ (x — Nag)*(x + Nag)') In Rypup has the same Hamming

, multiplied by u. Thus, C has the Hamming distances computed as

m[x]

s multiplied by

p

- S ; S S S - ]F
distances as the code ((x — ap)? (x + @)’ P (x — nay) P (x + nay)' ) in .

u. Thus, C has the Hamming distances computed as
dp(€) = min{2(p; + Dp2, 4(ps + Dp*}If i = 2p%,2p° —p*™ 1 + (py — Dp* ™71 +1 <)
S 2pf —p T A ppTTTL2p = p T 4 (o — DpTT T + 1<k
< 2p° —p T2 4 pppTTTL 2D — TR 4 (3 — DT T+ 1<
< zps _ ps—x3 + pgps—x3—1
Subcase54 i=j=2p°and p*+1<I1<k <2p°-1.

IJFMR250136646 Volume 7, Issue 1, January-February 2025 14



https://www.ijfmr.com/

i International Journal for Multidisciplinary Research (IJFMR)

IJFMR E-ISSN: 2582-2160 e Website: www.ijffmr.com e Email: editor@ijfmr.com

We have, ((x —ao)(x + @)’ (x — nae)*(x + nay)') = (u(x — ap)?" (x + ap)?" (x — nag)* P (x +
nay) P°). So, the code ((x — ap)i(x + ay)’ (x — nay)¥(x + nay)t) in Ra+uﬁ has the same Hamming

distances as the code ((x — ap)?’ (x + ao)?’ (x — na)* P (x + nay) ") |n [ multlplled by wu.

Thus, € has the Hamming distances computed as
dp(C) = min{2(p, + D)p*?2,4(p3 + Dps},if i = j = 2p°,2p° —p "2 + (p, — Dp* ™1+ 1<k
S 2p° —p T 4 Pt 2pT —pTTR 4+ (o3 — DptT T 41 <
< zps _ ps—}c3 + p3ps—x3—1
Subcaseb5i=j=k=2p°and p*+1<1<2p°—-1.
We have, ((x—ao)'(x + o)/ (x — nag)*(x +nag)") = (u(x — ao)? (x + ao)?" (x — nag)? (x +
na)'~P°). So, the code {(x — ap) (x + ao)’ (x — Nag)*(x + Na)") In Rypup has the same Hamming
F m[x]

distances as the code ((x — ao)?’ (x + )P’ (x — nay)? (x + nay) P’ in o

. multiplied by u.

Thus, € has the Hamming distances computed as
dy(C) =4(ps + Dp's,if i =j =k =2p%2p° —p°* ™ + (p; — Dp*™ 7' +1 <1
< Zps _ pS—K3 + p3ps—1c3—1
Subcaseb56 1<I<pand pS+1<k<j<i<2p°
We  have, ((x — ao)"(x + o)’ (x — nate)* (x +nag)') 2 (u(x — @)™ (x + ag)/ 7 (x — nag)* ™).
So, the code ((x — )" (x + ap)! (x — nag)*(x + nay)') in Ryyyp has the same Hamming distances as
Fymx]

the code ((x — o)™ (x + @)’ (x — nay)*?°) in )

, multiplied by u. Thus, C has the

Hamming distances computed as

e dy(C)=2,ifl=0, p’+1<k<j<i<p’+pst?

e dy(C)=4,ifl=0, P +1<k<j<2pSand p+pS1+1<i<2p’

from Theorem 2.10.

Subcase57 1<I<k<p’and p*+1<j<i<2p’

We have, ((x — ag) (x + ag)’ (x — nag)*(x + nag)t) 2 (u(x — ap) P (x + ag)’7?°). So, the code

((x — ap) (x + ap)’ (x — nag)*(x + nag)') in Ryiyp has the same Hamming distances as the code
Fm[x]

((x — ag) ™" (x + ) 7P°) in T

o multiplied by u. Thus, C has the Hamming distances computed

as 2 from Theorem 2.10.

Subcase 58 1<I<k<j<p’andp’+1<i<2p°

We have,((x — ap) (x + o)’ (x — nag)*(x + nag)') 2 (u(x — ap)~7°). So, the code ((x — ap)!(x +
@)’ (x — nay)*(x + nay)t) in Rg+yp has the same Hamming distances as the code ((x — ao)i‘ps) in
%, multiplied by u. Thus, C has the Hamming distances computed as 2 from Theorem 2.10.
Subcase59i=j=k=1=2p°.

Then, ¢ has Hamming distance of 0.

Combining all the cases we get the Hamming distances of all (a + uf)-constacyclic codeswhen | < k <
j<i. m

Remark 3.11 Using the same technique as above, it is easy to check that the corresponding cases with
k<l<j<i,k<Il<i<j,l<k<i<j,j<i<l<k i<j<k<li<j<l<kandj<i<
k <l have the same Hamming distancesas | < k < j < i in the above Theorem.
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Next, we consider the Hamming distance of C forthecase 0 <[l <j <k < i < 2p°.
Theorem 3.12 Let C = ((x — ap)'(x + ap)’ (x — nay)*(x + nay)t) < s_ for 0<I<j<k<

i <2p® and dy(C) is determined by
e dy(C)=1if0<I<j<k<i<p’
e dy(C)=2,if 0<I<j<k<pSand p*+1<i<2por0<I[<land p’+1<j<k<i
S pS + pS—l
e dy(0)=3,if 0<I<j<ps, pP+1<k<2p’and pS+p51+1<i<2pSor 0<1<pS,
p’+1<j<k<p’+2pSland p*+p*1+1<i<p’+2p5?
e dy(C)=4,if0<I<pS, P +1<j<k<2pandp’+2p°'+1<i<2p°
* dy(C) = min{(po + 1)p"°, 2(p1 + Dp"1, 3(p; + 1)p"2, 4(p3 + 1)p"2},if 2p® —p*~ 0 + (po
_ 1)ps—1c0—1 +1<i< Zps _ pS—KO + pops—xo—l’ Zps _ ps—x1 + (pl _ 1)ps—1c1—1 +1
SjS2p° —p T4t 2pT —pTT 4 (pp — DT + 1<k
S 2p° —p T 4 poptTe T 2pT —pTTR + (o3 — DptTT 41 <
< zps _ ps—K3 + p3ps—1c3—1
* dy(C) = min{2(p; + 1)p",3(p2 + 1)p"?,4(p3 + Dp*s},if i
=2p%,2p° —p* 4 (o — P + 15
S2p° —pTT + pptTTL 2pT —p T+ (0 — DpTTT + 1Sk
< 2p° —pST 4 poptT T 2pT —pTTR + (p3 — DptTT 415
< Zps _ ps—x3 + p3ps—1c3—1
e dy(C) = min{3(p; + 1)p*2,4(p; + Dp"},if i =j = 2p°,2p° —p*™"2 + (p, - Dp*™"27" +1
Sk < 2p°—p T4+ pppt T 2D =TT 4 (ps — DpTR T+ 1<
< Zps _ pS—K3 + pgps—}c3—1
o dy(C) =4(ps + Dp's,if i =j =k =2p%2p° —p* " + (p; — Dp* ™71 +1 <1
< Zps — pS—Kg + p3ps—x3—1
e dy(C)=0,ifi=j=k=1=2p°
where 1 < pg,p1, 02,3 <P—1, 0<Kk3 <k, <kKk; <Kky<s—1.
Proof.
Casel i=j=k=1=0.Then, C hasa Hamming distance of 1.
Case2 j=k=1l=0andi=+0.
Subcase 2.1 1 <i <p°.
From Lemma 3.9, Clearly we have, u € ((x — a,)").Thus ((x — ay)*) has a Hamming distance of 1.
Subcase 2.2 p* +1 <i < 2ps.
Then, from clearly, we have ((x — a)!) 2 (u(x — a)"?°).

S0, ((x — ay)*) has the same Hamming distances as the code ((x — ap)'~ P’} in [F4ps[ , multiplied by

u. Thus, the code has a Hamming distance of 2 from Theorem 2.12.

Case3 [=j=0andi#0,k+0

Subcase 3.1 1<k <i<p°.

Then, by Lemma 3.9, clearly, u € ((x — ap)'(x — nay)*) and thus ((x — ay)'(x — nay)*) has a
Hamming distance of 1.

Subcase 3.2 p*+1<k<i<2p’

Then ((x — @o)'(x — Nae)*) 2 (u(x — o) ™" (x = nag)* )
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S0, ((x — ap) (x — nay)*) has the same Hamming distances as the code ((x — ap)™"" (x — nay)*?")

F.m
in ﬁ multiplied by u. Thus, the code has a Hamming distance 3 from Theorem 2.12.

Subcase 3.3 p*+1<i<2p®and 1<k <ps.
Then ((x — @o)'(x — nag)*) 2 (u(x — @) ™).
F, m[x]

So, ((x — ap)!(x — nay)¥) has the same Hamming distances as the code ((x — ay)i™P") in —L&

(x4’ ~a)’
multiplied by u. Thus, the code has a Hamming distance 2 from Theorem 2.12. Case 4 [ =10,i #
0,j*0and k#0
Subcase 4.1 1<k <j<i<p°.

Then, by Lemma 3.9, we have u € ((x — ap)'(x + ap)’ (x — nay)*) and thus ((x — ag)*(x + ag)’ (x —
nay)¥) has a Hamming distance 1.

Subcase 4.2 p*+1<k<j<i<2p°

Then, ((x — @o)'(x + o)’ (x = nte)*) 2 (u(x — @)™ (x + @)/ ™" (x — nag)* ™).

So, the code ((x — ag)'(x + @)’ (x — nap)*) in Ryyyp has the same Hamming distances as the code

. s . s s. . F_ m . .
((x — ag) P’ (x + ap) 7P’ (x — ) P°) in (xfps[fi), multiplied by w. Thus, € has the Hamming

distances computed as
e dy(C)=3,if l=0,p°+1<j<k<p+2ptandp+pS1+1<i<pS+2p5?
e dy(C)=4,ifl=0, p°+1<j<k<2p°andp’+2pS1+1<i<2p’
from Theorem 2.12.
Subcase43 1<j<p’and p*+1<k <i<2p°
Then, clearly ((x — ay) (x + @)’ (x — nag)®) 2 (u(x — @) P (x — nay)*?’) . Thus, C has a
Hamming distance of 3 from Theorem 2.12.
Subcase4.4 1<j<k<p’andp’+1<i<2ps
Then, clearly ((x — ap)'(x + o)’ (x — nay)*) 2 (u(x — ay)=?°). Thus, C has a Hamming distance of
2 from Theorem 2.12.
Case5 i#0, j+0,k+0and!l=+0.
Subcase 5.1 1<I<k<j<i<p’
Then, we have u € ((x — ap)'(x + ag)’ (x — nay)*(x + nay)t) and thus ((x — ag)i(x + ay)’ (x —
nagy)*(x + nay)t) has a Hamming distance 1.
Subcase 5.2 p*+1<I<k<j<i<2p®—-1.
We have,  ((x = ap)"(x + @)’ (x = natg)*(x + nate)') = (ulx — @)™ (x + ap) ™ (x —
nag)* P (x + nap)P°). So, the code ((x — ao)i(x + @)/ (x — nag)* (x + nag)') in Ryyyp has the
same Hamming distances as the code ((x — o)™ (x + @)’ ™P (x — nap)* P (x + nay)?’) in
F_m[x]
<xfp5—a>’
dy(C) = min{(po + 1)p*°, 2(p1 + 1)p*1, 3(p2 + 1)p"?,4(p3 + 1)p"2},if 2p° —p*~ 0 + (py
_ 1)pS—K0—1 + 1 S l S sz — pS—KO + pOpS_KO_l; ZpS _ pS—K1 + (,01 . 1)pS—K1—1 + 1
<JS2p°—pTU+ ppt T 2pT —pST + (pp — DpTT T+ 1 < k
< zps _ ps—xz + PzPS_Kz_l, Zps _ ps—x3 + (P3 _ 1)pS—K3—1 +1< l
< zps _ ps—x3 + pgpS_K3_1
Subcase53i=2p°*and p* +1 <1<k <j<2p°—-1.

multiplied by u. Thus, C has the Hamming distances computed as
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We have, ((x — ao)'(x + o)’ (x — natg)* (x + nag)'y = (u(x — ag)? (x + ag) P (x — nag)* P (x +
nag)'~P’). So, the code ((x — ag) (x + ao)’ (x — Nag)*(x + Nag)") IN Ryrup has the same Hamming

distances as the code ((x — )P’ (x + @) ™7’ (x — na) P’ (x + nay)="") |n [ multlplled by

u. Thus, € has the Hamming distances computed as
dy(€) = min{2(p; + 1)p™, 3(p2 + 1)p"2,4(p3 + Dp*},if i
=2p%,2p° —p T+ (p — Dp*TT 4 1<
S2p° —p T+ ppT L 2p = pTR 4+ (pp — DpTTT A 1Sk
S2p° —p TR+ ppp T 2pT =TT 4 (p3 = DptTR T + 1<
< Zps _ ps—x3 + ,Dgps_K3_1
Subcaseb54i=j=2p°and p*+1<I1<k <2p°—1.
We have, ((x— o) (x + @)’ (x — nag)* (x + nag)") = (u(x — ag)? (x + ao)? (x — nag) P (x +
nae)t~P’). So, the code ((x — ap)i(x + o)’ (x — nay)*(x + nay)t) in Ra+uﬁ has the same Hamming

distances as the code ((x — )P’ (x + ao)?’ (x — nay)* P (x + nay) ") |n [ multlplled by wu.

Thus, € has the Hamming distances computed as
dy(C) = min{3(p; + 1)p"2,4(ps + Dp*s},if i = j = 2p%,2p° —p* ™2 + (p, — Dp* "> 1 + 1<k
< 2p° — PS4 ppptTe T 2pT —pTTR + (py — DpTT 415
< zps _ ps—zc3 + p3ps—1c3—1
Subcase55i=j=k=2p°and p°+1 <1< 2p° - 1.
We  have, ((x = a)"(x + @)/ (x = 1@0)* (x +nao)") = (ulx — ao)” (x + ag)?” (x — nag)? (x +
na)'~P°). So, the code ((x — ag) (x + ao)’ (x — Nag)*(x + Nag)') In Ryqup has the same Hamming

distances as the code ((x — ao)?’ (x + )P’ (x — nay)? (x + nay) P’ in %[x] multiplied by u.

Thus, C has the Hamming distances computed as

du(C) = 4(ps + Dp's,if i =j =k =2p%,2p° —p ™ + (ps — Dp*"* 1+ 1 <1< 2p° —p*"3 +
psp® e

Subcase56 1<I<p*and p°+1<k<j<i<2p’

We have, ((x — o) (x + @)’ (x — nae)*(x + nag)') 2 (u(x — ag) 77" (x + ao) P (x — nag) 7).
So, the code ((x — o) (x + ap)’ (x — nap)*(x + nay)') in Ryiyp has the same Hamming distances as

the code ((x — o)™ (x + @)’ 7" (x — nay)*?°) in Fpml] multiplied by u. Thus, C has the

(x*P°~a)’

Hamming distances computed as

e dy(C)=3,if 1<I<pS,p°+1<j<k<p +2p!tand p’+pSt+1<i<p’+2p5?

o dy(C)=4,if 1<1<ps5, p’+1<j<k<2pSand p>+2p51+1<i<2pS

from Theorem 2.12.

Subcase5.7 1<I<j<p’and p°+1<k <i<2p°

We have, ((x — o) (x + ap)’ (x — nag)* (x + nag)') 2 (u(x — ap) 7 (x + nay)*~?°). So, the code
((x — ap) (x + ap)’ (x — nag)*(x + nay)') in Ryyyp has the same Hamming distances as the code

P N N . F, m T . .
((x —ap)" P (x + nay)*P) in (xp s[_xi), multiplied by u. Thus, € has the Hamming distances

4p
computed as 3 from Theorem 2.12.
Subcase 5.8 1<I<j<k<p®andp’+1<i<2p’
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We have, ((x — ag)i(x + a)’ (x — nag)¥(x + nag)t) 2 (u(x — ay)~?°). So, the code ((x — o) (x +
@)’ (x — nag)*(x + nag)') in Ryyyp has the same Hamming distances as the code ((x — )P’} in
Fpm(x]
(x4P° ~a)
Subcase59i=j=k=1=2p°.
Then, € has Hamming distance of 0.
Combining all the cases we get the Hamming distances of (a + uf)-constacyclic codes when [ < k <
J<i. m
Remark 3.13 Using the same technique as above, it is easy to check that the corresponding cases with j <
I<k<ij<k<I<ik<j<I<il<i<k<ji<k<I<jk<i<I<ji<l<k<jl<
ISj<kl<j<i<ki<j<I<ki<k<j<lj<Il<i<kk<j<i<Lk<i<j<l and
j < k <i < have the same Hamming distances as case [ < j < k < i in the above Theorem.
Structure IV: When p™ = 1(mod4) and A = a + uf is asquare of the form A = 23, where A, is
non-square in R.

, multiplied by u. Thus, C has the Hamming distances computed as 2 from Theorem 2.12.

In this case, there exists a, € ]F;;m such that a = agps. Obviously, «, is also non-square. Then, (x? +
ap) and (x* + a,) areirreducible in F,m[x]. x*P° —  has the factorization into product of irreducible
factors as x*?° —a = (x% — )P (x% + )P,
The ring Ry, is a principal ideal ring whose ideals i.e., (a + uf)-constacyclic code of length 4p®
over R are C = ((x% — ap)*(x? + ay)’) , where 0 < i,j < 2pS. Then, we have the following lemma:
Lemma 3.14 In Ryyup, ((x% — ao)? (x2 + ao)P’ ) = (u). In particular, (x? —ao)(x? + ap) is
nilpotent in R,z With nilpotency index 2p*.
Now, we here consider the Hamming distance of C for the case 0 <j <i < 2p®. Theorem
3.15 The (a + up)-constacyclic codes of length 4p° over R,
C =((x* — ap)'(x* + ap)’)

for 0 <j < i < 2p°® have the following Hamming distances
e dy(C)=1,if0<j<i<p’
dy(C)=2If0<j<p’and p°+1<i<2p°
dy(C) = min{(py + Dp'°, 2(p; + Dp"1},if 2p° —p 0 + (po — Dp* ™ 1 +1 <

< 2p° —p T 4 pop TR, 2pT —pTT 4+ (o — DpT T 415

< zps _ pS—K1 + ,D1PS_K1_1
du(C) = 2(py + Dp™,if i = 2p%,2p° —p*~ 1 + (p — Dp* ™71 +1 <

S sz _ pS_Kl _|_ plpS—Kl—l
dy(C)=0,if i =j = 2p°
where 1 < pg,p1 <p—1,0<K; <Ky <s-—1.
Proof.
Case 1l i = j = 0. Then, the code has Hamming distance of 1.
Case2 j=0and i # 0.
Subcase 2.1 1 <i < p°.
Then, clearly, we have u € ((x? — ap)") and thus ((x? — a,)‘) has a Hamming distance of 1.
Subcase 2.2 p* +1 < i < 2p°.
Then, clearly ((x% — ag)}) 2 (u(x% — ay)"°).
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[Fpm[x]

So, ((x2 — a,)') has the same Hamming distances as the code ((x% — ay)! P’} in T —ay multiplied

by u. Hence, from Theorem 2.14, we have Hamming distance of 2.

Case3 i#0,j+#0

Subcase 3.1 1<) <i<p®.

Then, u € ((x? — ag)*(x? + ay)’) and thus ((x? — ay)*(x? + ay)’) has a Hamming distance of 1.
Subcase3.2 p*+1<j<i<2p°-—-1.

Then ((x2 — ap)'(x% + ap)’) = (u(x? — ap) ™" (2% + ) ~7°).

So, the code ((x% — @) (x% + @)’} in Ry4yp has the Hamming distances same as the code ((x? —

m[x]

i N i N - F - - - -
@) P (x2 + ap)’7P°Y in (xf]Txa multiplied by u. Thus, from Theorem 2.14, the Hamming distances

)
computed as

dy(C) = min{(po + 1)p*, 2(p; + Dp*1},if 2p° —p*™ + (pp — Dp* "0 + 1 <
< 2p° =P 4 pop TR 2pT —pTT 4+ (o — DpT T 415
< zps _ ps—zc1 + plps—K1—1
Subcase 3.3 i=2p%,p*+1<j<2p°—1.
Then, ((x? — ap) (x? + a)’) = (u(x? — ao)? (x? + @) 7).
So, the code ((x% — ap)"(x? + ap)’) in Ryyyp has the same Hamming distance as the code ((x* —

X

s s . Fom .. . .
ao)? (x% + ap)’7P) in (xfps[—i)’ multiplied by u. Thus, from Theorem 2.14, the Hamming distances

computed as
du(C) = 2(py + Dp"s,if i = 2p°,2p° —p* "1 + (py — Dp* ™™ + 1<
<2p°—p*T 4 pyptTaTt
Subcase34 1<j<p’and p°+1<i<2p°
Then, ((x2 — ao) (%% + ap)’) 2 (u(x? — ap) " P°).
F_m([x]

So, ((x2 — ap)'(x% + ay)’) has the same Hamming distances as the code ((x% — ay)'?") in —2&

(x*°~a)’
multiplied by u. Thus ((x? — ay)*(x? + ay)’) has a Hamming distance of 2.  Subcase 3.5 i = =
2p°
Then, ((x? — ag)'(x? + ay)’) has Hamming distance 0.

Combining all the cases we get the Hamming distances of (a + uf3)-constacyclic codes when j <i. m
Remark 3.16 Using the same technique as above, it is easy to check that the corresponding case with i <
Jj has the same Hamming distances as j < i in the above Theorem.

Structure V: p™ = 1(mod4) and 4 = a + uf is non-square unitin R.

Then, there exists a, € ]F;;m such that a = a(’,’s. Also, (x* — ay) is irreducible in F,m=[x], and so,
x4 — = (x* — ap)?’.

Now, consider the ring Ry, Whose ideals are of the form C = ((x* — ap)t), where 0 < i <
2pS. Equivalently, € = ((x* — a,)"), 0 <i < 2p°® are (a + uf)-constacyclic codes of length 4p°
over R. Then, the following lemma follows:

Lemma 3.17 In Rgyyp, ((x* — )P’y = (u). In particular, (x* —a,) is nilpotent in Ry syp With
nilpotency index 2p*®.
The Hamming distance distribution dy(C) of (a + uf)-constacyclic codes of length 4p® over R is
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completely determined as follows:
Theorem 3.18 Let C = ((x* — a,)?), for i € {0,1,...,2p"}, then the Hamming distance dy(C) is
completely determined by
e dy(C)=1,if0<i<p’
o dy(C) = (po + Dp"0,if 2p° —pS7"0 + (pp — Dp* 71 +1 < i < 2p° — p* 0 + pop* o1
e dy(C)=0,if i = 2p°
Proof.
Case 11 <i <pS Then, u€ ((x*— ay)') and thus dy(C) = 1.
Case2 p°+1<i<2p®—1. Then((x* — ay)}) = (u(x* — a)"?"), which means that the codewords

lem

of the code ((x* — ay)") in R4 p are precisely the codewords of the code ((x* — ap)"°) in )

multiplied by u, which have exactly same Hamming weights. Moreover, the code ((x* — a))! """ of
length 4p5 have Hamming distances determined as Theorem 2.16. m

4 Examples
In this section, we provide some examples of (a + up)-constacyclic codes of length 4p° over F,m +

ulF,m, where a, 8 € ]F;m with new and good parameters from existing one according to [20].
Table I1. Examples of A-constacyclic codes over Fg + ulFg

n A Generator < g(x) > [n,M,dy]
20 1+ 3u ((x — 1D°(x — 2)(x — 3)(x — 4)°) [20, 532, 2]
20 2+u ((x* —2)8) [20,58,4]*
20 4+ 2u ((x% —2)19(x% — 3)%) [20,52,10]*
100 3+ 2u ((x* = 3)?) [100, 5384, 1]
100 44u ((x? = 2)0(x? — 3)10) [100, 5369, 2]*

Table I11. Examples of A-constacyclic codes over [F;z + ulF;2

n A Generator < g(x) > [n,M,dy]

12 1+u (= DO(x+ D*(x + w?)?(x + w®)®) [12,315,4]

12 w?+u ((x? + w)(x% + 0w”)*) [12,3%6,2]*

12 W+ 2u ((x* + w”)°) [12,3% 3]

36 1+ 2u ((x — DB+ DB (x + w?)V (x [36,3%,36]"
+ w6)18)

36 2+ 2u ((x + 0)(x + o) (x + 0> (x + w")) [36,313¢,1]*

Table IV. Examples of A-constacyclic codes over F, + ulF,

n A Generator < g(x) > [n,M,dy]
28 1+ 3u ((x — D(x+ D(x%+ 1)) [28,7°2,1]*
28 24+u ((x— 2)(x + 2)8(x% + 4)°) [28,72°,2]"
28 44 2u ((x = 3)B(x +3)13(x% + 2)13) [28,7% 7]
28 5+2u ((x?2+x+4)°(x%? —x + 4)?%) [28,73%,3]"
28 3+u ((x? + 2x + 2)1(x% — 2x + 2)8) [28,718, 5]
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Table V. Examples of A-constacyclic codes over Fqq + ulF;

n A Generator < g(x) > [n,M,dy]

44 1+ 8u ((x + 1) (x + 10)(x% + 1)1?) [44,11%°, 4]
44 2+u ((x% + 4x + 8)%%(x% + 7x + 8)21) [44,112,33]
44 6+ 7u ((x? + 5x + 7)1%(x% + 6x + 7)??) [44,11'2, 18]
44 5+ 5u ((x + 2)%2(x + 9)2 1 (x? + 4)??) [44,11%,44]
44 10 4 3u ((x% + 3x + 10)(x% + 8x + 10)13) [44,115°, 3]*

5 Maximum Distance Separable Codes
In [21], Norton et al. discussed the Singleton bound for finite chain ring R with respect to the Hamming
distance dy(C) and is given as |C| < |R|*%(©O*1 Maximum Distance Separable (MDS) codes are
classified as an important class of linear codes that meet the Singleton bound. They have high error
correction capability as compared to non MDS codes.
Theorem 5.1 (Singleton Bound) [21] Let C be a linear code of length n over R with Hamming
distance dy (C). Then, the Singleton bound is given by |C| < p?™(=au(O+D)  Definition 1 Let C
be a linear code of length n over R with Hamming distance dy(C). Then, C is said to be a maximum
distance separable (MDS) code if it attains the Singleton bound.
In this section, we explore all MDS (a + uf)-constacyclic codes of length 4p°.
Theorem 5.2 Let C = ((x — ap)'(x + ag)’ (x? + ay?)*) be a (a + up)-constacyclic code of length
4p*® over R. Then, the only MDS code for the Hamming distance is the ambient ring Ry ,p =

R[x] .
T ataE) itself.

Proof. Let C bea (a + uf)-costacyclic code of length 4p° over R. From Theorem 2.3, we have |C| =
pm(SpS—i—j—Zk)_

Then, € is MDS if and only if |C| = p2m@P°~du(O+D) jo = pm®BP°—i=j=2k) = p2mAP°*~du(O)+1) je
8p* —i—j—2k=8p°—2dy(C)+2 e, i+j+2k=2dy(C)—2 . Now, we consider the
conditions for the equations hold from the following cases.

Case 1 0 <i,j,k <p° Then, dy(C) =1, obviously we have i + j + 2k = 2dy(C) — 2 if and only if
i =j=k=0.Hence, C =(1)isaMDS (a + uf)-constacyclic code of length 4p° over R.

Case 20<k<pS0<j<2pSand p’+1<i<2p5, or0<j<ps, p’+1<k<p’+ps? and
pS+1<i<pS+pS!. Then, dy(C)=2. Also, we have i+j+2k=>pS+1>2-2-2=
2dy(C) — 2. Thus, there is no MDS code.

Case3 0<j<p5, p’+1<k<pS+2p5tandp’+pSt+1<i<pS+2p51t Then, dy(C) =
3and i+j+2k>3p°+p514+3>2-3—2=2dy(C)— 2. Therefore, no MDS code exists.

Case 4 0<j<ps p°+1<k<2p’and p5+2p51+1<i<2p% Then, dy(C)=4 and we
have i +j + 2k = 3pS +2pS 1 +3 > 24— 2 = 2dy(C) — 2. Thus, no MDS code exists.

Case 5 2p° —p* 7 + (po — Dp* "7t + 1< i < 2p° —p*7"0 + pop* 0™t | 2p° —p T + (p; —
1)ps—1€1—1 +1<k< zps _ ps—K1 + p1pS_K1_1 and Zps _ pS—Kz + (pz _ 1)pS—K2—1 +1 Sj <
2p® — p¥"% + ppp° 7271 Then, dy(C) = min{(p, + 1)p0, 2(py + 1)p**, 4(p, + 1)p*2}, and
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i+j+2k> 8p°—p 0 —2pST —pSTF2 + (py — DTt + 2(py — Dp* T + (py
—DpsS*l 44
= 4(2p° —p* 0 + (po — Dp*0 7t + 1)
(equality when ky = k; = Kk, and py = p; = p3)
= 4Q2pTT (P — D +p T+ (po — DpTOT + 1)
> 4(2p(pFo—1)+p + (po — 1) + 1)(equality when ky =s — 1)
> 4(2(pg + 1)p" e — 1)(equality when p, =p —1)
= 2:(po+Dp* =2+ (6(po + 1)p™ —2)
> 2-(po+ Dp*e -2
> 2 -min{(po + Dp*, 2(py + 1)p"1,4(p; + Dp*2} - 2
= 2dy(C) -2
Therefore, there is no MDS code.
Case 6 i=2p5, 2pS—pS "1+ (p—Dp5 M 1+1<k<2p5—pS™ +p;pS~™~1 and 2p° —
pSTRz 4+ (p, — DpSF27l 4+ 1 <j<2pS —pS 2 4 p,pS™%271 Then, dy(C) = min{2(p; +
Dp", 4(p2 + 1)p*2}, and
i+j+2k=> 8p5—2p5 "1 —p5S 24 2(p; — Dp 171+ (p, — Dp5*271 +3
= 5p°+3(p° —p°* T+ (pr — Dp° T+ 1)
(equality when x; = k, and p; = p;)
= 5p*+3( (P — D+ (pr — Dp°T T+ 1)
> 5pf1tl 4+ 3(p(p*r — 1) + (p; — 1) + 1)(equality when x; = s — 1)
> 5(p; + Dp"* + 3((p; + Dp*t — 1)(equality when p; =p —1)
= 2-2(p1+1) -2+ (4(ps + Dp™ - 1)
> 2-2(p1 + DpFr =2
> 2-min{2(p; + 1)p"™, 4(p, + D)p"2} - 2
= 2dy(C) -2
Therefore, there is no MDS code.
Case 7 i=2p5 k=2p%and 2p° —p5 ™2+ (p, — Dp¥ 271 + 1 <j < 2p° —p57%2 + p,pS7*271,
Then, dy(C) = 4(p, + 1)p*2, and
i+j+2k=> 8p5—pS 2+ (p,— DpS "1 +1
= 7p°+ (p° —p* T + (p, — Dp 7+ 1)
= 7p°+ @@ - D+ (b, — Dp* 7+ 1)
> 7p*2tl + (p(p*2 — 1) + (p, — 1) + 1)(equalitywhen k, = s — 1)
> 8(p, + 1)p*2 — 1(equalitywhen p, =p — 1)
> 2-4(py, +1)p"2 =2
= 2dy(C) -2
Therefore, there is no MDS code.
Case 8 i=j=k=2p® Then, dy(C) =0, obviously i +j + 2k > 2dy(C) — 2. Combining
all the cases, the result follows. m
Theorem 5.3 Let C = ((x — ap)'(x + ap)’ (x — nay)*(x + nay)') bea (a + up)-constacyclic code of
length 4p® over R. Then, the only MDS code for the Hamming distance is the ambient ring Ry .y,5 =

R[x] .
T —@iup) itself.

Proof. Let C bea (a + uf)-costacyclic code of length 4p° over R. From Theorem 2.3, we have |C| =
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pm(SpS—i—j—k—l)_

Then, € is MDS if and only if |C| = p?™*P°=au(O+D) je pmEp°~izj=k=1) — 52m*p°=du(O)+1) je
8p*—i—j—k—-1=8p°—2dy(C)+2 e, i+j+k+1=2dy(C)—2. Now, by proceeding
similar way as Theorem 5.2, we get the result. m

Theorem 5.4 Let C = ((x? + 26x + 26%)"(x? — 26x + 26%)7) be a (a + up)-constacyclic code of
length 4p* over R. Then, the only MDS code for the Hamming distance is the ambient ring Ry 4,5 =

R[x] .
P (@rnE) itself.

Proof. Let C be a (a + up)-costacyclic code of length 4p° over R. From Theorem 2.3, we have |C| =
pm(8p5—2i—2j).

Then, € is MDS if and only if |C| = p?m*P*=du(©O+D) jo = pM(BP°-2i-2)) = 3,2m(@p°~dp(O+D) jo
8p® —2i —2j =8p° —2dy(C)+ 2 ie., 2i+ 2j = 2dy(C) — 2. Now, by proceeding similar way as
Theorem 5.2, we get the result.m

Theorem 5.5 Let C = ((x? + 28x + 262)}(x? — 26x + 26%)7) be a (a + up)-constacyclic code of
length 4p* over R. Then, the only MDS code for the Hamming distance is the ambient ring Ry 5 =

R[x] .
T —(@rup) itself.

Proof. Let C bea (a + uf)-costacyclic code of length 4p° over R. From Theorem 2.3, we have |C| =
pm(8p5—2i—2j).

Then, € is MDS if and only if |C| = p?m@P°~du(©O+1) je = pmBp°-2i-2)) — p2mEp°~du(O)+1) je
8p® —2i —2j =8p° —2dy(C) + 2 i.e., 2i+2j = 2dy(C) — 2. Now, by proceeding similar way as
Theorem 5.2, we get the result.m

Theorem 5.6 Let C = ((x% — ag)'(x? + ay)’) be a (a + uf)-constacyclic code of length 4p® over R.

R[x] .
pPTE itself.

Proof. Let C be a (a + uf)-costacyclic code of length 4p® over R. From Theorem 2.3, we have |C| =
pm(8p°=2i-2))

Then, € is MDS if and only if |C| = p?m*P*=du(©O+D) jo = pm(BP°-2i-2)) = 3,2mp°~dp(O+D) jo
8p® — 2i —2j =8p° —2dy(C) + 2 i.e., 2i+ 2j = 2dy(C) — 2. Now, by proceeding similar way as
Theorem 5.2, we get the result.m

Theorem 5.7 Let € = ((x* — ay)") be a (a + up)-constacyclic code of length 4pS over R. Then, the
R[x]
(x4P° ~(a+up))
Proof. Let C bea (a + uf)-costacyclic code of length 4p° over R. From Theorem 2.3, we have |C| =

pm(8ps—4i)_

Then, € is MDS if and only if |C| = p2m(*P°~du(O+D) jo  pmEP*~4) = 3,2mA@p°~dy(O+1) jo  8pS —
4i = 8p° — 2dy(C) + 2 i.e., 4i = 2dy(C) — 2 i.e., 2i =dy(C) — 1. Now, by proceeding similar way
as Theorem 5.2, we get the result.m

Then, the only MDS code for the Hamming distance is the ambient ring Ry, =

only MDS code for the Hamming distance is the ambient ring Ry1y,5 = itself.

6 Conclusion

The Hamming distances of constacyclic codes have a significant role in error-correcting coding
theory. However, a minimal amount of work has been done on the computation of the Hamming distances
as it is generally a very complex task. In this paper, all Hamming distances of repeated-root (a +
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uf3)-constacyclic codes of length 4p° over F,m + ulF,m are determined. Also, we obtained some new
parameters of repeated-root constacyclic codes as examples.
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