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Abstract 

This work presents a generalized gradient estimator that optimizes expectations involving known or black-

box functions for discrete and continuous random variables. We synthesize and extend standard methods 

for constructing gradient estimators, offering a framework that incurs minimal computational overhead. 

Our proposed approach demonstrates effectiveness in variational autoencoders and introduces a 

straightforward extension to reinforcement learning, accommodating discrete and continuous action 

settings. Experiment-tal results reveal improved training performance and sample efficiency, highlighting 

the utility of our estimator in various domains. Future applications include training models with complex 

attention mechanisms, continuous latent-variable models with non-differentiable likelihoods, and 

integrating our method with existing variance-reduction techniques and optimization methods in 

reinforcement learning. 
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1. INTRODUCTION 

Slope-based enhancement supports propels in AI and support learning. Backpropagation [16,19,12] 

figures definite slopes for differentiable targets, while the reparameterization trick [24,4,13] empowers the 

practical improvement of probabilistic models. 

Notwithstanding, numerous targets need slopes for backpropagation, for example, black-box capabilities 

in support learning [18] or discontinuities from discrete sampling [7,2]. Ongoing techniques address this 

with angle assessors, including entertainer pundit methods [21] and persistent relaxations [7,2]. [22] 

presented a fair-minded, low-fluctuation assessor through persistent relaxations. We broaden this by 

learning a brain network-based control variate, yielding a lower-fluctuation, fair assessor material even 

without consistent relaxations, as in support learning or black-box improvement. 

2. BACKGROUND 

2.1. Inclination Estimators 

Streamlining boundaries θ to expand an assumption shows up in support learning (expected reward 

Eτ∼π[R]) and dormant variable models (boosting p(x|θ) = Ep(z|θ)[p(x|z)]). We enhance 

L(θ) = Ep(b|θ)[ f (b)] .   

 (1) 
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Figure 1: Left: Training Curves Comparing Different Gradient Estimators on a Toy Problem: 

L(Θ) = Ep(B|Θ)[(B − 0.499)2] Right: Log-Variance Of Each Estimator’s Gradient. 

 

For high-layered θ, unprejudiced stochastic inclinations gˆ are required for convergence [14]. 

Key inclination assessment strategies: 

Score-capability assessor (REINFORCE) [24] is fair-minded yet high-fluctuation: 

∩ցREINFORCE[f] = f (b)∇ log p(b|θ), b ∼ p(b|θ) (2) 

Reparameterization trick [24,4,13] lessens difference by communicating b as an element of an irregular 

variable: 

∩ greparam[f ] =
∂f 

∂b

∂b

∂θ
           ϵ ∼ p(ϵ) (3) 

Control variates [14] lessen difference by deducting a known-capability c(b): 

∩new(b) = gˆ(b) − c(b) + Ep(b)[c(b)] (4) 

This brings down change if c(b) is related to gˆ(b), with additional enhancement through a learned scalar 

[22]. 

 

3. CONSTRUCTING AND UPGRADING A DIFFERENTIABLE SURROGATE 

We present an inclination assessor for the assumption  ∂ Ep(b|θ)[f (b)] utilizing a mix of score capability 

assessors, the reparameterization stunt, and control variates. For persistent b where f isn’t differentiable, 

we develop a proxy cϕ 

utilizing a brain organization and separate through it. The assessor, Careless, is: 

 

∩ցLAX = gˆREINFORCE[f ] − gˆREINFORCE[cϕ] + gˆreparam[cϕ] 

 

= [𝑓(𝑏) − 𝑐ϕ(b)]
∂

∂θ
𝑙𝑜𝑔p(b|θ) +

∂

∂θ
𝑐𝜙(𝑏).              (5) 

 

This assessor is fair and can accomplish lower fluctuation than the reparame- terization assessor. 

Improvement of cϕ is done through inclination plunge, with the angle of the difference registered utilizing: 

Variance (gˆ) = E
∂

𝜕𝜙
gˆ2 .                                             (6) 
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t 

∂θ 

Algorithm ?? Frames the streamlining of both θ and ϕ. For discrete factors, we present a casual variable 

z and apply the reparameterization stunt, prompting the assessor: 

 

∩gDLAX  = f(b)
∂

∂θ
𝑙𝑜𝑔p(b|θ) − 𝑐𝜙(𝑧)

∂

∂θ
𝑙𝑜𝑔𝑝(𝑧|𝜃) + 

∂

∂θ
𝑐𝜙(𝑧),                𝑏 =  𝐻(𝑧), 𝑧 ∼

 𝑝(𝑧|𝜃).      (7) 

Further refinements lead to the Loosen up assessor, which involves a restrictive reparameterization for 

decreased difference: 

∩gRELAX  = f(b) − 𝑐𝜙(𝑧῀)]
∂

∂θ
𝑙𝑜𝑔𝑝(𝑏|𝜃) + 

∂

∂θ
𝑐𝜙(𝑧) −

∂

∂θ
𝑐𝜙(𝑧῀),     𝑏 =  𝐻(𝑧), 𝑧 ∼

 𝑝(𝑧|𝜃),   z῀ ~ 𝑝(𝑧|𝜃), 𝑧˜ ∼  𝑝(𝑧|𝑏, 𝜃).                 (8) 

In support learning, we upgrade strategies utilizing a comparable slope assessor that consolidates a benefit 

capability: 

 

Σt
 

At =           rt′ − cϕ(at, st), (9) 

t′=t 

 

=  Σ∂ log π(a |s , θ    “     Σ rt′ − cϕ(at, st),  + 
∂

∂θ 
cϕ(at, st).           (10) 

t′=1                            t′=t 

4. SCOPE AND LIMITATIONS 

Our work is firmly connected with the REBAR method [22], which is an excerptanational instance of the 

RELAX assessor, with the substitute set to cϕ(z) = η • f (softmaxλ(z)). 

REBAR has restricted scope for improvement because of its dependence on the 

scaling factor η and temperature λ and must be applied when f is known and differentiable. It likewise 

relies upon unclear behavior, assessing discrete misfortune capabilities at nonstop data sources. 

Conversely, LAX and RELAX can enhance black-box capabilities, for example, in Support picking up, 

requiring the capacity to question and separate p(b|θ). 

Direct reliance on parameters When f relies upon θ, like in probabilistic models or with regularizers, we 

can broaden the slope assessors by adding  ∂ f (b, θ), prompting an impartial assessor: 

∂

∂θ
𝐸p(b|𝜃)[𝑓(b, 𝜃)] = 𝐸p(b|𝜃) +

∂

∂θ
𝑓(𝑏, 𝜃) 

∂

∂θ
 log 𝑝(𝑏|𝜃)                          (11) 

 

5. RELATED WORK 

A few late works have zeroed in on slope assessment. [8] lessen the difference of reparameterization slopes 

involving a basic model as a control variate. NVIL [9] and VIMCO [10] diminish change in discrete idle 

variable models, while [17] utilize limited contrasts to gauge angles in equal. Our strategy, 

notwithstanding, is a solitary example assessor. 

[20] and [23] additionally use examining appropriations to construct angle assessors. [11] presents a non-

parametric control variate to decrease the difference in the Monte Carlo mix. Late work on activity 

subordinate baselines in support learning, for example, 

[1] and [6] share similitudes with LAX in ceaseless control assignments, with [25] utilizing per-aspect 

freedom for activity subordinate fair-minded baselines. 

∩g  RL 
LAX 
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6. APPLICATIONS 

We show the viability of our assessor on different improvement issues, beginning with a toy model, trailed 

by streamlining twofold VAEs and support learning. 

6.1. TOY EXPERIMENT 

We limit Ep(b|θ)[(b − t)2] where p(b|θ) = Bernoulli(b|θ), and t = 0.499, as recommended by [22]. Figures 

1a and 1b show the general presentation and inclination log fluctuation of Build, REBAR, and Unwind. 

Figure 2 shows that the learned proxy cϕ intently approximates f for all z, guaranteeing a little difference 

for Support and inclinations that improve the assumption. Conversely, REBAR’s substitute approximates 

f close to 0 and 1, prompting less compelling enhancement. Consequently, Unwind accomplishes the best 

exhibition. 

6.2. DISCRETE VARIATIONAL AUTOENCODER 

We assess RELAX on preparing a variational autoencoder [4,13] with Bernoulli idle factors on MNIST 

and Omniglot [5]. We utilize the control variate cϕ(z) = f (σλ(z)) + rˆρ(z), where rˆρ is a brain organization 

and f (σλ(z)) is the ELBO assessed at ceaseless contributions, as in REBAR. 

 

REINFORCE 

0.251 

0.250 

0.249 

 

REBAR 

0.2 

0.0 

 

RELAX 

0.20 

0.15 

0.0 0.2 0.4 0.6 0.8 1.0 

u.. 

Figure 2: Ideal unwinding for a toy misfortune capability utilizing different inclination assessors: REBAR 

utilizes a quadratic substantial unwinding, while Unwind considers a freestyle unwinding. The learned 

control variate was further developed in all tests to prepare execution, contrasted with REBAR, especially 

in direct models, and accomplish quicker combinations. The decline in execution for nonlinear models is 

ascribed to overfitting. We will pass on additional investigation of this to future work. 

Preparing bends in Figure 3 and Table?? This shows that RELAX prompts quicker union in both direct 

models than REBAR. 

f(b = H(z(u))) 

f( (z(u))) 

c (z(u)) 
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6.3. REINFORCEMENT LEARNING 

We apply RELAX and LAX assessors to support learning undertakings with discrete and ceaseless 

activities, contrasting them with A2C [21]. In discrete undertakings (Truck Shaft, Lunar Lander), we 

discard reward bootstrapping, 

 
Figure 3: Preparing bends for one-layer direct VAE, with a ran line showing REBAR’s most 

reduced approval blunder. 

 

W h i l e  p e r f o r m i n g  consistent errands (Rearranged Pendulum), we utilize a worthw h i l e  capability 

for bootstrapping. The control variate is cϕ(a, s) = V (s) + cˆ(a, s). 

Our assessor lessens the inclination to change, permitting more considerable learning rates and 

quicker assembly. In discrete undertakings, we accomplish more than a two-times speedup over 

A2C. Results are displayed in Figure 4 and Table.?? 

 

Table 2: Average Episodes Needed To Complete Tasks. Task Completion Criteria Are 

Detailed In Appendix 12. 

Approach Cart-Pole 

Lunar Lander Inverted Pendulum 

A2C 1152 ± 90  162, 374 ± 17, 241 6, 243 ± 164 

LAX/RELAX 472 ± 114 68, 712 ± 20, 668 2, 067 ± 412 
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7. CONCLUSIONS AND FUTURE WORK 

We introduced a summed-up slope assessor with negligible computational overhead for assumptions 

of known or discovered elements of discrete or persistent irregular factors. We extended it to support 

learning for both discrete and continuous action spaces. 

Future work includes applying our assessors to models with intricate attention or memory indexing 

[27], non-differentiable latent variable models such as 3D rendering engines, and extending 

reparameterization gradient estimators [15,?]. In reinforcement learning, integrating our approach 

with variance reduction techniques like generalized advantage estimation [3,?], optimization methods 

like KFAC [26], and off-policy algorithms like Q-prop [1] presents a promising direction. 

 
Figure 4: Top row: Reward curves. Bottom row: Log-fluctuation of strategy angles per episode, 

showing mean prizes (focus line) and changeability (bars). The middle value of over-addressed 

boundaries was found in each tenth episode. 
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