

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250136893 Volume 7, Issue 1, January-February 2025 1

Intelligent Defect Triage Automation (IDTA):

Leveraging AI for Efficient Defect Management

Jagan Mohan Rao Doddapaneni

Jaganmohanrao.d@gmail.com

Abstract

With the increasing complexity of software development, defect management has become a crucial aspect

of ensuring high-quality releases. Traditional defect triage methods involve manual analysis, which is

time-consuming and prone to human error. This paper introduces Intelligent Defect Triage Automation

(IDTA), an AI-driven approach leveraging historical defect knowledge to streamline the triage process.

By integrating a Defect Knowledge Management (DKM) repository and an automated triage engine,

IDTA can intelligently assess new defects, match them against historical data, and suggest resolution steps.

This automation reduces the time taken for defect analysis, enhances decision-making accuracy, and

improves overall software quality.

Keywords: Defect Triage, Root Cause Analysis (RCA), Intelligent Automation, Defect Knowledge

Management, AI in Software Testing, Jira Integration

https://www.ijfmr.com/
mailto:Jaganmohanrao.d@gmail.com

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250136893 Volume 7, Issue 1, January-February 2025 2

1. Introduction

Defect management is an essential component of software quality assurance. In large-scale projects,

numerous defects are reported daily, requiring efficient triage to determine their root cause and assign

appropriate resolution steps. Traditional defect triage involves manual scrutiny of historical defects and

expert judgment, leading to delays and inconsistencies.

The Intelligent Defect Triage Automation (IDTA) system addresses these challenges by leveraging

historical defect resolution data stored in the Defect Knowledge Management (DKM) repository. IDTA

extracts new and open defects from Jira, evaluates their similarity against past defects, and automatically

suggests resolution steps when relevancy exceeds a predefined threshold. This system enhances efficiency

by reducing manual intervention, improving accuracy, and accelerating defect resolution cycles.

2. Key Concepts of IDTA

2.1 Defect Knowledge Management (DKM) Repository

• Centralized database storing historical defect information, including RCA steps.

• Continuously updated with resolved defects and associated resolution methodologies.

• Enables pattern recognition and AI-driven defect analysis.

2.2 Automated Defect Extraction from Jira

• IDTA extracts newly reported defects from Jira daily.

• Filters defects that remain in an open state for triage processing.

• Automates data ingestion, reducing the need for manual tracking.

2.3 Intelligent Triage and RCA Matching

• IDTA evaluates new defects against historical defects stored in the DKM.

• Uses AI-driven similarity analysis to determine if a new defect has X% or higher relevancy to past

defects.

• If a match is found, IDTA automatically suggests resolution steps.

• If no match is found, triage is performed manually via the IDTA GUI.

2.4 Integration with Jira

• Once triage is completed, IDTA updates Jira with automated or manually determined RCA steps.

• Ensures real-time synchronization of defect information across systems.

• Facilitates better collaboration between development, QA, and support teams.

3. Challenges in Traditional Defect Triage

Despite the structured nature of defect management, traditional triage processes face several challenges:

• Time-Consuming Analysis: Manual triage requires extensive review of historical defects, slowing

down defect resolution.

• Inconsistent RCA Decisions: Different team members may approach the same defect differently,

leading to inconsistent resolutions.

• Knowledge Retention Issues: Expertise is often siloed within teams, making it difficult for new

members to leverage past defect resolutions.

• Scalability Constraints: As projects grow, the volume of defects increases, making manual triage

inefficient.

By addressing these challenges, IDTA enhances defect management efficiency, reduces costs, and

improves software reliability.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250136893 Volume 7, Issue 1, January-February 2025 3

4. Benefits of IDTA

• Accelerated Defect Resolution: Automating RCA recommendations significantly reduces the time

taken to analyze and resolve defects.

• Enhanced Decision Accuracy: AI-driven pattern matching minimizes human errors and

inconsistencies in defect triage.

• Improved Knowledge Retention: The DKM repository ensures that historical defect resolutions are

always accessible.

• Seamless Jira Integration: Real-time updates enable better collaboration and traceability across

teams.

• Scalability: IDTA efficiently handles large defect volumes, making it ideal for enterprise-scale

projects.

5. Conclusion

The Intelligent Defect Triage Automation (IDTA) system revolutionizes defect management by leveraging

AI-driven analysis and historical knowledge to enhance the efficiency of defect resolution. By integrating

seamlessly with Jira and utilizing the DKM repository, IDTA ensures faster, more accurate defect triage

with minimal manual intervention. As software projects continue to scale, adopting such intelligent

automation solutions will be crucial for maintaining high software quality and operational efficiency.

Future enhancements may include predictive defect analytics, deeper AI-driven RCA insights, and

expanded integrations with additional defect tracking tools.

6. References

1. IEEE Std 829-2008, 2008, "IEEE Standard for Software and System Test Documentation,"

2. IEEE Transactions on Software Engineering, 2017, Menzies, T., Williams, L., & Zimmermann, T.,

"Automated Defect Prediction: A Systematic Review and Future Research Directions,".

3. 2003 Bach, J., "Exploratory Testing Explained," Software Testing and Quality Engineering Magazine.

4. 2020 Choudhary, R., & Kumar, P., "AI in Software Testing: The Future of Quality Assurance," ACM

Computing Surveys.

5. Zhu, H., Hall, P., & May, J., "Software Unit Test Coverage and Adequacy," ACM Computing Surveys,

2018.

6. Kim, S., Zimmermann, T., & Whitehead, E. J., "Predicting Faults from Cached History," IEEE

Transactions on Software Engineering, 2019.

7. Munir, H., & Sarro, F., "Defect Prediction using Machine Learning Techniques: A Systematic Review,"

ACM Transactions on Software Engineering and Methodology, 2021.

8. Hindle, A., & Godfrey, M. W., "Mining Software Repositories for Defect Prediction: A Case Study,"

Journal of Software Evolution and Process, 2022.

9. Hassan, A. E., "The Road Ahead for Mining Software Repositories," IEEE Software, 2023.

https://www.ijfmr.com/

