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Abstract 

Implementing domain-specific languages (DSLs) through higher-order functions and macros often leads 

to abstraction leakage, diminishing their user-friendliness. This paper introduces a semantics-lifting 

framework to address this challenge. The proposed framework offers a general algorithm to derive DSL 

semantics independent of the host language based on host semantics and translation rules. It formulates 

cor- directness and abstraction properties, ensuring the semantics lifting process maintains these 

properties. Additionally, the paper explores the necessary assumptions for achieving correct and abstract 

lifted semantics, demonstrated through the implemented system Osazone. Case studies across various host 

languages, including functional and imperative types, confirm the flexibility and reliability of the 

framework, ensuring the lifted DSL semantics preserve correctness and abstraction integrity throughout. 
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1. INTRODUCTION 

Language-oriented programming (LOP) [14] involves solving a specific class of problems by creating 

new domain-specific languages (DSLs). To avoid re-implementing common language constructs such as 

loops and branches, developers usually implement DSLs on top of another general-purpose programming 

language, which is usually called the host language. Developers can define a DSL using language features 

supported by the host language, such that the DSL programs are specialized programs with domain-

specific syntactic forms. Languages with features such as macros and higher-order functions are 

commonly used as host languages [2, 3]. These features provide methods to implement the translation 

from DSLs to the host language. By specifying the translation rules, developers can obtain DSL 

interpreters for free. DSLs implemented in this way are often called embedded DSLs (EDSLs). 

EDSLs have the potential to reduce implementation efforts significantly. However, their convenience is 

hindered by the requirement for users to understand host-level language concepts and possible error 

messages. This is a type of abstraction leakage [13]: programs that the user writes must be translated into 

the host language before executing. Thus, the abstraction boundary is not preserved, and it is challenging 

to retrieve DSL-level information during the execution. Pombrio et al. have significantly contributed to 

preserving the abstraction boundary that a DSL aims to establish. Their approach considers DSLs are 

implemented using syntactic sugars (i.e., language constructs defined by translation to the host language) 

and achieve this objective by recovering evaluation traces in the core language to traces in the DSL through 

a process called sugaring [10]. The sugaring process selectively reorganizes the sequence of evaluations 

in the host language to the DSL according to the reverse translation rules, thereby maintaining the 
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abstraction boundary dynamically. It is noteworthy, however, that errors during the host language 

execution can still lead to abstraction leakage during the evaluation. Specifically, error messages may not 

be translatable back to the DSL level. Consequently, DSL users may observe that the evaluation is stuck 

but cannot pinpoint the location of the error. 

One interesting step towards resolving this problem is type lifting [11], which aims to maintain abstraction 

boundaries during type checking. This technique statically infers typing rules for newly defined language 

constructs based on the typing rules of the host language and simple syntactic sugar definitions. The 

inferred typing rules of a DSL can be used for static analysis in Integrated Development Environments 

(IDE), ultimately facilitating the generation of high-quality compile-time error messages for DSLs. 

Inspired by the idea of type lifting, I shall propose a new technique called semantics lifting, which aims 

to derive the semantics of a domain-specific language statically to overcome the limitations of desugaring. 

Using my technique, DSL developers only need to provide the translation rules from the DSL to the host 

language, and then they obtain self-contained evaluation rules of lifted semantics for the DSL for free! 

My primary desideratum is to preserve the abstraction boundary of the DSL, i.e., the evaluation of a 

program in DSL does not reveal details related to the host language to the user. This lifted semantics can 

assist users in diagnosing run-time errors in their DSL programs because all evaluation steps are defined 

over the DSL constructs only. Thus, users can identify the sub-expression that caused the error. 

It is possible but not easy to adapt the core ideas of the type-lifting algorithm for semantics lifting. For 

instance, with a host language including lambda abstraction and application, I can define a new language 

construct by the following translation rule (sometimes called a desugaring rule): 

 
Following the lifting algorithm for types, I can obtain the derivation of the evaluation rule for let as shown 

in Fig. 1. First, a let expression is evaluated to a value v in DSL if the translated expression is evaluated 

to v in the host language (Step 1). Then, by the evaluation rule of application in the host, I expand the 

premise (Step 2). Finally, since a lambda abstraction is already a value with no premises (Step 3), I can, 

therefore obtain the following evaluation rule for let : 

 

Figure 1: Evaluation Rule Derivation of let 

 

It is important to note that this evaluation rule of let is described without any use of lambda abstraction 

and application, two host language constructs used for defining let . 

However, not everything works well like this. 

Consider the following translation rule 

 
which defines a language construct andf  in DSL over the host language. Following similar steps as above, 
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I can construct a derivation tree and obtain the following evaluation rule for andf : 

 
The rule still uses the host language construct if it leads to abstraction leakage because the evaluation of a 

DSL program may use the evaluation rules of the host language. 

This example reveals an important difference between evaluation and typing rules. In typing rules, the 

type of an expression is usually determined by its sub-expression types. By applying the type rules 

recursively, the resulting typing rules of DSL constructs defined by the translation rules are eventually 

premised on the types of their sub-expressions. However, such a composition-quality property may not 

hold for evaluation rules. For example, it is not always possible to statically determine where a lambda 

abstraction is applied, Thus, it is impossible to evaluate the abstraction body statically. When a lambda 

abstraction is used in a translation rule, the evaluation of these host language constructs in the body is 

delayed until lambda abstraction is applied at run-time, which induces abstraction leakage. 

In this paper, I present a general framework for semantics lifting, addressing the abovementioned 

difficulties abovementioned difficulties. 

With this framework, developers define a DSL via translation rules from the DSL to the host language 

and automatically obtain evaluation rules for the DSL. These DSLs with the obtained evaluation rules 

become independent of the host language, such that users can be entirely agnostic of the host language. 

My main technical contributions are summarized as follows: 

I propose a general semantics-lifting algorithm and provide sufficient conditions for guaranteeing the 

correctness of the algorithm. 

I present a systematic theory that clarifies the assumptions about the host language, meta-functions, and 

translation rules. I prove that semantics lifting is correct and preserves abstraction boundaries under a few 

reasonable assumptions. 

I have implemented the framework as a system called Osazone, which allows users to define DSL 

translation rules and automatically generates an interpreter for the DSL. I will present several non-trivial 

case studies to show the power of Osazone. 

 

2. OVERVIEW 

My overall goal is to generate DSL evaluation rules from user-defined translation rules of the DSL and 

the host language evaluation rules. The evaluation result of a DSL program should be equivalent to the 

evaluation result of the same program through translation and subsequent evaluation in the host language. 

I use D(e) to denote the translation from a DSL expression e to the host language. Then, I prove a standard 

correctness property: 

Goal 1 (Correctness) The correctness goal can be divided into the following two 

subgoals: 

–  Soundness: If e  ⇓ v, then D(e)  ⇓ D(v) 

– Completeness: If D(e)  ⇓ v′, then there exists v, s.t. D(v) = v′ and e  ⇓ v 

where ⇓ (DSL) denotes the evaluation in DSL, and ⇓ (Host) denotes the evaluation in host languag 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250136992 Volume 7, Issue 1, January-February 2025 4 

 

I use D(v) on the right-hand side in the soundness property. This is because the values of the two languages 

could be different even though I allow language constructs for values of the host language to be used in 

the DSL. To clarify this point, consider a DSL program that evaluates to λx. λy. and x y, where and is 

defined in Sec. 1. In the meantime, the corresponding host program should evaluate to λx. λy. If x then y 

else false. The completeness property follows a similar pattern. 

My second goal concerns abstraction. Operationally, I expect that the evaluation sequence of a DSL 

program should be understandable to DSL users, meaning the language constructs used in the sequence 

should be values and DSL constructs. This concept is referred to as global abstraction, and it is reflected 

in the big-step operational semantics by the absence of host-language constructs in the derivation tree of 

the evaluation of a DSL program. 

 

Goal 2 (Abstraction) The derivation tree of a DSL program evaluation can 

only mention language constructs of values and the DSL. ⊔⊓ 

In the rest of this section, I use a small functional language called STLC as the host language, whose 

syntax and semantics are illustrated in Fig. 2, to demonstrate how my framework works. 

 

 

 
Figure 2: The Syntax and Semantics of STLC 
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Figure 3: Translation Rules for BOOL 

 

2.1 DERIVATION OF EVALUATION RULES 

This section provides an example to illustrate the aforementioned goals further. Let us consider the 

scenario where developers wish to implement a DSL called Bool to carry out Boolean operations. Figure 

3 showcases how Bool is defined through translation rules. 

Each translation rule, represented by tr, includes a left-hand side (LHS) and a right-hand side (RHS) 

separated by →d. The LHS is a newly defined language construct with meta-variables as placeholders for 

expressions, while the RHS is composed of constructs in the host language and these meta-variables. Every 

translation rule defines a unique language construct in DSL. 

In contrast to each language construct typically having only one typing rule, the evaluation of a language 

construct (such as if ) is sometimes described by multiple rules for different cases. As a result, in the 

semantics-lifting process, I must derive an evaluation rule for each case. For instance, to derive the 

evaluation rules of and, I can construct the following inference tree: 

 
And then, the evaluation rule for if e1 then e2 else e3 dependents on whether e1 evaluates to true 

or false. Hence, my derivation tree will also be divided into

two parts: 

 

 

These two rules demonstrate that the outcome of an expression with outermost and solely depends on the 

evaluation results of e1 and e2. Thus, when I substitute specific DSL expressions for e1 and e2, the above 

derivation tem- plate necessarily becomes the root of the inference tree. As a result, there is no need to 

derive it for every expression constructed using and . By removing the intermediate derivation, I obtain 

the evaluation rules of and : 

 

In the above derivation, I have fully applied the evaluation rules of if statically, which guarantees that the 

premises of obtained evaluation rules no longer contain it. So, when a DSL program contains and is 

evaluated, the premise is to evaluate the two sub-expressions and if they will not be generated at this stage 

(goal 2). 
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Where e1 and e2 are DSL expressions, through induction, I can demonstrate that the value v of evaluating 

e2 in the DSL is equal to the value v′ of evaluating D(e2) in the host language after translation. Therefore, 

I can conclude that goal 1 has been met. 

Similarly, I can derive evaluation rules for the remaining language constructs in Bool. It is worth noting 

that in the translation rule for nand, I use DSL constructs, not and. This is allowed since I can consider 

these translation rules as being progressively incorporated into the host language, meaning that nand is 

conceptually defined based on a host language that already includes and does not. However, it should be 

noted that translation rules with cyclic dependencies, such as recursively defined translation rules, are not 

permissible. 

2.2. ASSUMPTION FOR CORRECTNESS 

In this section, I present a sufficient assumption to satisfy correctness. The assumption concerns meta-

functions in the host language: Meta-function calls should be commutable with translation. 

Meta-functions are functions in the meta-language for semantics definitions. In the semantics of Stlc 

(presented in Fig. 2), there are two meta-functions: substitution and. There is a distinction between them: 

the former is a syntactic substitution whose output is an expression used for further evaluation. At the 

same time, the latter describes a computation whose input and output are values. 

In semantics lifting, meta-functions are often reserved in the derived evaluation rules. 

Therefore, the correctness of a lifted DSL semantics depends on the definition of meta-functions used. 

Specifically, the substitution rule should satisfy: 

 
For any other meta-function f, the following equation needs to be satisfied: 

 
Intuitively, this means that the meta-function f must be defined according to the meaning of its arguments 

rather than their syntactic structure. As a counterexample, I define a meta-function evil that does not 

satisfy this assumption: 

 

The meta-function evil is ill-behaved in semantics lifting because 

evil(λx. if x then x else false) = true but evil(λx. x and x) = false. 

 

2.3. ASSUMPTIONS FOR ABSTRACTION 

This section describes the assumptions necessary for achieving the abstraction goal. These assumptions 

are: 

2.3.1.  Meta-functions: Each meta-function should be closed over a given set of language constructs. 

2.3.2. Host language: The evaluation of a host-language expression should consist of evaluating its sub-

expressions and meta-function calls. 
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2.3.3. Translation rules: In the RHS of a translation rule, host-language constructs cannot be used in any 

non-abstract component. 

No need to panic! I will explain these assumptions one by one. 

Meta-functions The assumption about meta-functions is crucial in reducing the global abstraction 

property of evaluation derivations to local abstraction criteria for each lifted evaluation rule. Intuitively, 

when I use expressions or values of the DSL as arguments to a meta-function call, its result should not 

contain any constructs from the host language. In other words, meta-functions should be closed under the 

DSL constructs. Hence, given a DSL program, if the evaluation of its sub-expressions does not generate 

host-language constructs or meta-function calls, abstraction can be guaranteed in evaluating the DSL 

program. Thus, I transform global abstraction into local abstraction: derived evaluation rules of DSL can 

only mention language constructs of values and DSL. 

As an example, the following meta-function does not satisfy the above assumption: 

 
Host Language Essentially, I require that all evaluation rules of the host language be premised on 

evaluations of its sub-expressions and meta-function calls. This means that no other host-language 

constructs are allowed to be introduced in the premises. Otherwise, these constructs may be used in the 

derived evaluation rules, which breaks the abstraction. 

Translation Rules My assumptions about the translation rules can be justified with the evaluation-rule 

derivation of and given in Sec. 1. The evaluation rule of and breaks abstraction because it is defined via 

the lambda abstraction, and I use the host language constructs if in the body. Since the body of a lambda 

is not evaluated until it is invoked, the evaluation of its body cannot be derived statically and locally. I say 

e is a non-abstract component of the lambda abstraction λx. e. In general, in the evaluation rules of a 

language construct, a sub-expression is a non-abstract component of that language construct if it is used 

directly in the result or as an argument of a meta-function application. I assume that in the definition of 

translation rules, host-language constructs cannot be used in such components. 

The assumptions on translation rules are less restrictive than one might first think, as I can introduce 

auxiliary language constructs to define abstraction-breaking components explicitly. For example, for the 

translation rule, I can introduce a new DSL construct ′ to express the semantics of the lambda abstraction's 

body and define and use this newly defined DSL construct.

 
Hence, the abstraction property of and is satisfied. For outermost lambda ab- stractions, the transformation 

is straightforward. Note that inner lambda abstractions need to be extracted recursively. For lambda 
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abstraction, I can automatically generate auxiliary constructs using lambda lifting [4]. After this re-

processing of translation rules, the above assumptions are satisfied. 

 

3. THEORY 

In this section, I develop the theory of my semantics-lifting framework. In Sec. 3.1, I give a functional 

language with reference Func as the host language and formalize the non-abstract component of a language 

construct. In Sec. 3.2, I discuss the definition and requirements of translation rules. In Sec. 3.3, I formalize 

the semantics-lifting algorithm with several examples. Finally, in Sec. 3.4, I show the desired properties 

hold, i.e., correctness and abstraction. 

3.1. HOST LANGUAGE 

My approach supports a wide range of host languages. In particular, I support host languages with side 

effects that can be described using monads [8, 9]. Many practical language features can be defined with 

monads, such as environment, store, non-determinism, I/O, etc. In some instances, multiple effects can be 

combined by a monad transformer mechanism [7]. 

 

 
Figure 4: Syntax of FUNC 

 

I present an example host language, Func, which uses state monad to implement references. The syntax 

of this language is given in Fig. 4. 

I introduce two types of applications in Func: call-by-value and call-by-name. I use ⇓S for evaluation with 

the state monad, where the state maps store locations to values. 

The monad provides meta-functions like alloc for state management, and I use the notation ⇒S to express 

the return value of meta-functions. Below are the forms of evaluation judgments and rules: 

 
There are two judgments meta-functions, similar to the setting I discussed in Sec. 2.2. One of them is the 

substitution at the syntactic level, whose output is an expression for evaluation. The other is monadic 

computation at the semantics level, ranging over by f. I require that the output of the latter kind of meta-

functions be values. Some of the evaluation rules of Func are shown in Fig. 5. Because I pass state 
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implicitly through the state monad, the judgments in the premises must be seen as operations performed 

from left to right and cannot be exchanged with each other. For example, in Haskell, the evaluation of ref 

e can be defined as roughly follows: 

 

 

 

 
Figure 5: Selected Evaluation Rules of FUNC 

 

Extract Non-abstract Components In Sec. 2.3, I have demonstrated that the body of a lambda expression 

is non-abstract, as the body evaluation will be delayed. This delay in evaluation can lead to issues with the 

abstraction property if a host-language construct is used within the lambda expression's body. It will be 

reserved in the evaluation rules of the DSL construct, resulting in an undesirable violation of the 

abstraction property. 

I call e in λx. e a non-abstract component. In the RHSs of translation rules, I cannot use host-language 

constructs in these non-abstract components. Roughly speaking, a sub-expression ei is a non-abstract 

component of a language construct c e1 · · · en if the sub-expression ei is: 

used directly in the evaluated result or 

passed as an argument to meta-functions in the evaluation rules of c. 

In Func, most language constructs have no non-abstract components; the only exceptions are lambda 

abstraction and call-by-name application. In a call-by-name application (e1 e2)N, the expression e2 is used 

as an argument of a meta-function (i.e., substitution). Hence, in the translation rules defined by the call-

by-name application, e2 will not be evaluated until the substitution occurs, i.e., the evaluation of e2 is 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250136992 Volume 7, Issue 1, January-February 2025 10 

 

delayed. 

Formally, I use δ(ch e1 · · · en) to extract all the non-abstract components of ch, where ch is a host-language 

construct and e1, · · ·, en are meta-variables. The formal definition of δ is shown in Fig. 6. Here are two 

examples: 

δ(λx. e) = {e}   δ((e1 e2)N ) = {e2} 

3.2. Translation Rules 

A translation rule defines a new language construct by showing how to translate it into the host language. 

A rule for defining a new construct has the following 

 

 

 
Figure 6: Non-abstract Components Extraction shape: 

cn α1 · · · αn →d e, 

where αi are meta-variables for expressions that may appear in the RHS. I call constructs defined by 

translation rules surface constructs. 

TRANSLATION I use D(•) to denote the full translation from a DSL expression to the corresponding 

host expression. Intuitively, it recursively expands DSL constructs to their definitions and maintains the 

structure of host constructs. Formally: 

 
where σ is a substitution. Translation can be extended into judgments as: 

D(e ⇓S v) = D(e) ⇓S D(v). 

 

REQUIREMENTS To ensure that translation rules are properly defined, I impose the following 

requirements: 

Unique. A unique translation rule must define each surface construct. 
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Non-recursive. Language constructs in the RHS must belong to the host language or be surface constructs 

defined earlier. 

Closed. The translation rule must be closed, meaning any RHS variable must be bound locally. 

The first requirement ensures that the applicable rule for each surface construct is determined during 

translation. The second requirement states that translation rules cannot be defined recursively because 

recursive rules possibly lead to non-terminating translation. 

The third requirement pertains to the scope of the variables. Infer-scope provides a method to infer scopes 

through translation rules, and I adopt their approach in my framework. By enforcing this requirement, 

scope safety is ensured. Specifically, the requirement prohibits capturing external variables and requires 

that locally bound variables be explicitly parameterized. 

Example 1. Consider the following two translation rules and their sample programs: 

leaked e →d let x = 1 in e (✓) leaked (x + 1) (✗) 

captured e →d if x true e (✗) let x = true in captured false (✗) 

The first leaked rule attempts to bind the constant value 1 to the variable x, whose scope is e. However, 

since x is bound locally in the translation rule and not declared in the DSL program, using x in e is not 

allowed. (But the translation rule is permitted.) Alternatively, I can use the following definition to comply 

with the requirement: 

leaked ′ x e →d let x = 1 in e, 

Moreover, x can be used in e of leaked ′. 

The second rule, captured, tries to obtain the value of x from the current environment, which may result 

in unbound identifiers after translation. The translation rule itself is not allowed. 

Enforcing the requirement of closed translation rules ensures that my translation system is hygienic. 

Programming languages with non-hygienic macro systems may cause a hygiene problem, where variable 

bindings can potentially hidden by macros and vice versa [5]. For instance, suppose I define a translation 

rule or ′ via let : 

e1 or ′ e2 →d let x = e1 in if x then x else e2 

Where x is a literal identifier, then the expression let x = false in (faithful or′ x) will be translated into let 

x = false in let x = valid in if x then x else x, causing an unintended behavior since the same variable x is 

used in both the inner and outer scopes. Closed translation rules ensure no unbound-identifier exceptions 

[12]. Therefore, I can modify the names of variables safely, just like α-equivalence. I treat literal variables 

bound in the RHS as exchangeable and always fresh. Thus, the translation is always hygienic.

3.3 SEMANTICS LIFTING 

In this section, I formalize the semantics-lifting algorithm. As translation rules are assumed to be not 

mutually defined, I can process the translation rules one by one. Suppose that the translation rule tr has 

the shape cn α1 · · · αn →d e. I aim to get the evaluation rules of cn. 

The core idea of deriving evaluation rules has been shown in Sec. 2: expand the evaluation of compound 

expressions recursively according to the host evaluation rules until all the evaluations are not expandable. 

Formally, I use d for one-step static (symbolic) derivation, which accepts a judgment and returns a set of 

lists of judgments. Intuitively, it applies each possible rule for the input judgment, and each of them 
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produces a list of judgments. The definition of d is given in Fig. 7. For example: 

 
Figure 7: One-step Static Derivation 

 

I can define d* to represent a recursive derivation until all the judgments are of the form (1), (2) and (5). 

Formally, d* can be defined in Fig. 8. 

According to the above definition, given a translation rule cn α1 · · · αn →d e, the evaluation rules of cn are 

 
I now discuss some examples to illustrate the algorithm. 

Example 2 defines nand by not and and , assuming that the evaluation rules of not and and have been 

derived already. Example 3 defines or ′ by a let -binding and an if expression. 

Example 2. Let us consider the translation rule α nand β →d not (α and β). 

 
Figure 8: Recursive Static Derivation 
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This example showcases how d* works recursively. According to the definition, I need to compute 

d*(not (α and β)) first. 

? 

not (α and β) ⇓S v 

 

By the definition of d* and evaluation rules of not, I have 

 

I focus on the derivation of the first case, omitting the second one. Recursively, I have 

 
By removing premises that cannot be satisfied, I can obtain the following evaluation rules: 

 
Example 3. Let us consider the translation rule α or′ β →d let x = α in if x then x else β. 

This example demonstrates the role of hygiene in semantics lifting. Note that 

I assume that the translation is hygienic, i.e., here x is an arbitrary fresh variable, and x cannot be used in 

α or β. The evaluation rules of or′ are derived similarly to Example 2 as follows. 
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The first judgment is already in the form (1), so I only need to consider the second one, which contains a 

substitution. I apply the substitution first and then get the premises according to the evaluation rules of if 

. I have 

 
The generated rule is correct. But because there must be no x in β, I can further simplify it to obtain the 

following evaluation rules: 

 
 

3.4. ASSUMPTIONS AND PROPERTIES 

In this section, I present the assumptions being used in my framework. These assumptions are sufficient 

because they can prove the correctness and abstraction property of semantics lifting. Review that 

correctness is to show the relationship between the evaluation result of e in DSL and the evaluation result 

of D(e) in the host language, and abstraction guarantees that only language constructs of values and DSL 

can be mentioned in the derivation tree of DSL program. 

Correctness is stated the same as Goal 1 given in Sec. 2. 

As for the abstraction property, I modify the statement given in Goal 2 slightly. I assume a set S of 

language constructs is allowed to appear in the evaluation derivation of the DSL. Intuitively, S represents 

language constructs that are understandable to the DSL user. Then, all the language constructs of S should 

be included in DSL. By default, S is composed of values and DSL constructs. Given the set of language 

constructs S, in the semantics lifting, if the judgment has the form e ⇓S v and all the language constructs 

in e are elements of S, I can let d(e ⇓S v) be {[e ⇓S v]} for such premise will not break the abstraction. 

In turn, I formalize the assumptions for meta-functions, host language, and translation rules and then 

prove their correctness and abstraction their correctness and abstraction. 
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Meta-functions The two assumptions about meta-functions are, respectively, for ensuring correctness and 

abstraction. Starting with correctness, I have explained that translation and meta-functions invocation 

should be commutable in Sec. 2.2. In a language that includes side effects, this assumption can be 

formalized as follows: 

Assumption 1 For each meta-function f, f satisfies: 

It requires that the meta-functions be semantically driven and not influenced by the syntactic structure of 

the arguments. All the meta-functions I use in Func satisfy this property. 

Another assumption is related to the set S of language constructs; that is, I can use local abstraction to 

justify global abstraction. If I invoke a meta-function 

with expressions of DSL, the output should also be an expression of DSL. In other words, the meta-

functions cannot generate any new language construct not in S. 

Assumption 2 Given a set of language constructs S and expressions e1 · · · en, the language constructs of 

the return value f(e1 · · · en) are either from some ei, or from set S. ⊔⊓ 

Host Language In semantics lifting, the evaluation of compound expressions of the host language is 

expanded according to their evaluation rules. Therefore, I require that no host language constructs appear 

in the premises of the host language’s evaluation rules. More strictly, I require that the permitted language 

constructs be elements of the set S that can appear in the DSL. 

Because DSL constructs have yet to be introduced, I define a subset of S as Sh, which mainly consists of 

constructs for values. 

Assumption 3 Given a set of language constructs Sh, all the language constructs used in the premises of 

evaluation rules of the host language should be in 

Sh. 

From another perspective, any language construct in the host language used in the premises of the 

evaluation rules must appear in S. For example, fix in Func uses fix itself in the evaluation rule, so the 

language construct fix must be an element of Sh. In Func, I define Sh as constructs of values and fixes. By 

design, it makes sense to include a language construct in Sh only if it is primitive and can be assumed to 

be understood by DSL users, like the fixed-point combinator. Extending Sh to encompass all language 

constructs would make the above assumption and abstractness property trivial; thus, I should avoid the 

problem of such Sh being too large and confusing due to a not well-designed host-language definition. In 

some cases, I can avoid this situation by introducing more meta-functions. For example, I can introduce 

the meta-function iteration 

to expand the fixed-point combinator several times (i.e., the maximum number allowed of recursion). 

Then,the evaluation rule of the fixed-point combinator can be expressed as follows: 

 
Translation Rules: My assumption about translation rules is also intended to ensure abstraction. In Sec. 

2.3, I have shown that lambda abstraction containing host language constructs breaks abstraction in 

semantics lifting because of delayed evaluation. More generally, in the RHS of translation rules, any host- 

language construct that appears in the non-abstraction component of a host- language construct may lead 
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to abstraction leakage. Therefore, I propose the following assumption: 

Assumption 4 Given a set of language constructs S, if a host language con- structs c is used in the RHS 

of definition, then the language constructs used in 

the non-abstract components of c must be elements of S. 

This is a sufficient but not necessary condition to ensure abstraction. For example, in the following 

translation rule, I use the host-language construct if in the non-abstract component of the lambda 

abstraction. 

 
However, since the lambda abstraction is used with the application, which is essentially equivalent to let 

, the body’s evaluation is derived statically and, there- fore, does not break the abstraction. Similarly, 

abstraction leakage may not occur 

 

for a translation rule that contains a call-by-name application. For example, in the translation rule 

not ′′ α →d ((λx. x) (if α then false else true))N , 

 

the if expression is used in the non-abstract component of call-by-name application. However, since the 

applied abstraction is an expression without any meta-variable, all substitutions can be determined 

statically. 

For those translation rules that do not satisfy this assumption, I can generalize the approach of lambda 

lifting introduced in Sec. 2.3. The sub-expressions containing host-language constructs used in the non-

abstract components of the translation rules are defined as new translation rules, and then the original sub- 

expressions are replaced by language constructs defined by these new translation rules. Re-processing 

translation rules ensures that the newly generated translation rules satisfy the above assumption. I do not 

discuss the transformation in detail here. 

 

Main Theorem Given these assumptions, my semantics-lifting algorithm satisfies the following 

correctness and abstraction properties. 

 

Theorem 5 (Correctness). If assumption 1 is satisfied, then 

Soundness: If e ⇓S v holds in DSL, then D(e) ⇓S D(v) holds in host language; 

(11) 

 

Completeness: If D(e) ⇓S v
′ holds in host language, then exists v, s.t. D(v) = v′ 

(12) 

and e ⇓S v.                        (13) 

I prove the two parts by induction on the derivation of e ⇓S v and D(e) ⇓S v
′, 

respectively. 

 

Theorem 6 (Abstraction): Given a set of language constructs S, if assumptions 2, 3 and 4 are satisfied, 
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then globally, all the language constructs used in the derivation tree of a DSL program evaluation should 

be in S, and locally, all the language constructs used in the derived evaluation rules are elements of S. 

Let 
j1 · · · j𝑛 

j
be a derived evaluation rule, I aim to show that j1 … i1

do not mention language constructs of the host language. According to the termination condition 

of d*, the derived judgments all have the form of (6), (7) and (10). So I only need to ensure that 

there are no such things in the substitution and arguments of meta-functions which break abstraction. 

If some meta-function call f uses an expression with host language construct ch in a judgment, there 

are two possibilities. Consider the step of producing the meta- function call during the evaluation-

rule derivation. If the applied host rule is like 

 
4.  IMPLEMENTATION 

I have implemented a prototype of my framework in Haskell named Osazone. To describe the semantics 

of a language, I design a meta-language. Osazone allows users to define host languages using this meta-

language and design DSLs using some extensions and translation rules. I propose a general workflow to 

implement DSLs in Osazone. A developer should start by taking a language as the host language, 

introducing vocabularies by primitive extensions, and defining new language features by monad 

extensions. The developer can then define the DSL constructs by translation rules from the extended 

language. 

Primitive extensions involve adding new language constructs with corresponding rules directly to the host 

language. When the expressiveness of the host language is insufficient, e.g., some data types are absent, 

it would be impossible to define a DSL by translation rules. In this case, primitive extensions can introduce 

new data types and operations. Also, monad extension is a technique for incorporating side effects in 

computation without changing the original semantics definition. For instance, monad extensions can 

extend the language Func from typed lambda calculus. In Sec. 5, I will provide examples of language 

engineering using primitive extensions, monad extensions, and translation rules. 

Meta-language In big-step operational semantics, some language constructs have multiple evaluation 

rules, which leads to several branches when applying the evaluation rules in a derivation. Osazone 

introduces a meta-language for defining language semantics to overcome this issue, where each language 

construct has only one evaluation rule. My meta-language is based on Skeleton [1]. Using my meta-

language, I can define the evaluation of if expressions using a single rule as follows: 
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Here, e1 represents the evaluation of sub-expression e1. The result of this evaluation is used to select a 

specific branch through pattern matching (after the colon), after which subsequent computations are 

processed (after the triangle). If e1 evaluates to true, e2 will be evaluated, and if e1 evaluates to false, e3 

will be evaluated. 

In my approach, all evaluation rules can be expressed through recursive com—computations, meta-

operations, and branches. This method simplifies the semantics definition, improves the derivation 

process's clarity and coherence, and enhances my framework's overall usability. 

Define languages in Osazone In Osazone, a language's definition includes evaluation and typing rules. 

When introducing a monad, the developer must also define the program entrance. For example, the 

entrance of evaluation in Func is runState • empty, where runState takes the initial state and returns the 

computation value and final state. Osazone then automatically derives an interpreter for this language by 

generating Haskell code for the interpreter. A program can be evaluated and typed using the interpreter. 

To define a DSL, developers need to choose a host language and provide a file for primitive extensions 

(first step), a file for monad extensions (second step), and a file for translation rules (third step). 

The definitions of primitive extensions are directly added to the language. In the monad extension, all the 

meta-functions are lifted through a monad transformer to obtain the definition of the extended language. 

Then, the translation rules are analyzed one by one. My implementation derives both the evaluation and 

type rules for each translation rule. These rules are added to the extended language. Users can choose 

certain language constructs from the mixed language as the constructs of the DSL, and Osazone will 

automatically select a minimal closed subset containing these language constructs as the output language. 

Finally, I got the definition of DSL, and an interpreter of DSL was obtained for free. 

 

5. CASE STUDIES 

In this section, I use functional and imperative languages as host languages to illustrate the flexibility and 

practicality of Osazone. In the first example, I aim to show how a functional language is progressively 

extended with richer features using primitive and monad extensions and specialized to DSLs using 

translation rules. In the second example, I aim to demonstrate the generality of my approach, presenting 

its applicability to imperative host languages. 

 

5.1 DSLS ON FUNCTIONAL HOST LANGUAGES 

The languages discussed in this section and their relationships are shown in Fig. 9 where horizontal arrows 

represent primitive extensions and monad extensions, and vertical arrows stand for DSL definition by 

translation rules. 

I have shown the syntax and semantics of Stlc, Bool (in Sec. 2), and Func(in Sec. 3). I start with Stlc, a 

language with lambda calculus, integers, and Booleans. From Stlc, I define Bool using translation rules. 

With primitive extensions, I can extend Stlc to Stlcex by adding language constructs. Then, I introduce a 

state monad to support references, getting Func. I/O can also be supported in Func by adding a new 
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language construct print via monad extension. For brevity, I skipped the discussion about this extension. 

Language Adder Consider that developers would like to develop a DSL based on the Bool language, 

named Adder, which supports half -adder and 

 

Figure 9: Languages Extended and Specialized from STLC 

Full - Adderr to simulate a digital circuit. For example, in the language, I have 

 
However, translation rules are not easily implemented directly because half-adder and full-adder will get 

the pair of sum and carry as the results. Pairs are now required to build compound data structures. Primitive 

extensions are used to support new data types in the host language. In this example, developers add pair 

and projection to the language and specify each newly-defined language construct's evaluation (and 

typing) rules. Then, developers get a new language, Boolpair, and support pairs and projection. With the 

following translation rules, I can implement the DSL Adder that simulates half-adders and full-adders. 

 
 

The evaluation rules of half -adder , for example, are derived as follows: 
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Language Imp Since I added a store to Func, I can now express programs with side effects. Taking Func 

as the host language, I want to implement a reference-based imperative language Imp. In Func, the 

declarations and initial values of variables are necessary. 

For instance, a legal Func program is shown as follows: 

 
Ideally, I want to write the corresponding DSL program in a more traditional IMP-like syntax: 

 

I discuss why it is impossible to make the syntax of Imp exactly the same as traditional IMP-like language. 

Moreover, I define some other common language constructs for Imp. 

The declaration in the Imp language is a let-binding in Func, where what is assigned must reference some 

expression. In order to simulate the syntax of declaration in common imperative languages, I can define 

translation rule var as a syntactic sugar: 

 
This semicolon is used in the declaration syntax to ensure that x is valid in e2. 

At first glance, this is a perfect translation. However, in a usual assignment statement, the left-hand side 

is a variable that denotes a location in the store (known as the L-value in the C-world). However, any 

variable on the right side refers to its stored value (the R-value in the C-world). I cannot distinguish these 

different occurrences by using translation rules. 

As a result, explicit dereferences are required in Imp programs. 

 
Figure 10: Translation Rules for IMP 

 

Other language constructs in Imp are defined in Fig. 10. I define them using the fixed construct because 

recursively defined translation rules are not allowed. Note that the translation rule does not satisfy 

assumption four because if and sequencing are used in the non-abstract component of lambda abstraction. 

Using lambda lifting, I get the following two translation rules: 

 
Those derived evaluation rules satisfy abstraction property with body, fix ∈  S, shown in Fig. 11. Note 
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that I do not apply the rule of body recursively since all the constructs in the expression are elements of S. 

As an instance of Imp, the following program is implemented to calculate the sum of 1 to 10. 

 

 
Figure 11: Derived Evaluation Rule of body and while 

 

Language Robot Based on Imp, I implemented a DSL named Robot. The language assumes that a robot 

is located at some initial coordinate, and users can control its movement or print out its position with 

commands. 

A sample program of Robot is: 

 
Where robot 5 5 {...} declares a robot with an initial coordinate of (5, 5), and the braces contain a series 

of commands to be executed on the Robot, split by a comma. Commands up, right, and left control the 

Robot's movement, and commands are where AmI will print the current position. 

As a natural idea, I might record the Robot's current position via the global variables x and y. Then, each 

command reads and manipulates global variables; the comma is defined as sequencing. These language 

constructs are defined as follows: 

 
Where x and y are literal identifiers. However, under such definitions, the requirement of closed translation 

rules is not satisfied. Because variables without local bindings cannot be used directly in translation rules, 

passing the variable's value as an argument to the language constructs or as an argument to a lambda 

abstraction is necessary. Hence, left should be expressed as: 

 
where pos has type (Ref int) × (Ref int). Note that the left returns pos to keep passing on the "global" state. 

Then, the comma operator composes these functions. Some other selected translation rules for Robot are 

given in Fig. 12. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250136992 Volume 7, Issue 1, January-February 2025 22 

 

Do not forget that because they are defined via lambda abstraction, lambda lifting is also necessary. 

 

 
Figure 12: Translation Rules for ROBOT 

 

5.2. DSLS ON IMPERATIVE HOST LANGUAGES 

Consider that I would like to implement a DSL to simulate finite-state machines called Fsm. I simplify the 

setting by using integers to represent states and symbols. In this section, I will implement a language in 

which the programs look like this: 

 
This machine has four states and 2 symbols in the alphabet. The initial state is 0 (implicitly), and transition 

rules are defined after the keyword exec. I use five symbols as input for this automaton, declared by input, 

and the program's evaluation should tell us the final state. 

I chose a simplified version of CMINOR [6] as the host language to implement this. In my problem, I only 

need to define the primary function, ignoring language features such as the function call stack. In addition, 

types and memory models are not my focus. Therefore, I assume that only integers are stored in the heap, 

meaning that the offset of a pointer is fixed. 

The DSL program will be translated into the execution of the primary function. In CMINOR, a function 

is defined by a list of parameters (null for the primary function), a list of local variables, and a body 

statement. Defining variables in the body is not allowed. Therefore, I need to identify the local variables 

used in Fsm to provide the translation rules for the DSL. 

The translation rule of automata is defined as follows: 

 

 
Where stmt is the body of the primary function; n is the number of input symbols; syms is the pointer 

pointing to the first cell of input symbols; st is the current state; and i is an auxiliary variable for iteration. 

The language constructs input, and r records the input symbols. The input construct initializes local 

variables n and i and then allocates the requested size. After that, r is used to store the inputs. The 

translation rules of input and r are defined as: 

 
In RHS, statements include assignment to local variables (with shape ident:= expr), memory stores (with 

shape [expr]:= expr), and sequencing. Expressions include reading local variables, constants, binary 
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operations, and function calls. In C minor, malloc is seen as an external function, while I use it as a 

primitive operation, which takes the size as an argument and returns the address of a newly allocated 

memory block with the requested size. 

The FSM processes input through language construct exec. It repeatedly changes the state based on the 

current input until all input characters are consumed. The body of the exec consists of a list of transfer 

rules, which will be translated into an if statement. If one of the rules is matched, there should be a 

continuation. If no rule can be matched, the state will be set as −1, and the loop should exit through the 

break. In C minor, only infinite looping is introduced. Moreover, break and continue are implemented 

with blocks and exit statements. I use exit n to leave (n + 1) enclosing blocks. For example, in C minor, 

while e s is written as 

 

 
Note that the braces here are used to enclose a group of statements connected by sequence, while a block 

is used with the block language construct. In s, if there are no nested blocks, continue can be written as 

exit zero, and break can be written as exit 1. Based on the above discussion, I can define the following 

translation rules: 

 
Print is an external function in C minor, and the return statement finishes the function's execution. 

Next, I will discuss the semantics of C minor. I use a monad to describe the changes in the global heap 

and local environment. Due to diverging computers caused by incorrect storage and retrieval and the 

potential use of undefined variables, I also need to introduce the maybe monad. I combine the above two 

monads with the I/O monad using a monad transformer and denote the combined monad as m. 

The evaluation of an expression expr ⇓m val does not cause changes in the environment or memory, but it 

may read the value of variables or pointed-to values of pointers from the state. Statements evaluate to 

outcomes stmt ⇓m out, indicating how afterward execute. There are three types of outcomes: norm (for 

regular, continuing in sequence), ex n (for exit, terminating the n + 1 enclosing blocks), and ret val (for 

return). Some evaluation rules of expressions and statements are shown in Fig. 13. One thing to note is 

the loop construct. By using later, I transform the recursion in the evaluation rule of the loop construct 

into a meta-function call to satisfy assumption 3. The meta-function later(stmt) returns the evaluation 

result of stmt. Furthermore, because stmt is used as an argument in the meta-function, it is a non-abstract 

component of loop stmt. All these evaluation rules and meta-functions obey the assumptions. 
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Figure 13: Selected Evaluation Rules of C MINOR 

I must show that the translation rules satisfy my closed translation requirement. In Cminor, all variable 

assignments and reads are done through meta-functions, which means that undefined variables will fail at 

the run-time of the meta-function. In the derived evaluation rules, variables can be read dynamically. 

Hence, performing local binding for variables is unnecessary in the translation rules to achieve correct 

semantics lifting. However, hygiene can- not be guaranteed as a result. To satisfy assumption 4, exec 

needs to be split into two translation rules: 

 
Their semantics can be statically derived and will not be elaborated here. 

 

4 CONCLUSION 

This paper proposes a systematic framework to lift semantics for domain-specific languages. I present 

reasonable assumptions to ensure that systematic lifting maintains correctness and satisfies abstraction. 

These assumptions are related to the meta-functions, host-language semantics, and translation rules. I have 

proved the correctness and abstraction of the semantics-lifting algorithm under such assumptions. 
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Following this idea, I implemented the tool Osazone, which is shown to be flexible, effective, and practical 

for developing DSLs. Osazone provides a meta-language to describe the evaluation rules of host 

languages. Based on a host language, users can extend the host language to support new vocabularies and 

language features and specify the DSL constructs by translation rules. As case studies, I take functional 

and imperative languages as host languages and implement DSLs based on these two languages through 

translation rules. I show how these languages are implemented and illustrate that I used the meta-functions, 

host languages, and translation rules to meet my assumptions. Eventually, I obtained correct, abstract 

semantics for DSLs. 

 

REFERENCES 

1. M., Gardner, P., Jensen, T., Schmitt, A.: Skeletal semantics and their inter- pretations. Proc. ACM 

Program. Lang. 3(POPL) (jan 2019). https://doi.org/ 10.1145/3290357, 

https://doi.org/10.1145/3290357 

2. Culpepper, R., Felleisen, M., Flatt, M., Krishnamurthi, S.: From macros to dsls: The evolution of 

racket. In: Summit on Advances in Programming Languages (2019) 

3. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy, J., Tobin-Hochstadt, 

S.: A programmable programming language. Commun. ACM 61(3), 62–71 (feb 2018). 

https://doi.org/10.1145/3127323, https://doi.org/ 10.1145/3127323 

4. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations. In: Proc. of a Conference 

on Functional Programming Languages and Computer Ar- chitecture. p. 190–203. Springer-Verlag, 

Berlin, Heidelberg (1985) 

5. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expan- sion. In: Proceedings 

of the 1986 ACM Conference on LISP and Functional Pro- gramming. p. 151–161. LFP ’86, 

Association for Computing Machinery, New York, NY, USA (1986). 

https://doi.org/10.1145/319838.319859, https://doi.org/ 10.1145/319838.319859 

6. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (jul 2009). 

https://doi.org/10.1145/1538788.1538814, https://doi. org/10.1145/1538788.1538814 

7. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In: Proceedings of the 

22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. p. 333–343. 

POPL ’95, Association for Computing Ma- chinery, New York, NY, USA (1995). 

https://doi.org/10.1145/199448.199528, https://doi.org/10.1145/199448.199528 

8. Moggi, E.: Computational lambda-calculus and monads. In: [1989] Proceedings. Fourth Annual 

Symposium on Logic in Computer Science. pp. 14–23 (1989). 

https://doi.org/10.1109/LICS.1989.39155 

9. Moggi, E.: Notions of computation and monads. Information and Compu- tation  93(1),  55–92  (1991).  

https://doi.org/https://doi.org/10.1016/ 

10. 0890-5401(91)90052-4, https://www.sciencedirect.com/science/article/ pii/0890540191900524, 

selections from 1989 IEEE Symposium on Logic in Computer Science 

11. Pombrio, J., Krishnamurthi, S.: Resugaring: Lifting evaluation sequences through syntactic sugar. In: 

Proceedings of the 35th ACM SIGPLAN Conference on Pro- gramming Language Design and 

Implementation. p. 361–371. PLDI ’14, Associ- ation for Computing Machinery, New York, NY, USA 

(2014). https://doi.org/ 10.1145/2594291.2594319, https://doi.org/10.1145/2594291.2594319 

12. Pombrio, J., Krishnamurthi, S.: Inferring type rules for syntactic sugar. SIGPLAN Not. 53(4), 812–

https://www.ijfmr.com/
https://doi.org/10.1145/3290357
https://doi.org/10.1145/3290357
https://doi.org/10.1145/3290357
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1109/LICS.1989.39155
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://doi.org/10.1145/2594291.2594319
https://doi.org/10.1145/2594291.2594319
https://doi.org/10.1145/2594291.2594319


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250136992 Volume 7, Issue 1, January-February 2025 26 

 

825 (jun 2018). https://doi.org/10.1145/3296979.3192398, 

13. https://doi.org/10.1145/3296979.3192398 

14. Pombrio, J., Krishnamurthi, S., Wand, M.: Inferring scope through syntactic sugar. Proc. ACM 

Program. Lang. 1(ICFP) (aug 2017). https://doi.org/10.1145/ 3110288, 

https://doi.org/10.1145/3110288 

15. Spolsky, J.: The law of leaky abstractions. https://www.joelonsoftware.com/ 2002/11/11/the-law-of-

leaky-abstractions/ (2002) 

16. Ward, M.P.: Language-oriented programming. Softw. Concepts Tools 15, 147–161 (1994) 

https://www.ijfmr.com/
https://doi.org/10.1145/3296979.3192398
https://doi.org/10.1145/3296979.3192398
https://doi.org/10.1145/3110288
https://doi.org/10.1145/3110288
https://doi.org/10.1145/3110288
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

