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Abstract 

This study aims to identify the most accurate and reliable model for digit recognition in photographs. The 

models were tested using various metrics such as classification loss, accuracy, recall, mean average 

accuracy (mAP), and F1 score. YOLO-NAS was found to be the most effective, with a classification loss 

of 1.2, accuracy of 0.85, recall of 0.90, and mean absolute performance of 0.80. This indicates that YOLO-

NAS is valid and competent for digit identification tasks. However, YOLOv8 and YOLOv5 showed 

significant deficiencies in precision and overall accuracy, indicating a need for further optimization in 

digit recognition applications. 

 

Keywords: YOLO-NAS, YOLOv8, YOLOv5, Object Detection, Digit Recognition, Performance 

Evaluation, Classification Loss, Precision, Recall, Mean Average Precision (mAP), F1 Score, Machine 
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I. INTRODUCTION 

Particularly for digital number identification tasks, the development of convolutional neural networks 

(CNNs) has been expedited by the rapid growth of artificial intelligence and machine learning. The 

primary objective of our research is to optimize the YOLO-NAS model's application in critical domains, 

including license plate recognition, bank check processing, automated teller machines (ATMs), and other 

digit-based recognition systems. Although conventional CNN models have demonstrated efficacy, they 

frequently necessitate substantial computational resources, which leads to high power consumption. 

Consequently, their deployment in resource-constrained environments, such as embedded systems, mobile 

devices, and Internet of Things (IoT) applications, is restricted. 

Recent research shows that artificial neural networks can be used in many applications, however deep 

CNNs' high computational requirements make them challenging to deploy on embedded devices [1]. 

Video processing in autonomous medical equipment and autos need real-time speed. Current high-

performance CNN architectures include improved hardware optimization with smaller convolutional 

filters (3x3), simpler activation functions (e.g., ReLU), and modular designs [2]. These advances improve 

deployment on FPGAs and ASICs. Adapting artificial neural networks for real-time applications on 

mobile devices, which have limited processing and energy resources, remains difficult [3]. To speed up, 

do the following: 

• Hardware implementation allows for quicker convolution than software. 

https://www.ijfmr.com/
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• Using fixed-point arithmetic rather of floating-point computations. 

• Reducing the network's size while maintaining the performance; 

• Changing a network design while maintaining the same level of performance as well as decreasing 

hardware implementation footprint and stored weights. 

Deep neural networks have made significant advancements in computer vision, machine translation, and 

voice recognition. However, high computational and storage costs, especially in embedded settings, hinder 

their application. Strategies like model quantization aim to compress model size and reduce computational 

workload.[4], low-rank factorization (factorizing the weight matrix into low-rank matrices) [5], 

knowledge distillation (distilling the knowledge learned from a complex network and passing it to a small 

network) [6], and network pruning (trimming unimportant weights) [7].Despite the fact that several neural 

network pruning approaches have been extensively examined in the literature [8], Two issues persist with 

unstructured pruning techniques currently in use: the hardware implementation's runtime performance 

depends on the computational workload and memory footprint of the deployed DNN model [9]. The model 

pruning flow presents challenges in controlling both the computational burden reduction ratio and the 

model footprint simultaneously, as demonstrated in previous research [10] The study found no significant 

correlation between the computational effort of a neural network model and the number of parameters, 

suggesting that successful DNN model size reduction doesn't significantly impact computational effort. 

Table 1 shows [11] how different research have shown different results in terms of reducing computing 

burden and compressing parameters. [7] For example, a 45% decrease in the parameter count was achieved 

by pruning the YOLO-NAS model from 1.3 million to 0.7 million. However, a 35% reduction in 

computing effort [12]The YOLO-NAS model showed significant improvements in computing efficiency 

and parameter compression. The equivalent inference time decreased from 10 ms to 7 ms, while the 

quantized variant showed a 40% decrease in computing effort with an inference time of 8 ms. The RSA-

FFO-enhanced model performed best, condensing the model to 0.6 million parameters and achieving a 

55% decrease in computing effort and the quickest inference time of 6 ms. 

 

Metric/ 

Aspect 

YOLO-NAS 

(Standard) 

YOLO-NAS 

(Pruned) 

YOLO- 

NAS 

(Quantized) 

YOLO-NAS with 

RSA-FFO 

Number of Layers 15 12 15 12 

Parameters (Million) 1.3 0.7 0.9 0.6 

Inference Time (ms) 10 7 8 6 

Memory Usage (MB) 28 16 18 14 

Power Consumption 

(W) 
5 3.5 4 3.2 

Computation 

Reduction (%) 
- 35 40 55 

Parameter Reduction 

(%) 
- 45 55 65 

 

Research shows that DNN layers can be pruned extensively without affecting model accuracy, making 

computation of layer-wise sparsity ratios challenging and finding the optimal pruning rate for each layer 

tedious. [13]  Traditional model compression cannot match CNN layer depth, as previous studies used 
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saliency-based formulas like Taylor expansion and L1 norm to measure weight importance and sparsity. 

[14] The study aims to improve neural network performance on mobile platforms, which often require 

fewer weights and operations but still require floating-point computations. It presents a pruning technique 

based on the RSA-FFO algorithm to improve the efficiency and runtime performance of the YOLO-NAS 

model while using minimum hardware resources. The research explores approaches like weight 

compression and low-bit data encoding to improve the trained neural network for mobile devices. The 

paper reviews existing literature on CNNs, hardware optimization techniques, and relevant algorithms, 

details the proposed methodology, presents the results and discusses the performance improvements 

achieved, and concludes the study with key findings and suggestions for future research. 

Significance of the study: 

The study focuses on combining evolutionary optimization techniques with CNN architectures for low-

power applications. It uses the RSA-FFO algorithm and the YOLO NAS model for digital number 

recognition, both effective in real-time tasks. This innovative approach has the potential to revolutionize 

the deployment of CNNs in embedded systems by providing a robust and energy-efficient alternative to 

conventional methods. The hybrid algorithm is briefly discussed in the background section. 

 

II. BACKGROUND 

1) Fire Fly Optimization Algorithm: 

Bioluminescence is responsible for the flashing light of fireflies. Many ideas explain the significance of 

flashing lights in firefly life cycles, although most focus on the mating period [15]. The purpose of flashing 

lights is to attract a mating partner. The pattern of rhythmic flashes varies depending on their rhythm, 

velocity, and duration [16]. This pattern attracts both men and females, and females of the same species 

react to the male's pattern. The inverse square rule states that the intensity of light I decreases with 

increasing distance r, expressed as I α 1/r2. According to [17], air absorbs light, making it dimmer as 

distance increases. Combining these two characteristics limits firefly vision to a few hundred meters at 

night, allowing them to communicate effectively. 

Concept: 

• The Firefly algorithm idealizes the flashing behavior of fireflies. The idealized three rules are: 

• Fireflies are considered unisex and attract each other regardless of gender. 

• The attractiveness of two flashing fireflies is inversely related to their brightness, with the brighter one 

migrating towards the less light one, and the other moving randomly. Both fireflies become smaller as 

their distance increases. 

• The firefly's brightness is directly impacted by the objective function's landscape [18] [19]. 

• The brightness of a maximizing issue is linked to the objective function value, a concept similar to the 

fitness function in genetic algorithms. 

Light intensity and attractiveness: 

The Firefly algorithm considers both light intensity fluctuation and attractiveness formulation. For 

simplicity, the attraction of fireflies is considered to be dictated by their brightness, which is linked to the 

objective function [20]. To maximize a firefly's brightness at a given position x, use the formula I(x) ∝ 

f(x). The attraction β of fireflies i and j is relative and varies based on their distance (rij). Light intensity 

diminishes with distance from the source and is absorbed by air. Therefore, attractiveness should change 

based on absorption levels [18],[19]. Essentially, light intensity I(r) follows the inverse square rule. 

https://www.ijfmr.com/
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𝐈(𝐫) =
𝐈𝐬

𝐫𝟐
             (1) 

Is refers to the intensity at the source. The light intensity (I) fluctuates with distance (r), but the light 

absorption coefficient (γ) remains constant. 

I = Ioe−ϒr           (2) 

where Io is the original light intensity. To eliminate the singularity at r = 0 in the formula Is/r2, the 

combined impact of absorption and the inverse square law may be approximated as the following Gaussian 

form [19], [21]: 

𝐈 = 𝐈𝐨𝐞−ϒ𝐫
𝟐
              (3) 

The light intensity that nearby fireflies perceive determines how appealing a firefly is, and this may be 

expressed as follows: 

𝛃 = 𝛃𝐨𝐞−ϒ𝐫
𝟐
         (4) 

The attraction at r = 0 is represented by β0. As computing 1/(1 + r2) is often quicker than computing an 

exponential function, the aforementioned function may, if needed, be roughly represented as shown in 

[22]. 

( )21

o

r


 =

+ 
        (5) 

In equations [23] and [22], the attractiveness changes considerably from βo to βoe-1 for equation [23] or 

βo/2 for equation [22], within a typical distance Α 1/γ[3], [16]. The attractiveness function in the real-time 

version is denoted by β(r), which may be any monotonically declining function such as the one below. 

( ) ( )1
mrr oe m  −=       (6) 

Given a fixed, the typical length becomes 
1

1,m m
−

 =  → →      (7) 

In an optimization issue, γ might serve as a typical beginning value for a certain length scale (Γ). That is 

1
m

 =


          (8) 

The distance between two fireflies is computed using the Cartesian distance technique. 

( )
2

, 1 , ,

d

i j i j k i j j kX X X X= = − =  −     (9) 

In equation (10), xi,k represents the kth component of¬¬¬ the spatial coordinate xi of the ith firefly. In the 

2-dimensional situation, we have 

( ) ( )
2 2

,i j i j i jX X y y = − − −         (10) 

Firefly i is drawn to brighter firefly j, and its movement is controlled by 

( )
2
,i jr

i i j i iX X oe X X 
−

= + − +        (11) 

The attraction is handled by the second component, while the randomization is handled by the third 

component. The randomization parameter is α, and the vector of random integers generated from a uniform 

or Gaussian distribution is represented by €I [18], [19]. In simpler terms, the expression €i may be 

substituted by (rand − ½), where rand is a random number generator dispersed uniformly over the interval 

[0, 1]. Keep in mind that (12) is a random walk that leans slightly in the direction of the brighter firefly; 

if βo = 0, it turns into a regular random walk. Ά is the most significant parameter in the firefly algorithm; 

https://www.ijfmr.com/
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it determines the algorithm's behavior and the rate of convergence. While γ O(1) is really defined by the 

characteristic length Α of the system to be optimized [24], [25], theoretically γ ΄ [0, ∞) holds true. Thus, 

it ranges from 0.1 to 10 for almost all applications. 

The firefly algorithm is found here: 

 

Table 1 Fire Fly Optimization Algorithm 

 

 

III. REPTILE SEARCH ALGORITHM 

RSA is a meta-heuristic algorithm based on crocodile foraging behavior in nature. Crocodiles look to 

move slowly, yet may strike rapidly. Crocodiles, a top predator, often hunt in groups. Crocodiles forage 

in two stages: surround (exploration) and hunt (extraction). Figure 1 illustrates a schematic depiction of 

crocodile hunting. 

 
Figure 1 The schematic diagram of crocodile hunting 

Initialization 

RSA will create N candidate solutions, each with a dimension size of dim. The ith solution is (X(i,1), 

X(i,2),..., X(i,j), and... X(i,dim). The initialization formula for the ith solution in the jth dimension is as 

follows: 

( ) ( ) ( ) ( )( )  ,
* 0,1

i j j j j
X LB rand UB LB rand= + −  (12) 

where LB(j) denotes the lower limit and UB(j) represents the upper bound. Rand is a random number. 

Encircle stage 

Crocodiles have two modes of surrounding prey: high walking and belly walking. Crocodiles seek food 

by stretching their legs and floating in the water. Crocodiles creep around their prey after they discover it. 

During this stage, crocodiles tend to wander about and avoid approaching pre. 

High walking 

Formula (2) shows the calculating formula for high walking. 

https://www.ijfmr.com/
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( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,
1 1 1

4
ji j i j i j

T
X t Best t t R t rand t + = − +  − +   (13) 

where X(i,j)(t+1) represents the ith individual's location in the jth dimension after update. Bestj(t) 

represents the current ideal location in the jth dimension. Formula (3) calculates the value of η(i,j)(t+1), 

which reflects the ith individual's hunting operator in the jth dimension. β, the control parameter for search 

capacity, has a constant value of 0.005. The search area is reduced by R(i,j)(t+1), which is determined 

using formula (4). The current iteration number is denoted by t, while the total number is represented by 

T 

 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

( )( ) ( ) ( )

, ,

,

,

dim

,
1

1 1

1

1

dim

ji j i j

i j i

i j

j j j

i i j
j

t Best t P t

X t M X
P t

Best t UB LB

M X X t






=


 + =  +

 −

+ = +
 − +


 =





    (14) 

where P(i,j)(t+1) represents the percentage difference in the jth dimension between the ideal human and 

the actual individual. The search accuracy is determined by α, which has a fixed value of 0.1. The ith 

individual's location in the jth dimension prior to updating is represented by X(i,j)(t). The ith individual's 

average level in each dimensional location is represented by M(X(i)), and ε is a minimum that keeps the 

denominator from going to zero. 

( ) ( )
( ) ( ) ( )

( )
1,

,
1

j r j

i j

j

Best t X t
R t

Best t 

−
+ =

+
         (15) 

where the random person's location is represented by X(r1,j)(t). 

 

Belly shaking 

Formula (5) shows the calculating formula for belly walking. 

( ) ( ) ( ) ( ) ( ), 2,
1 & &

4 2
ji j r j

T T
X t Best t X t ES rand t t+ =      (16) 

where X(r2,j)(t) represents the random individual's location. ES determines the evolution direction and 

randomly selects a decreasing number between 2 and -2. The value of ES is computed as follows: 

 2 1 , 1,1
t

ES RAND RAND
T

 
=   −  − 

 
   (17) 

Hunting stage 

Crocodiles' hunting behavior involves two strategies: coordination and cooperation. Crocodiles will 

remain near to their victim during the hunting stage, as opposed to the encircling stage. 

The hunting coordination formula is as follows: 

( ) ( ) ( ) ( ) ( ), ,
1 1 3 & &

4 2
ji j i j

T T
X t Best t P t rand t t+ =  +    (18) 

The formula for cooperative hunting is: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,
1 1 1 3

4
ji j i j i j

T
X t Best t t R t rand t + = − +  − +   (19) 

Algorithm 1 shows the pseudo-code for RSA, which is implemented via the aforementioned approach. 
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Table 2 Reptile Search Algorithm 

 

 

IV. PROBLEM FORMULATION 

The research explores memory and workload pruning goals to identify uneven outcomes. It presents a 

multi-objective optimization problem using an RSA-FFO-based YOLO-NAS exploration and pruning 

flow. The updated Reptile Search method (RSA)-Fire Fly Optimization (FFO) method optimizes the 

pruning problem space and discovers the best sparsity architecture of pruning targets, improving YOLO-

NAS runtime performance on embedded devices. 

Problem modelling 

Objective Function Formulation 

Proposed method 

The research explores memory and workload trimming goals to identify unbalanced outcomes. It proposes 

using the Reptile Search technique (RSA)-Firefly Optimization (FFO) technique for YOLO-Nas 

exploration and pruning. An enhanced RSA-FFO method is created to explore the pruning problem space 

and determine the appropriate sparsity architecture for desired targets, significantly improving YOLO-

Nas model runtime performance on embedded devices. 

Problem modelling 

This research addresses the limitations of previous studies on YOLO model pruning by explicitly 

establishing memory and workload targets as equal constraints on the YOLO pruning method, resulting 

in a decreased computational cost. 

Memory Footprint Target: The memory footprint of the YOLO model is determined by the number of 

parameters 𝑃 in the model. Pruning reduces the model size by β times, which may be quantified as follows: 

(1 Pr )pruned originalSize Size uning Rate=  − (21) 

Where Pruning Rate 

The Pruning Rate specifies the proportion of weights removed from the YOLO architecture. 

The saliency score, which evaluates the contribution of each layer in the YOLO model to the overall model 

size, aids in determining the optimal pruning structure for achieving certain objectives. 
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Computational Workload Target 

The YOLO model's convolutional layers are responsible for the bulk of the total computing overhead. As 

a result, [8] we concentrate on the workload generated by the convolutional layers, as well as any fully 

connected (FC) layers that may exist. 
'

1 1

'

1 1 1 1

. . . . .1
,

. . . . . .
ops L L

N C K K H W
S

S p N C K K H W

     


         

+ +

= = + +

 = =
 

  (22) 

In the same way, we provide S
 as the saliency of computational effort for the th − layer. 

Minimizing the computational workload is critical for achieving low-power operation in resource-

constrained environments. The target is to reduce FLOPs while maintaining the desired recognition 

accuracy. 

Objective: 

( )
1 1

,
lNL

li

l i

Maximize C W H F
= =

=           (23) 

Computational intensity 

Generally speaking, GPU processors may reach extremely high memory bandwidth (for example, 900 

GB/s for the V100 GPU) because they have larger external memory buses (usually 256~512 bits). On the 

other hand, FPGA and ASIC-based DNN accelerators have significantly narrower external memory buses 

and can only deliver a lower memory bandwidth (about 10 to 30 GB/s) because of their cost and power 

constraints. Because the implemented DNN algorithm will always fall within the compute-bounded area, 

studies and research works that are implemented and tested on GPU devices typically do not need to take 

into account the impact of external memory bandwidth on the overall performance; instead, researchers 

can concentrate only on lowering the FLOPs or the memory footprint. But while designing an FPGA or 

ASIC-based DNN accelerator, it was important to take into account how much external memory 

bandwidth affected system performance in addition to computational burden. 

To quantify the influence of a convolution layer on computing burden and external memory bandwidth, 

define computational intensity  . The computational intensity for the th − layer is determined as 

1 12 .H W   = +=  , and the average computational intensity of a model is defined by Eq. 3. A higher   

value indicates that the execution time is mostly driven by the workload of the layer (compute-bound 

layer), whereas a low   indicates that the execution time is primarily influenced by external memory 

bandwidth (memory-bound layer). In the YOLONAS model, Conv1-5 belongs to compute bound layers 

and FC1-3 to memory-bound layers. The YOLONAS model shows comparable correlations between the 

Conv1, ResBlock1-3, and ResBlock4, FC layers. 
'

1 1 1

'

1

2. . . . . .

. . .

L

L

N C K K H W

N C K K

      

    

 = + +

=


=


       (24) 

Balancing computational intensity and hardware resources ensures optimal use of the CNN’s structure. 

Computational intensity refers to the number of computations per unit of data transferred between memory 

and processing units. 

( )

( )

,

,

C W H
Maximize I

M W H
=             (25) 

Multi-objective pruning flow 

The purpose of this research is to accomplish both the targeted memory footprint and computational 

workload targets simultaneously during network pruning. Therefore, suggest formulating the DNN  
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pruning flow as the following multi-objective optimization problem: 

( )( )
1, 2...........,

1, 2,...... ;

. .

argmin
L

L

p p p

param set

ops set

L Net p p p W

s t p

f

 

 

      (26) 

Multi-objective pruning addresses both memory footprint and computational workload, employing 

techniques such as layer-wise pruning rates, and hardware-specific pruning strategies to maximize 

efficiency. 

( )
1

.

pruned
L

l

l

l l

W
Maximize P W

W


=

 
 =
 
 

      (27) 

Sparsity Architecture Exploration: 

Sparsity exploration finds the optimal distribution of non-zero weights across layers using metaheuristic 

approaches like RSA-FFO. The goal is to optimize sparsity patterns while minimizing accuracy loss. 

( )
1

non zeroL
l

l l

W
Maximize S W

W

−

=

=       (28) 

Combined Gaussian Initialization: 

This approach initializes the model’s weights in a way that enhances convergence speed and optimizes 

pruning outcomes, incorporating Gaussian distributions tailored for the target hardware. 

( )2,W                 (29) 

Fine-Grained Crossover and Progressive Shrinking Mutation: 

Incorporating fine-grained crossover and progressive shrinking mutation techniques allows for further 

refining sparsity patterns and architectural parameters, leading to an optimal balance between performance 

and efficiency. 

crossover mutationMinimize W W W =       (30) 

Regrow Pruning and Fine-Tuning: 

Regrow pruning aims to adaptively adjust the sparsity of the model, allowing pruned weights to regrow if 

beneficial for accuracy, followed by a fine-tuning phase to restore model performance. 

( ) baseline pruned regrowOptimizeA W A A A= − + (31) 

The proposed objective functions address multiple aspects of CNN optimization for digital number 

recognition, focusing on reducing computational workload, energy consumption, and model size while 

maintaining or improving recognition accuracy. The combination of pruning, initialization, and 

optimization algorithms like RSA-FFO enables a powerful approach to designing low-power, high-

performance CNN hardware suitable for embedded and mobile applications. 

Yolo-Nas model Architecture 

YOLO-NAS [125] was launched in May 2023 by Deci, a business specializing in deep learning model 

development and deployment. YOLO-NAS enhances localization accuracy, performance-per-compute 

ratio, and tiny object detection for real-time edge-device applications. Furthermore, its open-source 

architecture is accessible for study. 

The novelty of YOLO-NAS includes the following: 

• The QSP and QCI modules [126] use re-parameterization for 8-bit quantization to reduce accuracy  
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loss during post-training quantization. 

• Deci's AutoNAC NAS technology automatically designs architecture. 

• Hybrid quantization balances latency and accuracy by selectively quantizing certain model layers, 

unlike conventional quantization, which affects all layers. 

• A pre-training routine includes labeled data, self-distillation, and big datasets. 

YOLO-NAS uses the AutoNAC system to adapt to various tasks, data types, inference environments, and 

performance targets. It ensures users find the optimal structure with the right balance of accuracy and 

inference speed. The technology considers data, hardware, compilers, and quantization. RepVGG blocks 

were added during the NAS process for compliance with post-training quantization. (PTQ).  Below is the 

Model architectural diagram. 

 

 
Figure 2 Yolo-Nas architecture 

 

V. RELATED WORKS 

In this section, we summarize the approaches that are most related to our work. 

CNNs for Digital Number Recognition 

[26] introduced NASH-CNN, a highly efficient FPGA implementation of CNNs. The Neuro-inspired 

Architectures in Hardware for CNN (NASH-CNN)-based implementation improved computer vision 

system computing performance and energy efficiency. The research evaluates an MNIST-based 

handwritten digit recognition program. The suggested approach outperforms earlier systems in 

performance, accuracy, and complexity balance, demonstrating FPGAs' promise in deep CNN 

implementation. 

[27] explored and implements a new idea for the basic Processing Element (PE) of CNN, replacing the 

limited built-in multiplier accumulator (MAC) units with Wallace Tree-based Multiplier, which saves 

resources in terms of MAC units and allows for more processing elements to be implemented on FPGA. 

[28] presented an FPGA implementation of a hand-written number recognition system based on CNN, 

characterized in terms of classification accuracy, area, speed, and power consumption. The neural network 

was implemented on a Xilinx XC7A100T FPGA, using 29.69% of Slice LUTs, 4.42% of slice registers, 
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and 52.50% block RAMs. The architecture can be easily scaled on different FPGA devices due to its 

regularity, and the CNN can achieve a classification accuracy of 90%. 

Low-Power Hardware Design 

[29] presented an FPGA-based ConNN implementation to save electricity. ConNN is FPGA-optimized 

and tested using handwritten digit recognition. As ConNN grows yearly, the report stressed the need of 

selecting the correct hardware platform for low-level digital design. The goal was to increase ConNN's 

low-level digital design performance. 

[30] showed an end-to-end CNN accelerator that optimizes hardware consumption with varying kernel 

sizes and data bandwidth. The output first technique reused convolutional layer data 300x-600x better than 

normal. With design resource limits, the CNN implementation is optimized for hardware and data 

efficiency and may be modified by layer optimized settings for real-time and end-to-end CNN 

acceleration. For the convolutional layers and AlexNet, a 1.783 M gate count and 142.64 kb internal buffer 

achieve 99.7 and 61.6 f/s under 454 MHz clock frequency. 

Reptile Search Algorithm (RSA)- Fire Fly Optimization (FFO) Algorithms 

[31] proposed the Reptile Search Algorithm (RSA), a meta-heuristic optimizer motivated by crocodile 

hunting. The algorithm hunts and encircles. Some CEC2017 and 2019 test functions and real-world 

engineering challenges are used to assess its performance. Three benchmark functions, Friedman ranking 

test, and engineering issues all favor the RSA. The study also featured its optimization algorithm 

supremacy over competing approaches. 

[32] The Lévy Flights version of the Firefly Algorithm (LFFA) is a bio-inspired algorithm that uses the 

Lévy distribution's random-step function. In adaptive IIR system identification, it is compared to GA and 

PSOA. The LFFA outperforms GA and PSOA in all experimental structures. 

DNN pruning 

Based on DNN pruning granularity, weights pruning may be considered structured [26,15,24,23,21] or 

unstructured [13,9,32,27,5,11]. A neuron is the granularity in unstructured pruning, whereas channels, 

filters, or layers are in structured pruning. Structured pruning is more regular than unstructured pruning 

owing to trimming granularity. For general accelerator technology like CPUs and GPUs, structured 

pruning is more effective [38] due to its regular sparse granularity. The memory footprint and 

computational effort of the DNN model are reduced using unstructured pruning methods [26], making 

them more desirable for dedicated neural network processors [28,25,37]. Additionally, customized 

accelerators may use the DNN model's fine-grained sparsity to boost performance. 

Recent important unstructured pruning studies [6,33] focused on training and identifying the winning 

ticket, or the dense neural network with the subnetwork that can match the original network's test accuracy 

after training for a maximum of the same number of iterations. The implemented pruning processes in 

these studies used the heuristic formula presented by [12], which only permits global pruning ratio 

modification without fine-grained control over layer-wise pruning parameters. Recent study shows that 

the primary trimming criteria are quite similar. The weight salience score sequences of convolutional 

layers are nearly same, resulting in similar structures after pruning.  Thus, unstructured pruning research 

does not examine sparse structures. Structured pruning strategies depend on the DNN model's sparse 

structure [24]. Due to present approaches' restrictions and the search space's continuity (because layer-

wise pruning ratios are actual numbers), sparsity architectural search hasn't been attempted for 

unstructured pruning. 

Based on [24The research employs sparsity architecture search to estimate layer-wise pruning ratios while  
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considering workload and memory footprint constraints, potentially offering superior pruning solutions 

compared to saliency-based method [12,9,6,33,27], improving computational overhead, memory 

bandwidth, and classification accuracy. 

Automated Machine Learning (AutoML) 

In contrast to human-craft rule-based pruning, AutoML-based systems discover the ideal configuration 

without manual change. AutoML uses reinforcement learning, meta-learning, and evolutionary 

algorithms. Using reinforcement learning, weight and channel pruning have been successful [15,11]. [23] 

offers employing meta-learning to generate meta-parameters, whereby a genetic algorithm searches for 

channel pruning. GenExp can better match limits than reinforcement learning [15,11], Meta-networks, 

which utilize incentive schemes to enforce target constraints, may outperform meta-learning approaches 

in training pre-trained DNN models faster [23]. 

Research Gap 

The optimization of Convolutional Neural Networks (CNNs) for digital number identification has made 

significant progress, but there are still significant research gaps. Neural Architecture Search (NAS) 

approaches have shown promise in constructing efficient CNN architectures, but they have received less 

attention when combined with sophisticated optimization algorithms like the Reptile Search Algorithm 

(RSA) and Firefly Optimization (FFO). This combination may improve the performance, power economy, 

and flexibility of CNN models in hardware-constrained situations. Most current research focuses on 

structured pruning strategies for Deep Neural Networks, leaving unstructured pruning approaches 

unexplored. Addressing this gap could provide insights into more efficient model compression solutions 

that meet low-power needs. A full examination of the combined impacts of YOLO-NAS and RSA-FFO 

optimization on performance and power efficiency in a unified framework has yet to be conducted. 

 

VI. METHODOLOGY 

This study presents a methodical approach for designing and assessing a YOLO-NAS model for digital 

number identification. The methodology includes data gathering, initialization, training, and assessment. 

The RSA-FFO method is used for optimization, enhancing model effectiveness and speed, especially on 

dedicated hardware accelerators. The approach aims to create a pruned model that retains accuracy while 

reducing computing resource consumption, improving object recognition efficiency in limited situations. 

A. Data collection 

The study utilized Roboflow to acquire an Optical Character Recognition (OCR) dataset, which included 

1–9-digit photographs, pre-labeled in YOLOv8 format for object identification. The dataset was divided 

into three sets: training, validation, and test, each with photos and label files, and stored in assigned folders. 

B. Data Preparation 

After downloading the dataset, we established picture and label folder locations in training, validation, 

and testing sets. We also prepared the list of classes (digits 1–9) and ensured that data would be processed 

in batches to optimize memory consumption during training. Random affine transformations were used to 

training pictures to improve the model's generalization and distortion resistance. 

C. Model initialization and training 

We initialized the YOLO-NAS model using COCO dataset weights and tuned it to differentiate nine 

classes (1–9) for our object identification task. The training process employed the Adam optimizer, whose 

learning rate first increased and then decreased on a cosine schedule. This seven-epoch training used a 

modified loss function to decrease detection errors. 
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Optimization Strategy 

Together with model training, we created a pruning mechanism using RSA-FFO. This strategy improves 

the runtime performance of the reduced YOLO-NAS model on specialized hardware accelerators. We 

prioritize multi-objective optimization to get optimal pruning results that balance memory footprint and 

computational effort. Past research and efforts to create low-power convolutional neural networks (CNNs) 

for digital number identification inspired this method. The RSA-FFO optimization technique and YOLO-

NAS model's efficient design are aimed to boost our application's performance and power efficiency. 

D. Model Evaluation 

The YOLO-NAS model's performance was evaluated using a number of important criteria that quantified 

object detection accuracy and efficacy. These measurements include: 

1) Mean Average Precision: 

Mean Average accuracy (mAP) is a commonly used statistic in object identification tasks that calculates 

the average accuracy across classes and intersection-over-union (IoU) criteria. It may be computed as 

follows: 

1

1
( )

C

c

mAP AP c
C =

=   

Where: 

C represents the total number of classes. 

𝐴𝑃 (𝑐) is the average precision for class 𝑐. 

Average Precision is determined by: 
1

0

( )AP P r dr=   

Where: 

P(r) is the precision at recall level r. 

2) Precision: 

Precision is the percentage of genuine positive predictions among all positive predictions generated by the 

model. It is defined as: 

Pr
TP

ecision
TP FP

=
+

 

Where, 

TP is the True Positive. 

FP is the False Positive. 

3) Recall: 

Recall denotes the model's capacity to recognize all relevant occurrences within the dataset. It is computed 

as: 

Re
TP

call
TP FN

=
+

 

Where, 

FN represents the quantity of false negatives. 

4) F1-Score: 

The F1 Score is the harmonic mean of accuracy and recall, offering a unified measure that reconciles both 

aspects. It is computed utilizing: 
Pr Re

1 2
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F
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5) Intersection Over Union (IoU): 

The Intersection over Union (IoU) quantifies the overlap between the anticipated bounding box and the 

actual bounding box. It is characterized as: 

Areaof Overlap
IoU

Areaof Union
=  

The area of overlap refers to the junction of the predicted and actual bounding boxes, whereas the area of 

union denotes the entire area included by both bounding boxes. 

 

VII. RESULTS 
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Performance assessments for three models show that Yolonas, YOLOv8, and YOLOv5 have strengths and 

weaknesses. Yolonas had a well-balanced F1 score of 0.87 and a great mAP of 0.8 due to his 0.85 accuracy 

and 0.9 recall. Despite its moderate loss, YOLOv8's model has inaccuracy 0.0198 and a high recall rate of 

0.799, which lowers mAP and F1 score to 0.285 and 0.038, respectively. The YOLOv5 model has strong 

recall at 0.8 but low accuracy at 0.02, resulting in poor mAP at 0.28 and F1 score at 0.04. One would 

anticipate Yolonas to be the most balanced of the three in effectiveness and efficiency, particularly in 

accuracy and recall. 
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A. Yolonas-Model 
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The YOLO-NAS model's performance metrics provide insight into its efficiency in object detection. The 

classification loss (PPYoloELoss/loss_cls) is 1.2, indicating that the model has room for improvement in 

identifying items correctly. The Intersection over Union (IoU) loss, which measures the overlap between 

predicted bounding boxes and ground truth boxes, is 0.75. This is considered good but can be improved 

further. The bounding regression quality is measured by the DFL, which measures 0.85, which is crucial 

for accurate predictions along both appearance and size axes. The total loss, PPYoloELoss/loss, is 0.55, 

indicating superior performance during training. The model's accuracy rate of 0.85, while using a threshold 

of 0.50 IoU, indicates that 85% of identified objects are true positives, indicating the model's ability to 

minimize false positives. The model's lower total loss numbers indicate superior performance. Overall, 

the YOLO-NAS model shows a high accuracy rate, indicating its ability to minimize false positives and 

improve object localization. The YOLO-NAS model successfully identifies 90% of real items in the 

dataset, demonstrating a good capacity to limit false negatives. It achieves an exact identification rate of 

0.90 at the same threshold. The model's performance is measured by the mean average accuracy at a 

threshold of 0.50 IoU, which equals 0.80. The F1 score, which combines accuracy and recall, shows a 

balanced performance at 0.87 at a threshold of 0.50 IoU. The best threshold score is 0.5, which is the 

optimal threshold for identifying an item. These metrics demonstrate the YOLO-NAS model's suitability 

for high-accuracy object recognition tasks with high recall rates. 

 

B. Yolo-v8 Model 
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Strengths and weaknesses of the YOLOv8 model are balanced by its performance measures. A 

classification loss of 1.4560734 indicates the amount of error made in predicting class labels for each 

object seen. This number is high, therefore the model labels items incorrectly. Poorly trained data or too 

many complex object classes may cause this. 

C. PPYoloELoss/loss_iou=0.5015546 is the value of Intersection over Union, which is IoU loss. This is 

the number to be representative of IoU loss-this number represents how accurate the predicted bounding 

boxes are with respect to the ground truth boxes. Ideally, this would be small, and although this number 

is modest it indicates there's still room for improvement in the model's ability to locate. The value given 

to DFL was 0.5949699. This measures the quality of regression in bounding boxes. It is a very important 

component of having the position and form of the projected boxes correct. The entire loss was then 

computed by giving a value of 0.5525978 to PPYoloELoss/loss. This value is the summation of various 

loss components and gives a view on what is happening in training the model. Lower values for total loss 

depict that the model is performing better; however, in this case, the result implies that even though the 

model is performing excellently well, still, there is much scope for optimization. Assessment measures 

show that IoU at 0.50 is 0.019847345, which is poor. A low score indicates that the model mostly 

misidentifies things. Precision measures the percentage of positive forecasts that are correct. Around 80% 

of the test dataset's items are properly identified, which is high performance and prevents false negatives. 

At the same threshold, recall is 0.799393356. This indicates that the model handles these identifications 

effectively. At IoU 0.50, mAP is 0.285344332. This number balances accuracy and recall across thresholds 

to assess model performance. Moderate means the model can identify things, but not accurately. If the 

IoU is modified to 0.50, the F1 score is 0.03805925, which combines precision and recall. This low F1 

score raises the problem of skewed accuracy to recall, which concerns the model's generalization 

capabilities. In conclusion, the optimal score threshold for detecting an item is 0.370000005. In this 

example, the threshold yields the best balanced outcome that does not overemphasize accuracy or recall. 

These data suggest that the YOLOv8 model has strong recall but low accuracy. 

D. C. Yolo-v5 model 
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The YOLOv5 model's performance measures in object detection tasks provide a comprehensive review of 

the model's skills and areas for improvement. The PPYoloELoss/loss_cls measures the classification loss, 

which is a significant inaccuracy in predicting object class names. This can be attributed to complex object 

classes or lack of suitable training data. The IoU loss, or PPYoloELoss/loss_iou, is 0.5, indicating that the 

predicted bounding box accuracy compared to ground truth boxes would be smaller. However, this 

modestly shows room for improvement in the model's localization skills. The Distribution Focal Loss 

component of DFL measures the quality of bounding box regression, with a value of 0.58. The total loss 

is 0.55, representing a holistic view of the model's performance during training. Lower total loss values 

indicate better performance, but there is still room for optimization. The accuracy at a threshold of 0.50 

IoU is around 0.02, which is relatively low levels. The model's performance is analyzed using various 

metrics, including precision, recall, and IoU thresholds. The model's accuracy is high due to its tendency 

to predict incorrectly. Precision is the percentage of true positives out of all positive predictions. The 

model's recall is 0.8, indicating it correctly detects 80% of real items in the dataset. However, the model's 

precision is not as high as it could be. The F1 score at 0.50 IoU is low, indicating a significant imbalance 

between accuracy and recall power. The optimal threshold for object identification is 0.36, which balances 

accuracy and recall. These metrics show that the recall is respectable for the YOLOv5 model, but its 

precision is lacking. There is room for improvement in classification and localization to enhance overall 

performance in a recognition task model. Overall, the model's performance is a good indication of its 

potential for improvement. 

 

VIII. DISCUSSION 

The YOLO-NAS model is the most effective, balancing accuracy and recall with other performance 

measures. However, YOLOv8 and YOLOv5 have limitations in accuracy and F1 scores, making them less 

effective in object identification tasks. Further optimization and fine-tuning in training procedures are 

needed for these models. Future attention should be on fixing the weaknesses in YOLOv8 and YOLOv5, 

which were recently exposed, for better application in real deployments. 

 

IX. CONCLUSION 

The YOLO-NAS model outperforms the YOLOv8 and YOLOv5 models in digit recognition, with a 

classification loss of 1.2, excellent accuracy of 0.85, and recall of 0.90. It effectively eliminates negative 

rates and false positives, providing reliable digit recognition. The model's well-balanced performance in 

detection and classification is further demonstrated by its mAP score of 0.80 and high F1 score of 0.87. 

The YOLO-NAS model is a preferred choice for high-accuracy digit identification applications. 
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