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Abstract 

Purpose: Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects millions 

globally, leading to significant impairments in both motor and non-motor functions. The early and accurate 

diagnosis of PD remains a critical challenge, as existing diagnostic methods often depend on the 

manifestation of advanced-stage symptoms. This study conducts a comprehensive comparative analysis 

of machine learning base models, evaluated both with and without the application of SMOTE-TomekLinks 

to address class imbalance. Additionally, the research integrates SHAP (SHapley Additive Explanations) 

analysis to ensure model interpretability and employs ensemble stacking techniques that combine the 

outputs of base models with two meta-models, XGBoost and AdaBoost, to enhance predictive accuracy 

and reliability.  

Methods: A dataset was collected from the UCI repository and preprocessed for normalization and feature 

selection. Six machine learning models, including Logistic Regression, Decision Tree, Random Forest, 

Support Vector Machines (SVM), K-Nearest Neighbors, and Naive Bayes, were trained and evaluated 

with and without SMOTE-TomekLinks. Ensemble techniques using XGBoost and AdaBoost were 

employed to enhance predictive accuracy. Model performance was assessed using metrics such as 

accuracy, F1-score, confusion matrices, and ROC-AUC. SHAP (SHapley Additive exPlanations) analysis 

was used to interpret feature importance.  

Results: SMOTE-TomekLinks significantly improved the performance of all models, with Random Forest 

achieving the highest accuracy (96.61%) among the base models. Ensemble techniques further enhanced 

performance, with XGBoost achieving the best results, including an accuracy of 98.30%, an F1-score of 

0.98 for both classes, and an ROC-AUC of 0.98. SHAP analysis identified key features such as spread1, 

spread2, PPE, and MDVP:Fo(Hz) as critical for classification.  

Conclusion: The study demonstrates the transformative potential of combining advanced preprocessing, 

class-balancing techniques, and ensemble methods in diagnosing Parkinson’s disease. The findings 

emphasize the importance of addressing class imbalance to achieve reliable and interpretable diagnostic 

tools, bridging the gap between computational approaches and clinical applications hence, improving 

patient outcomes. 

 

Keywords: Parkinson’s Disease (PD), Machine Learning, Synthetic Minority Oversampling Technique 

(SMOTE)-TomekLinks, SHAP (SHapley Additive exPlanations), XGBoost(Extreme Gradient Boosting),  
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AdaBoost(Adaptive Boosting ) 

 

1 Introduction 

Parkinson’s disease (PD) is a complex neurodegenerative disorder primarily affecting middle-aged and 

older adults, characterized by both motor and non-motor symptoms. The motor symptoms include 

bradykinesia, tremor, rigidity, and postural instability, which are primarily due to the degradation and death 

of dopaminergic neurons in the substantia nigra-striatum [1].  Non-motor symptoms encompass cognitive 

impairment, depression, anxiety, autonomic dysfunction, and sensory disturbances, which significantly 

impact the quality of life [2]. PD affects over 6 million people globally, with nearly 1 million cases in the 

United States alone[3]. In Europe, the prevalence and incidence rates are approximately 108–257 per 

100,000 and 11–19 per 100,000 per year, respectively [4]. PD is more common in males, with a male-to-

female ratio of 1.5:1.0, and its prevalence increases with age, affecting 1%-2% of those over 60 and up to 

3.5% of individuals aged 85-89 [5]. The early diagnosis of Parkinson’s disease (PD) is critical for effective 

intervention and management, and recent research highlights the potential of biomedical voice 

measurements as a non-invasive diagnostic tool. Traditional methods of diagnosing PD rely heavily on 

clinical evaluations, which can be subjective and time-consuming [6][7] .Machine learning and deep 

learning approaches have emerged as promising alternatives, leveraging voice data to detect early signs 

of PD. Studies have utilized various machine learning models, such as Support Vector Machines (SVM), 

Random Forest, and Convolutional Neural Networks (CNNs), to analyze voice parameters like pitch, jitter, 

shimmer, and noise-to-harmonics ratio, which are indicative of vocal impairments associated with PD [6] 

[8] [9]. These advancements in voice analysis and machine learning not only enhance the precision of PD 

diagnosis but also pave the way for similar applications in other neurodegenerative disorders, offering a 

transformative approach to healthcare diagnostics [7]. 

 

2 Related Work 

Recent advancements in the application of machine learning (ML) to Parkinson’s disease (PD) have 

significantly focused on utilizing biomedical voice measurements and other motor symptoms for early 

detection and severity assessment. Voice analysis has emerged as a promising non-invasive diagnostic 

tool, with studies exploring features such as jitter, shimmer, and fundamental frequency. For instance, the 

integration of advanced vocal features like Vocal Tract Length Normalization and Empirical Mode 

Decomposition with ML algorithms such as Explainable Boosting Machine has achieved detection 

accuracies of up to 86.67% [10]. Deep learning models, including Convolutional Neural Networks and 

Long Short-Term Memory networks, have also been employed to predict PD severity, achieving high 

accuracy rates of up to 98% [11]. Beyond voice analysis, the integration of handwriting analysis with 

voice data has shown potential in enhancing diagnostic accuracy, suggesting that a hybrid approach could 

yield superior results compared to single-modality methods [12]. The application of smartphone-based 

applications for real-world symptom assessment has been proposed, offering a more objective and patient-

centric approach to monitoring PD symptoms[13]. These studies collectively highlight the transformative 

potential of ML in PD diagnosis and management, emphasizing the importance of early detection through 

innovative, non-invasive methods that could significantly improve patient outcomes and accessibility to 

care [14][15]. The integration of multiple features and advanced algorithms, including ensemble learning 

and deep learning techniques, continues to enhance the precision and efficacy of PD diagnosis, paving the 

way for more personalized and effective treatment strategies [16]. 
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3 Materials and Methods 

This section describes the data preprocessing, training and evaluation of six base models for Parkinson’s 

disease classification, addressing class imbalance using SMOTE-TomekLinks and SHAP analysis with 

varying importance across models. 

3.1 Model Architecture 

The primary objective of this study is to develop a predictive model for Parkinson’s disease using 

biomedical voice measurements and a range of machine learning algorithms, including Logistic 

Regression (LR), Decision Trees (DT), Random Forest (RF), Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), and Naive Bayes. The secondary objective is to conduct a comparative analysis of 

these base models, both with and without the application of SMOTE-TomekLinks, a technique used to 

address class imbalance issues present in dataset. Furthermore, ensemble stacking techniques will be 

employed to improve prediction accuracy by combining the outputs of base models (utilizing SMOTE-

TomekLinks) with two meta-models, XGBoost and AdaBoost. To ensure interpretability, SHAP (Shapley 

Additive Explanations) analysis will be utilized, enabling transparent and comprehensible predictions for 

clinical decision-making. The overarching goal is to bridge the gap between traditional clinical diagnostic 

practices and modern computational approaches, ensuring the development of a robust and practical model 

suitable for real-world application. 

 
Fig. 1 Proposed Methodology Architecture 

 

The dataset utilized in this study is sourced from the UCI Machine Learning Repository, comprising 

biomedical voice measurements, including features like jitter, shimmer, spread, and PPE (Pitch Period 

Entropy) etc. The data undergoes preprocessing and Exploratory Data Analysis (EDA) to identify and 

rectify inconsistencies, detect outliers, and extract meaningful insights. Relevant features are selected 

based on domain knowledge and statistical techniques to enhance model performance and reduce 

dimensionality. SMOTE-TomekLinks is applied to the dataset to address class imbalance, ensuring 

improved model training on underrepresented classes. The dataset is divided into training and testing 

subsets in an 80:20 ratio to evaluate model performance effectively. The selected machine learning 

algorithms (LR, DT, RF, SVM, KNN, Naive Bayes) are trained on the preprocessed data to serve as the 
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base models. The base models’ performance is evaluated using metrics such as accuracy, confusion matrix, 

and classification reports. Cross-validation is employed to ensure robust evaluation. To enhance predictive 

accuracy, ensemble stacking techniques are implemented using XGBoost and AdaBoost as meta-models, 

leveraging the outputs of the base models trained with SMOTE-TomekLinks. SHAP analysis is employed 

to interpret the predictions of the developed models, ensuring transparency and alignment with clinical  

decision-making needs. The final classification  identifies whether a patient is Parkinson’s disease positive  

 (PD Positive) or healthy, based on the optimized model. 

3.2 Data Preprocessing and Exploratory Data Analysis 

The dataset used for this research is sourced from UCI Machine learning repository comprises biomedical 

voice measurements from 31 individuals, of whom 23 are diagnosed with Parkinson’s Disease (PD) [17]. 

Each recording is characterized by specific voice measurements that capture variations in pitch, frequency, 

and amplitude, among others. With a total of 195 voice recordings (approximately six per patient), here 

patient identifiers are omitted during preprocessing to focus solely on the features relevant to PD 

diagnosis. Each row of features is associated with target column(status) which consists of 0 and 1’s , where 

0 represents healthy individual and 1 PD positve. Features are classified into two categories along with 

their descriptions and are shown in Table 1. 

 
Table 1 Classification of Features for Parkinson’s Disease Dataset 
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Fig. 2 Normalized dataset 

 

Data preprocessing involved several crucial steps to prepare the dataset for predictive modeling. Missing 

values were handled using imputation techniques such as mean, median, or k-Nearest Neighbors (KNN) 

imputation to ensure data completeness. Visualizations, including histograms, scatter plots, and correlation 

heatmaps, were employed to analyze feature distributions and relationships, providing insights into the 

data’s structure. The dataset was normalized (Fig. 2) using the StandardScaler function to ensure that all 

features have equal influence on the target variable (status). Normalization standardizes the features by 

removing the mean and scaling to unit variance, thereby improving the comparability of variables with 

different scales. The boxplot (Fig. 3) shows most features have tightly distributed values with minimal 

variability, such as Jitter, Shimmer, NHR, and HNR. However, MDVP:Fhi(HZ) has significant outliers, 

indicating variability in maximum fundamental frequency. MDVP:Flo(HZ) and Spread1 ,Spread2 show 

broader distributions, suggesting potential distinguishing patterns. The compact distributions in RPDE, 

DFA, and PPE reflect consistency in these features. Overall, features like MDVP:Fhi(HZ) and Spread1, 

Spread2, PPE may be key for further analysis. The distribution graph (Fig. 4) shows that ”PD positive” 

individuals are concentrated in the 100-175 Hz range, while healthy individuals have a broader spread 

with higher frequencies above 200 Hz. There is significant overlap in the 125-200 Hz range, but lower 

MDVP: Fo (HZ) values are more common in the “PD positive” group. Healthy individuals show a higher 

frequency of elevated MDVP:Fo(HZ) values. This suggests MDVP:Fo(HZ) could help differentiate 

between the two groups. The boxplot of Fundamental Frequency (Fig. 5) shows that individuals with status 

1 (PD positive) have lower and less variable MDVP:Fo(HZ) values compared to status 0 (healthy), which 

has higher and more dispersed values. The median for status 0 is notably higher, reflecting a tendency for 

healthier individuals to have greater fundamental frequency. There are no outliers in either group, as all 

values lie within the whiskers’ range. This also suggests MDVP:Fo(HZ) could be a key feature for 

distinguishing between the two groups. Correlation analysis (Fig. 6) was utilized to identify and remove 
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features with high multicollinearity, reducing redundancy and ensuring the model’s interpretability and 

efficiency. This comprehensive preprocessing ensured the dataset’s readiness for robust and reliable 

machine learning applications. 

 

 
Fig. 3 Boxplot of Features 

 

 
Distribution of MDVP:Fo(Hz)  

Fig. 4      Fig. 5 
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Fig. 6 Correlation Heatmap 

 

3.3 Training Base Models 

To build a robust predictive model for Parkinson’s disease, six machine learning algorithms were selected 

as base models: Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), and Naive Bayes (NB). These models were chosen due to 

their diverse learning approaches, interpretability, and widespread application in medical diagnosis tasks. 

Each model contributes unique strengths to the analysis, ensuring a comprehensive evaluation of the 

dataset. An 80:20 train-test split was employed to train and validate these models, ensuring that the 

evaluation metrics reflected real-world performance on unseen data. 

Logistic Regression (LR) was selected for its simplicity and interpretability, making it a reliable baseline 

model for binary classification problems. This algorithm also provides insights into feature importance 

and linear separability of the data. Decision Tree (DT), on the other hand, was included for its capability 

to handle non-linear relationships and its intuitive, interpretable structure. Its ability to focus on the most 

discriminative features makes it effective in dealing with imbalanced datasets. 

Random Forest (RF) was chosen for its ensemble learning approach, which combines multiple decision 

trees to improve predictive accuracy and robustness against overfitting. Support Vector Machine (SVM) 
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was selected for its effectiveness in handling high-dimensional data and its ability to identify optimal 

hyperplanes, making it particularly suitable for datasets with complex patterns. 

K-Nearest Neighbors (KNN) was included for its simplicity and ability to capture local data structures, 

which is beneficial in cases with irregular decision boundaries. Finally, Naive Bayes (NB) was selected 

for its probabilistic approach, which is computationally efficient and particularly advantageous for small 

datasets. Together, these models provide a comprehensive foundation for evaluating the predictive 

performance of machine learning techniques on the Parkinson’s disease dataset. 

Each model was trained on the dataset using the 80% training set, and its performance was evaluated on 

the 20% test set using accuracy, F1-score, and confusion matrix to account for class imbalance and overall 

prediction quality. Logistic Regression achieved an accuracy of 74.35%, with F1-scores of 0.55 and 0.82 

for class 0 and class 1, respectively. The confusion matrix for LR showed [[6, 5], [5, 23]], indicating 

challenges in correctly identifying class 0 instances, thus reflecting the class imbalance in the data set. 

Decision Tree demonstrated superior performance with an accuracy of 89.74% and F1-scores of 0.80 for 

class 0 and 0.93 for class 1. Its confusion matrix [[6, 5], [5, 23]] reflected its ability to better balance 

predictions for both classes but still showed evidence of the underlying class imbalance. The optimal 

decision tree was plotted (Fig. 7) to demonstrate how the dataset is classified based on key features and 

their thresholds. At the root node, the feature PPE serves as the primary decision criterion, with a threshold 

of 0.133993 dividing the data. Samples with lower PPE values tend to belong to Class 0, while those with 

higher PPE values predominantly fall under Class 1. Subsequent splits further refine the classification 

based on additional features such as Shimmer:APQ5, MDVP:Fo(Hz), and Shimmer:APQ3. Notably, Class 

1 is the majority class, dominating most of the nodes, particularly in Terminal Node 5, where 99% of 

samples are correctly classified as Class 1. On the other hand, Class 0 is more prevalent in Terminal Nodes 

1, 2, and 4. The tree highlights that certain thresholds, such as Shimmer:APQ5 0.012745 or MDVP:Fo(Hz) 

-0.877878, are critical for distinguishing between the two classes. Overall, the decision tree captures the 

underlying relationships in the data, with each path from the root to a terminal node representing a 

sequence of decisions that lead to a final classification. 
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Fig. 7 Optimal Tree Diagram 

 

Similarly, Random Forest achieved high accuracy (87.17%) and F1-scores of 0.71 and 0.92 for class 0 and 

class 1, respectively, with a confusion matrix identical to that of the Decision Tree, again showing the 

class imbalance affecting the minority class predictions. Support Vector Machine achieved an accuracy of 

82.05% and F1-scores of 0.59 for class 0 and 0.89 for class 1. The confusion matrix [[5, 6], [1, 27]] 

highlighted its strong performance in identifying class 1 but relatively weaker performance for class 0, 

further evidencing the class imbalance. K-Nearest Neighbors also recorded an accuracy of 82.05%, with 

F1-scores of 0.63 for class 0 and 0.88 for class 1. Its confusion matrix [[6, 5], [2, 26]] suggested unbalanced  
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performance ,difficulty in correctly identifying instances of the minority class. 

Naive Bayes, the final base model, achieved an accuracy of 74.35%, with F1-scores of 0.58 for class 0 

and 0.81 for class 1. Its confusion matrix [[7, 4], [6, 22]] revealed its limitations in correctly classifying 

instances of class 0 due to the class imbalance. 

Overall, the results demonstrated the impact of class imbalance across all models  (Fig. 8), with higher 

F1-scores and better performance for the majority class (class 1) compared to the minority class (class 0). 

Among the models, Decision Tree and Random Forest emerged as the top performers, achieving higher 

accuracy and F1scores. Logistic Regression and Naive Bayes, while relatively less accurate, provided 

essential baseline comparisons. This comprehensive evaluation offers valuable insights into model 

behavior and identifies potential candidates for further optimization and ensemble techniques, particularly 

for addressing the class imbalance issue. 

 

 
Fig. 8 Imbalanced Confusion matrices of Base Models 

 

3.4 SMOTE-TomekLinks and Class imbalance 

Class imbalance is a common issue in medical datasets as was apparent from our case, where one class, 

such as the absence of Parkinson’s disease (PD) (represented by 0), is underrepresented compared to the 

other class, such as the presence of Parkinson’s disease (PD) (represented by 1). This imbalance can lead 

to machine learning models being biased toward the majority class, often resulting in poor predictive 

performance for the minority class, which is of particular interest in medical diagnostics. To address this 

issue, SMOTE-TomekLinks was applied in this study. SMOTE-TomekLinks is a hybrid technique that 

combines two methods: SMOTE and TomekLinks. SMOTE (Synthetic Minority Over-sampling 

Technique) is an oversampling technique that generates synthetic samples for the minority class by 
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creating new data points based on the existing minority class instances. This helps balance the dataset by 

increasing the representation of the underrepresented class. On the other hand, TomekLinks is an 

undersampling technique that identifies and removes pairs of instances from different classes that are 

closest to each other in the feature space. These instances are often noisy or borderline, and their removal 

helps improve the overall quality of the dataset by reducing overfitting and enhancing the model’s 

generalization capability. 

After applying SMOTE-TomekLinks, the performance of various machine learning models improved. 

Logistic Regression (LR) achieved an accuracy of 83.05%, with F1scores of 0.84 for Class 0 (absence of 

PD) and 0.82 for Class 1 (presence of PD). The Decision Tree (DT) model showed an accuracy of 93.22% 

and F1-scores of 0.94 for Class 0 and 0.93 for Class 1. Random Forest (RF) performed the best, with an 

accuracy of 96.61% and F1-scores of 0.97 for Class 0 and 0.96 for Class 1. Support Vector Machine (SVM) 

also performed well, with an accuracy of 91.52% and F1-scores of 0.92 for Class 0 and 0.91 for Class 1. 

The K-Nearest Neighbors (KNN) model achieved an accuracy of 93.22% and F1-scores of 0.94 for Class 

0 and 0.93 for Class 1. The Naive Bayes (NB) model had a lower accuracy of 77.96% and F1-scores of 

0.82 for Class 0 and 0.72 for Class 1. Overall, SMOTE-TomekLinks significantly improved the 

classification performance across all models by addressing class imbalance (Fig. 9) through both 

oversampling (via SMOTE) and undersampling (via TomekLinks), with Random Forest achieving the 

highest accuracy and F1-scores, followed by Decision Tree and Support Vector Machine. These results 

demonstrate the effectiveness of SMOTE-TomekLinks in improving model performance and handling 

class imbalance in medical datasets 

 
Fig. 9 Balanced Confusion matrices of Base Models After SMOTE-TomekLinks 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250242372 Volume 7, Issue 2, March-April 2025 12 

 

3.5 SHAP analysis 

SHAP (SHapley Additive exPlanations) analysis (Fig.10) was performed to assess the contribution of 

individual features across various machine learning models in predicting the presence of Parkinson’s 

Disease (PD). The SHAP values provided a comprehensive understanding of feature importance, offering 

valuable insights into the decision-making processes of Logistic Regression, Decision Tree, Random 

Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naive Bayes models. 

In Logistic Regression, features such as spread1 (1.00), spread2 (0.61), RPDE (0.61), and PPE (0.48) 

emerged as dominant contributors, highlighting their clinical relevance in capturing non-linear dynamics 

and variability in voice, which are indicative of PD-related impairments. Additionally, jitter-related 

features, including MDVP:Jitter(%) (0.34) and MDVP:Jitter(Abs) (0.37), reflected sensitivity to pitch 

irregularities, further underscoring their importance. The Decision Tree model, on the other hand, 

exhibited a more even reliance on a broader set of features, with MDVP:Fo(Hz) (0.17),MDVP:APQ (0.15) 

making moderate contributions. This broader feature utilization indicates the Decision Tree’s ability to 

integrate both prominent and less dominant variables for classification. 

Random Forest demonstrated a balanced distribution of feature contributions, with spread1 (0.06), PPE 

(0.09), and spread2 (0.04) standing out as significant features. The model effectively combined jitter- and 

shimmer-related variables with other features to achieve robust performance. Similarly, SVM strongly 

relied on spread1 (0.09), spread2 (0.10), and D2 (0.08), emphasizing the importance of capturing 

variability and distribution in voice data. Interestingly, SVM showed lower reliance on shimmer-related 

features, suggesting a preference for frequency-based variables in its hyperplane-based decision-making. 

For KNN, the top contributing features were spread2 (0.06), RPDE (0.04), and DFA (0.04), indicating a 

focus on broader trends rather than localized variations in voice data. Naive Bayes exhibited a similar 

pattern, with spread2 (0.06), RPDE (0.04), and DFA (0.04) emerging as significant contributors, 

reinforcing the importance of frequency-domain features while downplaying jitter and shimmer variations. 

Across most models, MDVP:Fo(Hz),spread1 and spread2 consistently ranked as top features, particularly 

in Logistic Regression, SVM, and Random Forest, emphasizing their critical role in quantifying amplitude 

variations in voice signals and diagnosing PD. RPDE and PPE, which capture non-linear dynamics and 

pitch variations, also played significant roles, further validating their relevance in distinguishing PD-

positive individuals. While jitter- and shimmer-related features were significant in specific models like 

This diversity in feature importance underscores the complementary strengths of different machine 

learning models, suggesting that ensemble or hybrid approaches may offer enhanced diagnostic accuracy 

for PD. Overall, the SHAP analysis underscores the clinical relevance of acoustic features, validates the 

interpretability of the models, and provides actionable insights for refining PD diagnostic tools to meet 

clinical needs. 
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Fig. 10 Feature Importance by SHAP for all Models 

 

4 Results 

4.1 Comparative analysis 

Table 2. Comparative Analysis of Base Models with and without SMOTE-TomekLinks 

Base Models Without SMOTE-TomekLinks With SMOTE-TomekLinks 

 Accuracy F1-Score(Class 

0/Class1) 

Accuracy F1-Score(Class 0 /Class 

1) 

1.Logistic Regression 74.35% 0.55 83.05% 0.84 

0.82 0.82 

2.Decision Tree 89.74% 0.80 93.22% 0.94 

0.93 0.93 

3.Random Forest 87.19% 0.71 96.61% 0.97 

0.92 0.96 

4.Support Vector 

Machine 

82.05% 0.59 91.52% 0.92 

0.89 0.91 

5.K-Nearst Neighbors 82.05% 0.63 93.22% 0.94 

0.88 0.93 

6.Naive Bayes 74.35% 0.58 77.96% 0.82 

0.81 0.72 

 

To evaluate the impact of addressing class imbalance on predictive performance, a comparative analysis 

(Table 2) of Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN), and Naive Bayes (NB) was conducted. Key metrics such as 
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accuracy and F1-scores for both classes (Class 0 and Class 1) were assessed. This analysis was integral to 

the Parkinson’s disease project, where accurate identification of the minority class (absence of Parkinson’s 

disease, Class 0) is critical for reliable diagnostic predictions. 

Without SMOTE-TomekLinks 

Without addressing class imbalance, the models exhibited varied performance, often showing bias toward 

the majority class (presence of Parkinson’s disease, Class 1). 

Logistic Regression (LR): Accuracy was 74.35%, with F1-scores of 0.55 (Class 0) and 0.82 (Class 1). 

This indicates a moderate ability to classify the minority class but struggles to achieve balance between 

the two classes. 

Decision Tree (DT): Achieved the highest accuracy (89.74%) among all models, with F1-scores of 0.80 

(Class 0) and 0.93 (Class 1). However, its reliance on data splits led to overfitting in the imbalanced 

dataset. 

Random Forest (RF): Accuracy was 87.19%, and F1-scores were 0.71 (Class 0) and 0.92 (Class 1), 

highlighting less generalizability than Decision Tree and  favoring the majority class. 

Support Vector Machine (SVM): Accuracy was 82.05%, with F1-scores of 

0.59 (Class 0) and 0.89 (Class 1), indicating limited effectiveness in handling class imbalance. 

K-Nearest Neighbors (KNN): With an accuracy of 82.05%, F1-scores were 0.63 (Class 0) and 0.88 (Class 

1), reflecting difficulty in distinguishing minority class instances. 

Naive Bayes (NB): Accuracy was 74.35%, with F1-scores of 0.58 (Class 0) and 0.81 (Class 1), showing 

significant limitations in managing imbalanced data distributions. 

With SMOTE-TomekLinks 

After applying SMOTE-TomekLinks, all models showed improved performance across all metrics, 

particularly for the minority class (absence of Parkinson’s disease, Class0). 

Logistic Regression (LR): Accuracy increased to 83.05%, with F1-scores improving to 0.84 (Class 0) 

and 0.82 (Class 1). This reflects a better balance between the two classes, enhancing its diagnostic utility. 

Decision Tree (DT): Accuracy rose to 93.22%, while F1-scores remained high at 0.94 (Class 0) and 0.93 

(Class 1), indicating an improved ability to generalize across classes. 

Random Forest (RF): Achieved the highest accuracy (96.61%) and F1-scores of 0.97 (Class 0) and 0.96 

(Class 1), demonstrating its robustness and suitability for balanced datasets. 

Support Vector Machine (SVM): Accuracy increased to 91.52%, with F1scores improving to 0.92 (Class 

0) and 0.91 (Class 1), highlighting a more balanced classification performance. 

K-Nearest Neighbors (KNN): Accuracy improved to 93.22%, with balanced F1-scores of 0.94 (Class 0) 

and 0.93 (Class 1), indicating enhanced capability in classifying both classes effectively. 

Naive Bayes (NB): Accuracy improved modestly to 77.96%, with F1-scores increasing to 0.82 (Class 0) 

and 0.72 (Class 1), though it remained the weakest performer among all models. 

Comparative Insights 

Accuracy Improvements: Across all models, applying SMOTE-TomekLinks resulted in significant 

accuracy improvements. Random Forest emerged as the most accurate model (96.61%), followed closely 

by Decision Tree (93.22%) and KNN (93.22%). Logistic Regression and SVM also demonstrated marked 

gains, emphasizing the effectiveness of addressing class imbalance. 

F1-Score Trends: For the minority class (Class 0), Random Forest achieved the highest F1-score (0.97), 

followed by Decision Tree (0.94) and SVM (0.92). Logistic Regression and KNN showed balanced 

performance, while Naive Bayes exhibited the least improvement. 
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Model Robustness: Random Forest consistently outperformed other models in all metrics, showcasing 

its ability to handle balanced data effectively. SVM and KNN also demonstrated strong performance post-

SMOTE-TomekLinks, indicating their suitability for diagnostic tasks. 

Naive Bayes Limitations: While Naive Bayes benefitted from SMOTE-TomekLinks, its simplistic 

assumptions limited its performance compared to other models, highlighting the need for more advanced 

algorithms in this context 

The comparative analysis underscores the pivotal role of SMOTE-TomekLinks in mitigating class 

imbalance and improving model performance in Parkinson’s disease diagnosis. Random Forest emerged 

as the most reliable model, achieving superior accuracy and balanced F1-scores. These findings reinforce 

the necessity of class-balancing techniques to ensure equitable predictions, particularly in medical 

applications where identifying minority class instances is critical. In next section this analysis serves as a 

foundation for integrating ensemble or hybrid models to further enhance diagnostic accuracy in 

Parkinson’s disease detection. 

4.2 Ensemble Technique: XGBoost and AdaBoost 

To enhance the predictive performance of the model in diagnosing Parkinson’s disease, ensemble 

techniques employing XGBoost and AdaBoost were utilized as meta-models. Ensemble learning combines 

the predictions of multiple models to achieve better accuracy and robustness compared to individual 

classifiers. 

XGBoost (Extreme Gradient Boosting) was chosen due to its efficiency in handling complex data and 

imbalanced datasets. It combines gradient boosting with regularization techniques, which mitigates 

overfitting and enhances generalization. Its scalability and ability to process imbalanced dataset made it 

an ideal choice for this study. AdaBoost (Adaptive Boosting), on the other hand, iteratively adjusts the 

weights of misclassified instances, focusing on difficult samples to improve overall classification 

performance. 

A comparative analysis of XGBoost and AdaBoost is presented in Table 3. XGBoost achieved the highest 

accuracy of 98.30%, with F1-scores of 0.98 for Class 0 (absence of Parkinson’s disease) and 0.98 for Class 

1 (presence of Parkinson’s disease). It also recorded an ROC-AUC score of 0.98, indicating excellent 

discriminatory power. The confusion matrix (Fig. 11) for XGBoost highlighted 30 true negatives, 28 true 

positives, and only 1 misclassification. 

In comparison, AdaBoost achieved an accuracy of 94.91%, with F1-scores of 0.95 for Class 0 and 0.95 

for Class 1. Its ROC-AUC score was 0.95, with the confusion matrix showing 29 true negatives, 27 true 

positives, and 3 misclassifications. While both meta-models benefited from the use of SMOTE-

TomekLinks to handle class imbalance, XGBoost emerged as the superior technique for this task. 

By integrating ensemble methods with balanced data, the model demonstrated significant improvements 

in predictive performance. The use of SMOTE-TomekLinks ensured that the minority class (absence of 

Parkinson’s disease) was adequately represented, leading to better generalization and reduced bias. These 

ensemble techniques effectively addressed the challenges posed by class imbalance, providing a robust 

and reliable model for clinical decision-making in Parkinson’s disease diagnosis. 

 

Table 3 Performance Comparison of Ensemble Techniques 

Meta-

model 

Accuracy 

(%) 

F1-Score (Class 

0) 

F1-Score (Class 

1) 

ROC-

AUC 

Confusion 

Matrix 

XGBoost 98.30 0.98 0.98 0.98 [[30,1],[0,28]] 
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AdaBoost 94.91 0.95 0.95 0.95 [[29,2],[1,27]] 

 
Fig. 11 Confusion Matrices of Meta-Models 

 

5 Conclusion 

This study aimed to develop a machine learning model to diagnose Parkinson’s disease using voice 

measurements data while addressing the challenges posed by class imbalance and ensuring model 

interpretability. The research hypothesized that advanced preprocessing methods, class balancing and 

ensemble techniques could significantly enhance diagnostic accuracy. 

The major findings confirmed this hypothesis, as models trained on SMOTE-TomekLinks balanced data 

demonstrated notable improvements in performance. Among all approaches, ensemble techniques like 

XGBoost and AdaBoost outperformed base models, achieving accuracies of 98.30% and 94.91%, 

respectively. XGBoost, in particular, demonstrated superior discriminatory power with an ROC-AUC 

score of 0.98 and high F1-scores for both classes, highlighting its robustness in handling medical datasets. 

SHAP analysis further added value by making the model’s predictions interpretable for clinical use. 

The relevance of this work lies in its ability to bridge the gap between computational methods and clinical 

diagnostics, providing a reliable framework for early detection of Parkinson’s disease. By addressing class 

imbalance and ensuring interpretability, the study contributes to the development of practical machine 

learning applications in healthcare. 

However, this study has some limitations. The dataset used was relatively small, which may affect the 

generalizability of the findings. Additionally, the analysis was limited to selected machine learning 

algorithms and did not explore deep learning approaches or advanced real-time validation techniques. 

Future research should focus on using larger, more diverse datasets, exploring real-time clinical validation, 

and incorporating advanced feature selection methods to improve the reliability and scalability of these 

models. Furthermore, integrating other biomarkers and longitudinal patient data could enhance the 

diagnostic accuracy and applicability of the model in real-world clinical settings. 

In conclusion, this study provides a strong foundation for using machine learning to diagnose Parkinson’s 

disease, showcasing how ensemble techniques and balanced data can improve accuracy and support 

clinical decision-making.  
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6 Program codes 

Listing 1 Base Model Building 

from sklearn.linear_model import LogisticRegression 

1. from sklearn.tree import DecisionTreeClassifier 

2. from sklearn.ensemble import RandomForestClassifier 

3. from sklearn.svm import SVC 

4. # evaluation: 

5. from sklearn.metrics import accuracy_score,classification_report,confusion_matrix 

6. class ModelTrainer: 

7. def __init__(self,x_train,x_test,y_train,y_test): 

8. self.x_train=x_train 

9. self.x_test=x_test 

10. self.y_train=y_train 

11. self.y_test=y_test 

12.  

13. def logistic_regression(self): 

14. model=LogisticRegression() 

15. model.fit(self.x_train,self.y_train) 

16. y_pred=model.predict(self.x_test) 

17. return 

accuracy_score(self.y_test,y_pred),confusion_matrix(self.y_test,y_pred),classification_report(self.y_t

est,y_pred) 

18. def decision_tree(self): 

19. model=DecisionTreeClassifier() 

20. model.fit(self.x_train,self.y_train) 

21. y_pred=model.predict(self.x_test) 

22. return 

accuracy_score(self.y_test,y_pred),confusion_matrix(self.y_test,y_pred),classification_report(self.y_t

est,y_pred) 

23. def random_tree_forest(self): 

24. model=RandomForestClassifier() 

25. model.fit(self.x_train,self.y_train) 

26. y_pred=model.predict(self.x_test) 

27. return 

accuracy_score(self.y_test,y_pred),confusion_matrix(self.y_test,y_pred),classification_report(self.y_t

est,y_pred) 

28. def SVM(self): 

29. model=SVC() 

30. model.fit(self.x_train,self.y_train) 

31. y_pred=model.predict(self.x_test) 

32. return 

accuracy_score(self.y_test,y_pred),confusion_matrix(self.y_test,y_pred),classification_report(self.y_t

est,y_pred) 
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33. def KNN(self): 

34. model=KNeighborsClassifier(n_neighbors=5) 

35. model.fit(self.x_train, self.y_train) 

36. y_pred=model.predict(self.x_test) 

37. return 

accuracy_score(self.y_test,y_pred),confusion_matrix(self.y_test,y_pred),classification_report(self.y_t

est,y_pred) 

38. def NaiveBayes(self): 

39. model=GaussianNB() 

40. model.fit(self.x_train, self.y_train) 

41. y_pred=model.predict(self.x_test) 

42. return 

accuracy_score(self.y_test,y_pred),confusion_matrix(self.y_test,y_pred),classification_report(self.y_t

est,y_pred) 

43.  

44. trainer=ModelTrainer(x_train,x_test,y_train,y_test) 

45.  

46. accuracy, confusion_mat, class_report = trainer.logistic_regression() # Similarly call other Base models 

methods 

47. print("Accuracy:", accuracy) 

48. print('-------------------------') 

49. print("Confusion Matrix:\n", confusion_mat) 

50. print('-------------------------') 

51. print("Classification Report:\n", class_report) 

52.  

 

 

 

Listing 2  SMOTE-TomekLinks 

1. import pandas as pd 

2. from imblearn.over_sampling import SMOTE 

3. from imblearn.under_sampling import TomekLinks 

4. from imblearn.pipeline import Pipeline 

5. smote=SMOTE(sampling_strategy='auto', random_state=42) 

6. tomek = TomekLinks() 

7. # Create a pipeline that first applies SMOTE, then Tomek Links 

8. pipeline = Pipeline(steps=[('smote', smote), ('tomek', tomek)]) 

9. # Fit and resample the training set 

10. X_resampled, y_resampled = pipeline.fit_resample(X_train, y_train) 
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Listing 3  SHAP Analysis 

1. # SHAP for LR 

2. lr_explainer = shap.LinearExplainer(lr_model,x_train) 

3. lr_shap_values = lr_explainer.shap_values(x_test) 

4. lr_shap_values.shape 

5. # SHAP for Decision Tree 

6. dt_explainer = shap.TreeExplainer(dt_model) 

7. dt_shap_values = dt_explainer.shap_values(x_test) 

8. dt_shap_values.shape 

9. # Shap values for Random-forest: 

10. rf_explainer = shap.TreeExplainer(rf_model) 

11. rf_shap_values = rf_explainer.shap_values(x_test) 

12. rf_shap_values.shape 

13. # SHAP for SVM (using KernelExplainer) 

14. svm_explainer = shap.KernelExplainer(svm_model.predict_proba, x_train) 

15. svm_shap_values = svm_explainer.shap_values(x_test) 

16. # SHAP for KNN 

17. knn_explainer=shap.KernelExplainer(knn_model.predict_proba,x_train) 

18. knn_shap_values=knn_explainer.shap_values(x_test) 

19. #SHAP for Naive bayes 

20. nb_explainer=shap.KernelExplainer(nb_model.predict_proba,x_train) 

21. nb_shap_values=knn_explainer.shap_values(x_test) 

22. import numpy as np 

23. # For Logistic Regression (already 1D per feature) 

24. lr_feature_importance = np.abs(lr_shap_values).mean(axis=0) 

25.  

26. # For multiclass models (aggregate across the class dimension) 

27. dt_feature_importance = np.abs(dt_shap_values).mean(axis=(0, 2)) 

28. rf_feature_importance = np.abs(rf_shap_values).mean(axis=(0, 2)) 

29. svm_feature_importance = np.abs(svm_shap_values).mean(axis=(0, 2)) 

30. knn_feature_importance = np.abs(knn_shap_values).mean(axis=(0, 2)) 

31. nb_feature_importance = np.abs(nb_shap_values).mean(axis=(0, 2)) 

32. features=x_train.columns 

33. # Combine into a DataFrame 

34. shap_df = pd.DataFrame({ 

35. 'Logistic Regression': lr_feature_importance, 

36. 'Decision Tree': dt_feature_importance, 

37. 'Random Forest': rf_feature_importance, 

38. 'SVM': svm_feature_importance, 

39. 'KNN': knn_feature_importance, 

40. 'Naive Bayes': nb_feature_importance 

41. }, index=features) 

42.  
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43. print(shap_df) 

44. features=x_train.columns 

45. # Create DataFrame 

46. shap_df = pd.DataFrame({ 

47. 'Logistic Regression': lr_feature_importance, 

48. 'Decision Tree': dt_feature_importance, 

49. 'Random Forest': rf_feature_importance, 

50. 'SVM': svm_feature_importance, 

51. 'KNN': knn_feature_importance, 

52. 'Naive Bayes': nb_feature_importance 

53. }, index=features) 

54.  

55. # Plot grouped bar chart 

56. fig, ax = plt.subplots(figsize=(12, 8)) 

57. shap_df.plot(kind='barh', stacked=True, ax=ax) 

58. plt.title("Feature Importance by SHAP for All Models") 

59. plt.ylabel("Mean Absolute SHAP Value") 

60. plt.xlabel("Features") 

61. plt.legend(loc='best') 

62. plt.tight_layout() 

63. plt.show() 

 

 

 

Listing 4 Ensemble Models 

1. # ENSEMBLE XGBOOST 

2. # from sklearn.ensemble import StackingClassifier 

3. from sklearn.linear_model import LogisticRegression 

4. from sklearn.tree import DecisionTreeClassifier 

5. from sklearn.ensemble import RandomForestClassifier 

6. from sklearn.svm import SVC 

7. from sklearn.neighbors import KNeighborsClassifier 

8. from sklearn.naive_bayes import GaussianNB 

9. from xgboost import XGBClassifier 

10. from sklearn.metrics import accuracy_score 

11. from sklearn.model_selection import train_test_split 

12. # Split dataset treated with smote-tomeklinks 

13. x_train, x_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, 

random_state=100) 

 

14. # Define base models 

15. base_models = [ 

16. ('lr', LogisticRegression()), 
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17. ('dt', DecisionTreeClassifier()), 

18. ('rf', RandomForestClassifier()), 

19. ('svm', SVC(probability=True)), 

20. ('knn', KNeighborsClassifier()), 

21. ('nb', GaussianNB()) 

22. ] 

23.  

24. # Define meta-model 

25. meta_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', 

random_state=100) 

26.  

27. # Create Stacking_model 

28. stacking_model = StackingClassifier(estimators=base_models, final_estimator=meta_model, 

cv=5) 

29.  

30. # Train and evaluate 

31. stacking_model.fit(x_train, y_train) 

32. y_pred = stacking_model.predict(x_test) 

33.  

34. # Accuracy 

35. print("Stacking Classifier Accuracy:", accuracy_score(y_test, y_pred)) 

36. print("Stacking Classifier Confusion Matrix:"'\n', confusion_matrix(y_test, y_pred)) 

37. print("Stacking Classifier Classification Report:"'\n', classification_report(y_test, y_pred)) 

38. # ROC-AUC score 

39. from sklearn.metrics import roc_auc_score 

40. roc_auc = roc_auc_score(y_test, y_pred) 

41. print(f"ROC-AUC: {roc_auc:.2f}") 

42.  

43.  

44. # ENSEMBLE AdaBOOST 

45. from sklearn.ensemble import StackingClassifier 

46. from sklearn.linear_model import LogisticRegression 

47. from sklearn.tree import DecisionTreeClassifier 

48. from sklearn.ensemble import RandomForestClassifier 

49. from sklearn.svm import SVC 

50. from sklearn.neighbors import KNeighborsClassifier 

51. from sklearn.naive_bayes import GaussianNB 

52. from sklearn.ensemble import AdaBoostClassifier 

53. from sklearn.metrics import accuracy_score 

54. from sklearn.model_selection import train_test_split 

55. # Split dataset treated with smote-tomeklinks 

56. x_train, x_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, 

random_state=100) 
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57.  

58. # Define base models 

59. base_models = [ 

60. ('lr', LogisticRegression()), 

61. ('dt', DecisionTreeClassifier()), 

62. ('rf', RandomForestClassifier()), 

63. ('svm', SVC(probability=True)), 

64. ('knn', KNeighborsClassifier()), 

65. ('nb', GaussianNB()) 

66. ] 

67.  

68. # Define meta-model 

69. meta_model = AdaBoostClassifier(n_estimators=50, random_state=100) 

70.  

71. # Create Stacking_model 

72. stacking_model = StackingClassifier(estimators=base_models, final_estimator=meta_model, 

cv=5) 

73.  

74. # Train and evaluate 

75. stacking_model.fit(x_train, y_train) 

76. y_pred = stacking_model.predict(x_test) 

77.  

78. # Accuracy 

79. print("Stacking Classifier Accuracy:", accuracy_score(y_test, y_pred)) 

80. print("Stacking Classifier Confusion Matrix:"'\n', confusion_matrix(y_test, y_pred)) 

81. print("Stacking Classifier Classification Report:"'\n', classification_report(y_test, y_pred)) 

82. # ROC-AUC score 

83. from sklearn.metrics import roc_auc_score 

84. roc_auc = roc_auc_score(y_test, y_pred) 

85. print(f"ROC-AUC: {roc_auc:.2f}") 
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Software and Resources: 

The research was conducted using the following software and resources: 
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