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Abstract : 

The Equations of the kind known as partial differential equations are used in a wide variety of sciences 

within the applied mathematics, including the hydrodynamics, electricity, the quantum physics, and the 

electromagnetic theory. Analyzing these equations analytically is a procedure that is fairly complicated 

and calls for the use of sophisticated mathematical tools. On the other hand, it is often far simpler to 

create adequately approximative answers using the straightforward numerical approaches that are also 

very effective. For the purpose of solving the partial differential equations, many numerical approaches 

have been put up as potential the solutions. Only the techniques used in the solution of elliptic, 

hyperbolic, and the parabolic partial differential equations would be covered here among those 

approaches. In other words, one will only solve the partial differential equations of the elliptic, 

hyperbolic, and the parabolic varieties. 
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INTRODUCTION 

The study of PDEs encompasses a wide range of analytical and numerical methods aimed at 

understanding the behavior of solutions and obtaining accurate approximations when exact solutions are 

elusive. These methods play a crucial role in advancing scientific research, technological innovations, 

and problem-solving in complex systems. 

In this paper, we delve into the realm of analytical and numerical methods for solving PDEs. We explore 

classical techniques such as separation of variables, Fourier transforms, and Laplace transforms, which 

are powerful tools for obtaining exact solutions to specific types of PDEs. Additionally, we investigate 

modern numerical methods, including finite difference methods, finite element methods, and spectral 

methods, which provide approximate solutions by discretizing the domain and employing computational 

algorithms. 

The synergy between analytical and numerical approaches is evident in their complementary strengths. 

Analytical methods offer insights into the underlying mathematical structure of PDEs, revealing 

fundamental properties and exact solutions that serve as benchmarks for numerical simulations. On the 

other hand, numerical methods excel in handling complex geometries, nonlinearities, and boundary 

conditions, making them indispensable for practical applications and engineering simulations. 

Through a comprehensive analysis and comparison of these methods, we aim to showcase their 

strengths, limitations, and applicability in diverse problem domains. By understanding and leveraging 

the synergy between analytical and numerical techniques, researchers and practitioners can tackle 
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challenging PDE problems efficiently, paving the way for advancements in science, technology, and 

computational modeling. 

The general second-order linear partial differential equation is of the form 
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Here 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 and 𝐺 are all functions of 𝑥and 𝑦. The above equation can be classified with 

respect to the sign of the discriminant 𝛥𝑆 = 𝐵2– 4𝐴𝐶, in the following way: 

If ∆𝑆< 0, ∆𝑆 = 0 and ∆𝑆> 0 at a point in the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, then is said to be of elliptic, parabolic and 

hyperbolic type of equation respectively. 

The differential equation would be used to create mathematical models for a wide variety of physical 

events. When there are two or more independent variables involved in the function that is being 

investigated, the differential equation would often take the form of a partial differential equation. 

Because the function of many variables is inherently more intricate than that of a single variable, the 

partial differential equations would lead to numerical problems that are the most difficult to solve. In 

point of fact, the numerical answer to their problem is an example of a certain kind of scientific 

computation that would quickly cause the resources of even the largest and the most powerful computer 

systems to become stressed. This will become clearer at a later time. The following is a list of some 

significant partial differential equations as would as some of the physical processes that they regulate. 

1. The wave equation in three spatial variables (𝑥, 𝑦, 𝑧) and the time 𝑡 is: 
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The value of the function u indicates the displacement that the particle experienced at the moment t 

when its location at rest was (x, y, and z). This equation, when applied to a three-dimensional elastic 

body with the necessary boundary conditions, determines the vibrations of the body: 

2. The heat equation is 
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The function 𝑢 represents the temperature at the time 𝑡 of a particle whose position at the co-ordinates 

are (𝑥, 𝑦, 𝑧). 

3. Laplace’s equation is 
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The steady-state distribution of the heat or the electric charge within a body is governed by this property. 

In irrigational flows of incompressible fluids, Laplace's equation is also responsible for the governing 

the gravitational, electric, and the magnetic potentials, in addition to the velocity potentials. A discussion 

of some unique expressions of Laplace's equation can be found in section 1.6. In the context of partial 

differential equations, there are also two problems that are special cases that depend on the boundary 

conditions; 
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One has Cauchy’s problem for 𝑡> 0 arbitrary functions (𝑥) and (𝑥) as following for 
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Let 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 be divided into a network of rectangles of sides’ ∆𝑥 = ℎ and ∆𝑦 = 𝑘 by drawing the set 

of lines 𝑥 = 𝑖h and 𝑦 = 𝑗𝑘; 𝑖, 𝑗 = 0, 1, 2, Shown in figure 1: 

The Mesh points, the lattice points, and the grid points are all names given to the points at which their 

respective families of lines connect. 

For 𝑢𝑖, = (𝑖ℎ,) = (𝑥, 𝑦) 

One has following approximations: 
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When one substitutes the derivatives in a partial differential equation with their corresponding difference 

equations, one gets the finite-difference analogies of the problem that is being solved. 

In this part of the lesson, one would investigate a variety of strategies for resolving the elliptic equations 

such as those posed by Laplace and Poisson. These well-known equations would be used to describe a 

variety of the physical events. Some of these are the steady heat equation, the seepage through porous 

media, the rotational flow of an ideal fluid, the distributional potential, the steady viscous flow, the 

equilibrium stresses in the elastic structures, etc. These are some of the more common problems that 

arise in the applications of physics and engineering. 

Solution of Laplace’s Equation: one has to consider the Laplace’s equation in two 

The equation shows that the value of u at every given internal mesh point is the same as the average of 

its values at the four locations immediately next to it. The equation in question is known as the 

conventional 5-point formula, and it would be found in figure 2. 

When the coordinate axes are rotated via an angle of 45 degrees, it is well knowledge that Laplace's 

equation does not change in any way. If this is the case, the formula may be rewritten as 

This is related to, which demonstrates that the value of u at every interior mesh point is the average of its 

values at four surrounding diagonal mesh points. This holds true for any interior mesh point. The 
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formula in question is called the diagonal 5-point formula, and it would be found in Although provides a 

less precise estimate than does, it is nevertheless a passable approximation that would be used to derive 

the beginning values of the mesh points. In order to determine the starting values of u at the inside mesh 

points, one will utilise, and then calculate the following mesh points: 
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Calculating the values of u at the remaining interior mesh points involves using the equation, as shown 

here. 
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After the initial determination of has been made, the accuracy of the results can be improved by 

employing either Jacobi's iterative method or Gauss-Seidel's iterative method. The procedure would be 

carried out again and again until the results of two successive iterations become very comparable to one 

another. In order to obtain the degree of precision that is sought, the difference between two iterations 

that are performed consecutively must become insignificantly tiny. In the case of Jacobi's method and 

the Gauss-Seidel method, the iterative formula for both methods is presented in the following. 

The Jacobi iteration formula and the Gauss-Seidel iteration formula would both be found by using: 
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Here 
)1(

,

+n

jiu  denotes the (𝑛 + 1) ℎ iterative value of 𝑢𝑖, and gives us the improved values of 𝑢𝑖, at the 

interior mesh points. 

The Gauss-Seidel iteration formula scans the mesh points in a symmetrical fashion, moving from left to 

right along successive rows, using the most recent iterative value that is available. In addition, the 

Gauss-Seidel method is straightforward, making it is implement on a computer. Due to the slow nature 

of Jacobi's iteration formula, the working is the same but takes a long time. On the other hand, it is 
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possible to demonstrate that the Gauss-Seidel scheme arrives at the solution twice as quickly as the 

Jacobi's method does. 
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The approach to solve this problem is somewhat similar to that used for the Laplace's equation. The 

conventional five-point formula for may be seen in action here. 
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Using at each interior mesh point, one arrives at a system of linear equations in the nodal values 𝑢𝑖,, 

which can be solved by the Gauss-Seidel method. The error in replacing 𝑢𝑥𝑥 by the finite-difference 

approximation is of the order ℎ2. Since 𝑘 = ℎ, the error in replacing 𝑢𝑦𝑦 by the finite-difference 

approximation is also of the order ℎ2. Thus the error in solving Laplace’s equation and Poisson’s 

equation by finite difference method is of order ℎ2. 

This is a process that goes on indefinitely. The primary purpose of the method is to get all of the 

residuals down to zero by bringing them as close to zero as feasible at each stage of the process. As the 

result, one has to endeavour to modify the value of u at an internal mesh point in order to bring the level 

of residual danger down to zero. The values of the residuals at the nearby interior points would vary if 

there is a change in the value of u at a mesh point. If 𝑢0 is given an increment 1, then (i) equation shows 

that 𝑟0 is changed by −4 and (ii) equation shows that 𝑟1 is changed by 1. The relaxation pattern is shown 

in 

In general, equation of Gauss-Seidel formula can be written as 

This shows that 1/4 𝑅𝑖, represents the fluctuation in the value of ui, j that occurs during the Gauss–

Seidel iteration. Larger changes than this are applied to ui, j (n) when using the successive over-

relaxation method, and the iteration formula is written as follows: 

The choice of w, also known as the acceleration factor, which ranges between 1 and 2 determines the 

rate of convergence of the equation 4.4.12, which is given by: Estimating what the optimal value of w 

should be would be challenging in general. 

The following is the procedure that we will follow in order to solve an elliptic problem using the 

relaxation approach. 

To acquire the answer by bringing the residuals down to zero one at a time, by providing u with an 

appropriate increment, and by making use of the At each stage, one bring the numerically greatest 

residual down to zero while simultaneously recording the increment of u in the leftmost column and the 

changed residual in the rightmost column. 

1. To evaluate of the after the end of the relaxation cycles the value of u and its increments would have 

been put up at each point. 

2. To create a new calculation for each of the residuals using these data. In the event that would of the 

recalculated residuals have significant values, one will liquidate them once again. 

3. When the present values of the residuals are rather low, to call an end to the relaxing procedure. The 

answer would be found by taking the current value of u at each of the nodes. 

 

CONCLUSION 

One of the key takeaways from this study is the importance of understanding the physical and 

mathematical context of the problem before selecting an appropriate solution technique. Different types 
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of PDEs require different approaches, and a deep understanding of the problem domain is crucial for 

obtaining accurate and meaningful solutions. 

Moreover, the advancements in computational tools and software have greatly enhanced our ability to 

solve complex PDEs efficiently. Techniques like finite element methods and computational fluid 

dynamics have revolutionized the way we approach and solve PDE problems, enabling us to tackle real-

world challenges with precision and accuracy. As we move forward, further research and development 

in PDE solving techniques are imperative. 
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