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Abstract 

This study explores the use of propensity score matching to reduce bias in estimating treatment effects 

from observational data. Specifically, it evaluates the performance of logistic regression and machine 

learning-based methods for propensity score estimation under conditions involving missing data and 

complex confounding structures. Simulation studies were conducted using both complete and imputed 

datasets across varying levels of missingness, unmeasured confounding, and nonlinearity in the true 

propensity score. Logistic regression (LR), generalized boosting models (GBM), and Bayesian additive 

regression trees (BART) were compared based on estimation accuracy and covariate balance. Performance 

was assessed using root mean square error (RMSE) mean absolute error (MAE), R-squared, absolute 

standardized mean differences (ASMD), and Kolmogorov–Smirnov (KS) statistics. The results highlight 

trade-offs in model robustness, particularly between predictive accuracy and covariate balance, offering 

practical insights for selecting appropriate propensity score models in complex observational settings. 
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1. Introduction 

Observational studies are essential for investigating causal effects when randomization is not feasible due 

to ethical or practical constraints. First introduced by Rosenbaum and Rubin (1983), propensity score (PS) 

methods are widely used to simulate randomization by balancing covariates across treatment groups [6]. 

Traditionally estimated using logistic regression, PS can now also be derived using machine learning (ML) 

techniques. These advanced methods offer greater flexibility and robustness to model misspecification. 

Among the four main PS-based approaches, namely: matching, stratification, weighting, and covariate 

adjustment, matching is often favored for its simplicity and effectiveness in achieving covariate balance. 

Despite the growing use of PS matching, challenges remain, particularly, in the presence of unmeasured 

confounders and missing data. Unmeasured confounders are those variables that influence both the 

treatment and outcome but are not accounted for. On the other hand, missing data has mechanisms, to 

name: missing completely at random (MCAR) where the missing values are not related to the observed 

and unobserved, missing at random (MAR) where the missing values are related only to the observed, and 

missing not at random (MNAR) where missing values are related to the unobserved data itself [5]. 

Observational studies frequently encounter these issues, complicating causal inference. 

Following the recommendation of Kim et al. (2023), this study investigates the PS estimation and 

matching by comparing traditional and ML-based estimation models under various conditions [2]. These 

include the presence or absence of unmeasured confounders, different missing data mechanisms, and 

varying levels of missingness. The main goal is to provide deeper insights into the effectiveness and 
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reliability of PS estimation and matching with high-performing PS models in the literature in supporting 

causal inference in real-world, data-challenged environments. 

 

2. Methodology 

This study employed a simulation-based approach to investigate the performance of PS estimation and 

matching in the presence of unmeasured confounders and missing data. 

Data Generation: Observational data were generated and patterned in the simulation of Sturmer et al. 

(2010) to mimic a cohort study design with a binary treatment variable (𝑇) (see Table 1 in the Appendix 

for details) [7]. The data comprised ten observed covariates (𝑋1, … , 𝑋10) (three binary and seven 

continuous with standard normal distribution, 𝑁(0,1)). The predicted probability of the intended treatment 

was calculated based on the ten measured covariates using a logistic model, and was used to assign two 

unmeasured binary covariates  (𝑋11, 𝑋12) representing frailty-like conditions [7]. The probability of actual 

treatment was recalculated based on the ten measured and two unmeasured covariates. Generally, four 

conditions were introduced in the true propensity score model: 

 

● Condition 1: without interaction and quadratic terms, with unmeasured confounders 

𝑃(𝑇 | 𝑋1, … , 𝑋12)  =  
1

1 + 𝑒−(𝑎0+𝑎1𝑋1+ ...+𝑎10𝑋10+𝑎11𝑋11+𝑎12𝑋12)    (1) 

 

● Condition 2: without interaction and quadratic terms, without unmeasured confounders 

𝑃(𝑇 | 𝑋1, … , 𝑋10)  =  
1

1 + 𝑒−(𝑎0+𝑎1𝑋1+ ...+𝑎10𝑋10)     (2) 

 

● Condition 3: with interaction and quadratic terms, with unmeasured confounders 

𝑃(𝑇 | 𝑋1, … , 𝑋12)  =  
1

1 + 𝑒−(𝑎0+𝑎1𝑋1+ ...+𝑎12𝑋12+𝑐(𝑋8𝑋9)+𝑑(𝑋10)2)
    (3) 

 

● Condition 4: with interaction and quadratic terms, without unmeasured confounders 

𝑃(𝑇 | 𝑋1, … , 𝑋10)  =  
1

1 + 𝑒−(𝑎0+𝑎1𝑋1+ ...+𝑎10𝑋10+𝑐(𝑋8𝑋9)+𝑑(𝑋10)2)
    (4) 

 

Treatment assignment was then generated using equation (5), given by 

 

𝑇 = {1,   𝑈 ≤ 𝑃(𝑇 | 𝑋) 0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (5) 

 

Each condition has 1,000 generated datasets each containing 1,000 samples. Moreover, the parameters 

and values covered in the data generation are presented in Table 1 of the Appendix. 

 

Missing Data Simulation and Imputation: Multivariate MCAR and MAR data were introduced at 

proportions of 2%, 5%, 10%, and 15% across all 1,000 datasets under each of the four specified conditions 

using delete_MCAR and delete_MAR censoring functions in the R software. These mechanisms were 

determined using a detection framework described in Figure 1. This ensures that the generated missing 

data constituted true MCAR and MAR. Predictive Mean Matching (PMM) was then applied to the 

incomplete datasets to handle missing values. PMM was chosen because of its strong imputation 

performance [3]. Since PMM can only impute values based on observed data, this study considered only 
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MCAR and MAR mechanisms, as MNAR involves unobserved data and cannot be appropriately 

addressed by PMM. 

 
 

Figure 1: Framework for Detecting a Type of Missing Data Mechanism 

 

PS Estimation and Matching: Propensity scores were estimated on both complete and imputed datasets 

using three techniques: logistic regression (LR), generalized boosting models (GBM), and Bayesian 

additive regression trees (BART). These models were selected to represent conventional and machine 

learning approaches (most and least used models [4]), allowing performance comparison under various 

data complexities. The most used GBM was fitted using a number of iterations at 10,000, a shrinkage 

factor of 0.001, bag of 1.0, and a depth of interaction of 5.0. On the other hand, BART was fitted using 

the default hyperparameters. Predictive accuracy of the models was evaluated using root mean square 

error (RMSE), mean absolute error (MAE), and coefficient of determination, 𝑅2. The models’ significant 

difference was tested based on 𝑅2 using Kruskal-Wallis and was further assessed by Post-Hoc analysis. 

Furthermore, different models estimate PS differently, which affects their ability to create comparable 

treatment and control groups. After estimation, nearest neighbor caliper matching without replacement 

was applied as a matching algorithm. The caliper was 0.2 of the standard deviation of the logit of the PS 

[1]. Covariate balance post-matching was assessed using the absolute standardized mean differences 

(ASMD) and Kolmogorov-Smirnov (KS) statistics. Estimation and matching were performed using the 

matchit function in R. 

 

3. Results and Discussion 

The average performance was assessed based on 1,000 datasets under each of the four specified conditions 

introduced in the true propensity score model. 

Complete Cases: When main effects are only introduced in the true propensity score model, LR 

demonstrated the best performance, followed by BART and GBM, regardless of whether unmeasured 
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confounding was present. However, it is shown in Figure 2 (right) what happens to LR when used to 

estimate propensity scores under such conditions where there are non-additivity and nonlinearity 

components in the true propensity score model. In contrast, machine models adapted better to these 

complex conditions, with BART consistently achieving strong performance.  While most methods exhibit 

significant differences (refer to Table 2 in the Appendix), BART and GBM do not significantly differ 

when unmeasured confounding is present (p-value = 0.7726259 > 0.05), suggesting their comparable 

performance under this complex data condition. 

Another key observation is that the presence of unmeasured confounding leads to decreased accuracy and 

increased error levels. This suggests that unmeasured confounding complicates the relationships between 

covariates, treatment, and outcome. As a result, propensity score models may struggle to accurately 

estimate the true propensity scores. 

 

  

Figure 2: Average Model Performance Across 1,000 Simulated Datasets 

(Left: Conditions 1 and 2, Right: Conditions 3 and 4) 

 

The results of matching when main effects were only introduced in the true PS model with and without 

unmeasured confounding are presented in Figure 3 (A and B). In both ASMD and KS measures, matched 

BART-estimated PS was able to balance all covariates while LR and GBM struggle balancing certain 

covariates, suggesting potential limitations in their ability to achieve adequate covariate balance. The same 

result can be observed when nonlinear and non-additive components were introduced (Figures 3C and 

3D). 

Imputed MCAR and MAR Cases: In the case where there were missing values but imputed, all models 

showed degraded performance with increasing missingness (refer to Figures 4 and 5). In most imputed 

MCAR cases, BART performs best consistently. It is comparable with GBM at 2% with unmeasured 

confounding and at 15% without unmeasured confounding, under complex conditions. The same result 

can be observed in cases with imputed MAR data. BART and GBM are only comparable at 2% and 5% 

with unmeasured confounding under complex conditions (refer to Tables 3 and 4 in the Appendix). 

In the model’s covariate balancing ability under imputed MCAR, it is seen that in all cases, matching from 

BART-estimated PS consistently achieves good covariate balance with and without unmeasured 

confounding, under both simple and complex conditions. The same results show under imputed MAR. LR 

and GBM struggle to balance some covariates in most levels of imputed MCAR and MAR data under all 

specified conditions of the true PS. 
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B 

 

C 

 

D 

 

Figure 3: Average Balance Measures Across 1,000 Simulated Datasets 

(A: Condition 1, B: Conditions 2, C: Condition 3, and D: Condition 4) 

 

  

Figure 4: Average Model Performance Across Different Proportions of Imputed MCAR Data 

(Left: Conditions 1 and 2, Right: Conditions 3 and 4) 
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Figure 5: Average Model Performance Across Different Proportions of Imputed MAR Data 

(Left: Conditions 1 and 2, Right: Conditions 3 and 4) 
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B 

 

C 

 

D 

 

Figure 6: Average Balance Measures Across Different Proportions of MCAR Data (A: Condition 

1, B: Conditions 2, C: Condition 3, and D: Condition 4) 
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Figure 7: Average Balance Measures Across Different Proportions of MAR Data 

(A: Condition 1, B: Conditions 2, C: Condition 3, and D: Condition 4) 

 

4. Conclusion 

This study found that logistic regression (LR) exhibits notable limitations in propensity score analysis, 

especially under complex data structures or when model specification is difficult. In contrast, machine 

learning approaches, particularly Bayesian Additive Regression Trees (BART) demonstrated superior 

performance in both predictive accuracy and covariate balance, even in the presence of missing data and 

potential unmeasured confounding. While the generalized boosting model (GBM) is commonly used as a 

nonparametric machine learning method, it struggled to consistently balance covariates across simulation 

settings. BART, though less frequently applied in practice, emerged as a robust and flexible alternative, 

offering substantial improvements in balance and model robustness when estimating propensity scores. 

These findings provide the importance of selecting propensity score methods that prioritize both predictive 

accuracy and covariate balance. Given its adaptability to complex, nonlinear data structures, BART offers 

a powerful alternative for propensity score estimation and matching in observational research, 

outperforming other nonparametric methods that are often favored for their minimal reliance on strict data 

assumptions. 
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