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ABSTRACT 

Digital images are transferred with ease through the network. Many users are using the images without 

the knowledge of the owners. Zero watermarking does not alter the original information contained in 

vector map data and provides perfect imperceptibility. The use of zero watermarking for data copyright 

protection has become a significant trend in digital watermarking research. However, zero watermarking 

encounters tremendous obstacles to its development and application because of its requirement to store 

copyright information with a third party and its difficulty in confirming copyright ownership. However, 

traditional digital image generation methods have high operational requirements for designers due to 

difficulties in collecting data sets and simulating environmental scenes, which results in poor quality, lack 

of diversity, and long generation speed of generated images, making it difficult to meet the current needs 

of image generation. This paper proposes a new image verification mechanism based on the Merkle tree 

technique in the blockchain. The Merkle tree root in the blockchain mechanism provides a reliable 

environment for storage of image features. In image verification, the verification of each image can be 

performed by the Merkle tree mechanism to obtain the hash value of the Merkle tree node on the path. 

The main purpose of this paper is to achieve the goal of image integrity verification. The proposed method 

can not only verify the integrity of the image but also restore the tampered area in the case of image 

tampering. Since the proposed method employs the blockchain mechanism, the image verification 

mechanism does not need third party resources . The verification method is performed by (c) Wisen IT 

Solutions Page 2 of 29 each node in the blockchain network. The experimental results demonstrate that 

the proposed method successfully achieved the goal of image authentication and tampered area restoration. 

 

CHAPTER 1 

INTRODUCTION 

The classification of cyber-attacks through supervised machine learning techniques is a pivotal aspect of 

modern cybersecurity. As the digital realm becomes progressively intricate, cyber threats grow in 

sophistication and frequency. Thus, the ability to swiftly and accurately categorize these threats is 

paramount. Supervised machine learning offers a powerful solution by leveraging labelled datasets to 

teach algorithms to recognize and classify different types of cyber-attacks. This classification aids 

organizations in responding effectively, mitigating damage, and fortifying their defences. However, 

challenges such as the diversity of attack methods, the adaptability of attackers, and imbalanced data make 

this a complex field. Nevertheless, the potential applications are extensive, spanning intrusion detection, 

email filtering, malware identification, and anomaly detection. Looking ahead, ongoing research will 

refine models to handle evolving threats, integrate them with broader security strategies, and address 

ethical concerns in the deployment of these technologies 
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1.1 PROBLEM STATEMENT 

The rapid growth of internet-connected systems has led to an increase in both the scale and complexity of 

cyberattacks, posing serious threats to the confidentiality, integrity, and availability of digital 

infrastructure. Traditional signature-based intrusion detection systems are often inadequate in identifying 

novel or sophisticated attack patterns. Consequently, there is a pressing need for intelligent, data-driven 

approaches that can automatically classify network threats with high precision. This study addresses the 

problem of cyberattack classification by leveraging supervised machine learning techniques to detect and 

categorize various types of malicious network activity, including but not limited to malware injection, 

phishing attempts, and distributed denial-of-service (DDoS) attacks. The core challenge lies in handling 

high-dimensional, imbalanced network data while maintaining generalization across diverse and evolving 

attack vectors. This problem is formulated as a multi-class classification task, where labeled network 

traffic is used to train predictive models capable of recognizing complex patterns and subtle anomalies. 

Accurate classification not only enhances early threat detection but also supports real-time response 

systems in mitigating damage. This research seeks to evaluate the effectiveness of algorithms such as 

decision trees, support vector machines, and neural networks in this context, contributing to the 

development of scalable and adaptive cybersecurity solutions. 

1.2 AIM OF THE PROJECT 

● To design and implement a machine learning model capable of classifying different types of 

cyberattacks using supervised learning techniques. 

● To design and implement a machine learning model capable of classifying different types of 

cyberattacks using supervised learning techniques. 

● To compare the performance of various supervised algorithms, such as Decision Trees, Support Vector 

Machines, and Neural Networks, in the context of cyberattack classification. 

● To enhance the accuracy and reliability of cyber threat detection by training models on labeled datasets 

containing diverse attack types like malware, phishing, and DDoS. 

● To contribute to proactive cybersecurity strategies by building a scalable and adaptive system that 

supports real-time identification and mitigation of cyber threats. 

1.3 PROJECT DOMAIN 

The domain of the project is Cybersecurity, with a primary focus on using Deep Learning techniques to 

identify and classify cyberattacks effectively. 

1.4 SCOPE OF THE PROJECT 

This project focuses on developing a system that strengthens cybersecurity by detecting and classifying 

malicious network activities. It aligns with the functionality of an Intrusion Prevention System (IPS), 

which actively mitigates threats by blocking harmful traffic, dropping suspicious packets, and flagging 

potential risks for further investigation. The system is designed to utilize machine learning models trained 

on labeled datasets, enabling it to identify both known attack signatures and unusual behavioral patterns. 

By analyzing traffic flow and recognizing deviations from normal activity, the model supports intelligent, 

automated threat prevention beyond traditional rule-based detection. This approach contributes to building 

a more adaptive and responsive security infrastructure capable of addressing modern cyber threats in real 

time. 

1.5 METHODOLOGY 

This project adopts a supervised machine learning approach for the classification of cyberattacks using 

network traffic data. The methodology is structured into three primary modules: data preprocessing, 
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feature extraction, and attack classification. In the preprocessing stage, raw network data is cleaned, 

normalized, and transformed to ensure consistency and quality, while techniques like data balancing and 

noise reduction are applied to address class imbalances. The feature extraction phase focuses on 

identifying significant attributes such as protocol type, packet size, connection duration, and frequency, 

which are essential in distinguishing between normal and malicious traffic. Dimensionality reduction may 

also be employed to enhance model performance and efficiency. In the classification module, various 

supervised algorithms—including Decision Trees, Support Vector Machines, and Neural Networks—are 

trained on labeled datasets to learn patterns associated with different cyber threats. The models are 

evaluated using performance metrics such as accuracy, precision, recall, and F1-score, with cross-

validation ensuring robustness and generalization. To maintain effectiveness in a dynamic threat 

landscape, the system is designed for periodic retraining with updated data. This comprehensive 

methodology enables the development of a reliable, adaptive solution for accurate cyberattack detection 

and classification. 

1.6 ORGANIZATION OF THE REPORT 

Chapter 2 Contains Literature review of relevant papers. 

Chapter 3 explores the challenges faced in Cyberattack Detection within Cyber-Physical Systems (CPS), 

particularly focusing on anomaly detection through unsupervised learning techniques. It introduces the 

enhancement of existing datasets by integrating diverse cyberattack patterns to create a more robust and 

representative dataset. Various machine learning and deep learning models are explored, including 

autoencoders, for their ability to learn normal behavior and identify deviations. Cloud-based infrastructure 

is discussed for handling large-scale data collection and analysis. The chapter emphasizes the critical role 

of accurate anomaly detection techniques and highlights potential areas of application across industries 

like water treatment, energy, and manufacturing. 

Chapter 4 outlines the proposed system design, inspired by real-world CPS architectures vulnerable to 

cyber threats. Figure 4.1 presents the general framework used for anomaly detection, incorporating 

unsupervised learning to identify malicious activity. The data flow is detailed in Figure 4.2, from raw 

sensor data input to feature extraction and classification using a neural network. Figure 4.3 shows the 

UML representation of processing stages. The system is divided into three main modules: Data 

Preprocessing, Feature Extraction, and Anomaly Detection using Autoencoders. A feasibility study is also 

included, evaluating the system's practicality from technical, economic, and social perspectives. 

Chapter 5 describes the implementation and testing phase. The system is tested by feeding time-series or 

sensor data from CPS environments into the trained model to detect anomalies. Figures 5.1 and 5.2 

illustrate sample attack and normal input-output evaluations. Testing types include Unit Testing (to 

validate individual components such as preprocessing and encoding), Integration Testing (to assess the 

interaction between modules), and Functional Testing (to confirm that the model correctly identifies 

attacks). A structured testing strategy ensures system reliability and accuracy. 

Chapter 6 presents the results and discusses the performance of the proposed model. It highlights the 

model's ability to detect cyber anomalies with an accuracy of approximately 40%, despite using limited 

labeled data. The results demonstrate that the system performs well on unseen attack types and in various 

CPS environments. Figures 6.1 and 6.2 illustrate model predictions and comparisons with actual events, 

validating the efficiency of the anomaly detection approach. 

Chapter 7 offers the conclusion and future directions. The study confirms that unsupervised models like 

autoencoders can effectively identify cyberattacks in CPS with minimal data. Future improvements 
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include refining the loss function, expanding to multiple CPS datasets, and integrating the model with 

real-time monitoring systems. There is also potential for exploring hybrid techniques that combine 

domain-driven logic with data-driven methods. 

Chapter 8 contains the source code and details about the poster presentation. It includes sample code 

snippets for reference. 

 

CHAPTER 2 

LITERATURE REVIEW 

This An Intrusion Detection System (IDS), or its more proactive counterpart, an Intrusion Prevention 

System (IPS), is a hardware or software solution designed to monitor computer systems and network 

activity for signs of malicious behavior or policy violations. IDS solutions can range from those tailored 

for individual machines to those designed for enterprise-wide networks. The two primary types of IDS are 

Network-based IDS (NIDS), which analyzes network traffic, and Host-based IDS (HIDS), which focuses 

on monitoring activity on individual systems, such as critical operating system files. IDS systems can also 

be categorized by their detection techniques. Signature-based detection identifies known threats by 

matching traffic patterns to pre-defined signatures, while anomaly-based detection identifies unusual 

behavior by comparing activity against a baseline of normal operations—often using machine learning. 

Reputation-based detection evaluates threats based on known credibility scores. Some IDS solutions are 

equipped with automated response features, effectively functioning as IPS by blocking suspicious activity 

in real time. Additionally, IDS can be enhanced with tools like honeypots, which lure and analyze 

malicious traffic for deeper insight into attacker behavior. 

Wentao Zhao et al [1] Proposed an approach that addresses the clustering issue in network traffic data and 

utilizes a genetic (hereditary) algorithm to optimize the clustering strategy. This optimized clustering 

enhances the ability to group similar traffic patterns, allowing for more accurate identification of malicious 

behavior. Based on the optimized results applied to the test data, various categories are formed to represent 

the relationship between different types of network traffic and corresponding attack volumes. From these 

clusters, several predictive sub-models are developed, focusing primarily on DoS attacks. Furthermore, 

using the Bayesian method, discrete probability calculations are performed for each sub-model, which 

leads to the construction of a discrete probability distribution model aimed at effectively predicting DoS 

attack patterns. 

Xiaoyong et al [2] proposed study highlights the rapid advancements and notable achievements of deep 

learning in various applications, especially its growing use in safety-critical environments. However, it 

also addresses a key vulnerability—deep neural networks (DNNs) are susceptible to carefully crafted 

inputs known as adversarial examples. These adversarial perturbations are often invisible to humans but 

can easily mislead DNNs during testing or deployment. This vulnerability poses a serious threat to the 

reliable use of DNNs in critical systems. As a result, adversarial attacks and corresponding defense 

strategies have gained significant research interest. The study reviews recent findings on adversarial 

examples for DNNs, summarizes the commonly used generation techniques, and proposes a taxonomy for 

classifying these methods. Based on this taxonomy, it explores various applications of adversarial inputs 

and further discusses effective countermeasures. Additionally, the study identifies three major challenges 

related to adversarial examples and discusses potential solutions for each. 

Preetish Ranjan et al [3] provides a focused approach to social network analysis as an essential tool for 

observing and understanding community behavior within society. In the vast and complex networks 
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created through internet or telecommunication technologies, predicting or identifying socio-technical 

attacks is often a difficult task. This complexity opens up opportunities to explore different strategies, 

concepts, and algorithms aimed at detecting such communities based on patterns, structures, properties, 

and trends in their connections. The study seeks to uncover hidden insights in large-scale social networks 

by compressing them into smaller segments using the Apriori algorithm. These segments are then analyzed 

using the Viterbi algorithm to predict the most likely communication patterns. If the predicted pattern 

aligns with known behaviors of offenders, terrorists, or criminals, it can help in generating early alerts, 

potentially preventing criminal activities. 

Seraj Fayyad et al [4] Provides a real-time prediction methodology designed to forecast potential attack 

steps and scenarios within network environments. Intrusion Detection Systems (IDS) generate large 

amounts of data that capture records of past malicious activities, which are stored in IDS databases and 

used as a valuable resource for enhancing network security. In addition to IDS data, the study incorporates 

attack graphs to support the prediction of future attacker behavior. The proposed method leverages both 

historical attack data and structural information from attack graphs to anticipate the likely next actions of 

an intruder. Unlike traditional approaches that rely heavily on searching large sets of predefined attack 

plans, this methodology operates with low computational cost and enables parallel prediction of multiple 

ongoing attack scenarios, making it highly efficient and practical for real-time threat detection. 

Shone et al. [5] proposed a novel deep learning framework for intrusion detection that effectively combines 

unsupervised deep autoencoders with supervised classification to enhance the accuracy and efficiency of 

network attack detection. The framework uses autoencoders to perform dimensionality reduction and 

feature extraction on high-dimensional network traffic data, helping to preserve the essential 

characteristics of attack patterns while reducing noise and redundancy. This compressed representation is 

then passed through a supervised classifier to identify and categorize various attack types. Their approach 

was evaluated on benchmark datasets like KDD Cup 99, and the results demonstrated that the hybrid 

model outperformed traditional machine learning models in detecting known and unknown threats. This 

method is particularly effective in identifying DoS and probe attacks, showcasing robustness against false 

positives and computational efficiency. By reducing the reliance on handcrafted features and predefined 

rules, this framework aligns with real-time security requirements in complex and dynamic network 

environments. The study provides a solid foundation for developing adaptive and scalable intrusion 

detection systems using deep learning techniques. Its relevance to modern cybersecurity challenges makes 

it a significant contribution to the field of network traffic analysis and supervised learning for attack 

classification. 

Revathi et al. [6] Proposed a supervised learning-based intrusion detection model using Decision Tree 

(J48) and Random Forest classifiers to classify different types of network attacks effectively. Their study 

focused on evaluating the NSL-KDD dataset to identify DoS, R2L, U2R, and probe attacks by applying 

preprocessing techniques like normalization and feature ranking. The classifiers were trained on selected 

features to reduce dimensionality and computational overhead. Among the tested models, Random Forest 

demonstrated higher accuracy, while Decision Tree offered better interpretability for practical 

applications. The research highlights that feature selection significantly enhances classification 

performance, particularly in large-scale traffic datasets. Their model achieved over 90% accuracy in 

detecting DoS and probe attacks and demonstrated resilience against class imbalance issues. This work 

provides a foundational basis for real-time network intrusion detection systems by focusing on 

lightweight, efficient, and explainable models suitable for operational environments. The authors 
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emphasize the importance of selecting optimal classifier parameters and understanding traffic patterns for 

model generalization. Their contribution is vital for designing intrusion detection architectures that are 

scalable and capable of handling dynamic network traffic, offering valuable insights for integrating 

machine learning in cybersecurity frameworks. 

Tavallaee et al. [7] Provides a refined dataset called NSL-KDD, developed to overcome the limitations of 

the original KDD Cup 99 dataset, which was known for its redundancy and bias. The authors proposed 

enhancements that eliminate duplicate records, balance class distribution, and introduce a better testing 

set to improve the evaluation of intrusion detection models. This work also introduces a comparative 

analysis of multiple supervised learning algorithms, including Naive Bayes, SVM, and Decision Trees, 

demonstrating how the improved dataset helps in producing more realistic performance metrics. Their 

experiments showed that classifiers performed significantly better on NSL-KDD, with reduced overfitting 

and more stable precision/recall scores. The study emphasizes the importance of high-quality, well-

structured datasets in building effective IDS models. By eliminating irrelevant and redundant entries, 

NSL-KDD supports accurate model training, generalization, and reproducibility of results across various 

ML algorithms. This contribution is particularly valuable for researchers developing and benchmarking 

intrusion detection systems, ensuring fair comparison and improved model validation. The paper provides 

a solid base for future work in supervised learning-based attack detection and enhances the reliability of 

cybersecurity solutions by addressing data-centric limitations in existing datasets. 

Kim et al. [8] Proposed an intrusion detection framework using Support Vector Machine (SVM) to detect 

various types of attacks in real-time network environments. The authors focused on optimizing SVM 

parameters through grid search and cross-validation, enhancing the model’s ability to detect complex and 

evolving threats. Using packet-level features extracted from TCP/IP headers, the study aimed to reduce 

false positives and improve generalization. Experimental validation on the KDD dataset revealed that the 

SVM model achieved high precision, particularly in identifying DoS and U2R attacks. The framework 

also incorporated feature scaling and dimensionality reduction to improve training efficiency and model 

responsiveness. Unlike traditional rule-based IDS systems, this machine learning approach adapts to new 

attack vectors, offering robustness and scalability for deployment in large-scale networks. The research 

underscores the value of SVMs in handling non-linear classification problems often encountered in 

cybersecurity. Their contribution lies in demonstrating that supervised learning techniques, when fine-

tuned with proper preprocessing, can outperform static detection systems. This approach is highly relevant 

for modern IDS solutions where timely and accurate detection of diverse attack types is critical to 

maintaining secure network environments. 

Vinayakumar et al. [9] Provides a deep learning-based intrusion detection system combining 

Convolutional Neural Networks (CNN) with traditional supervised models to improve classification 

accuracy in detecting various cyber attacks. Their model was tested on the NSL-KDD and UNSW-NB15 

datasets and was designed to capture spatial hierarchies in network traffic features. The CNN layers 

extracted high-level patterns, which were then fed into a fully connected layer for final classification. The 

study demonstrated that hybrid deep-supervised learning models outperform conventional machine 

learning algorithms in detecting complex and stealthy attacks, especially DoS and botnet-based threats. 

The approach reduces manual feature engineering and adapts well to different network environments. 

Furthermore, the model achieved over 98% accuracy and low false alarm rates, making it suitable for real-

time monitoring systems. This work highlights the potential of combining deep learning with supervised 

techniques to develop adaptive and robust intrusion detection frameworks. It provides an efficient solution 
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to modern cybersecurity challenges by learning meaningful feature representations directly from raw 

network traffic, reducing reliance on domain-specific feature design and enhancing detection capabilities 

in dynamic, data-intensive environments. 

Shafi et al. [10] Proposed a comparative analysis of supervised machine learning algorithms for 

cyberattack detection in network traffic using the CICIDS2017 dataset. Their study assessed classifiers 

such as Logistic Regression, Random Forest, and Gradient Boosting to evaluate their performance across 

multiple attack types including DDoS, brute force, and infiltration attacks. The research involved 

preprocessing steps like one-hot encoding, standardization, and feature correlation to optimize model 

input. Random Forest emerged as the most reliable model, offering a balance of high accuracy, fast 

inference time, and strong generalization capabilities. The study also addressed issues like class imbalance 

and overfitting through stratified sampling and cross-validation. Their findings support the idea that 

selecting the right algorithm and preprocessing strategy significantly impacts the performance of intrusion 

detection systems. This paper contributes to the cybersecurity field by offering practical insights into how 

supervised learning algorithms perform under realistic network traffic conditions. It sets a benchmark for 

researchers and developers aiming to design efficient IDS models that are deployable in real-world 

scenarios, with a focus on predictive accuracy and scalability. 

 

CHAPTER 3 

PROJECT DESCRIPTION 

3.1 EXISTING SYSTEM 

The application of invariants in securing Cyber-Physical Systems (CPS) has gained considerable interest 

due to their effectiveness in both detecting and preventing cyberattacks. An invariant refers to a condition 

or property—typically formulated using system design parameters and Boolean logic—that consistently 

holds true during normal system operation. These invariants can be derived either from operational data 

(data-driven) or from system specifications and design documents (design-driven). Both methods have 

shown promise in safeguarding CPS environments. While data-driven invariant generation can be 

automated, design-driven approaches often require significant manual effort. This paper explores the 

limitations of data-driven invariants by showcasing adversarial attacks that can bypass them. To address 

these vulnerabilities, the authors introduce a hybrid strategy that incorporates design-driven invariants to 

strengthen detection mechanisms. Experimental validation is conducted using a real-world water treatment 

testbed, demonstrating that the proposed method enhances detection accuracy and reduces false positives 

in identifying cyber threats within CPS infrastructures. 

 

3.2 PROPOSED SYSTEM 

The proposed system presents a structured and intelligent method for classifying cyberattacks using 

supervised machine learning techniques. It begins by building a rich and diverse dataset that includes 

various types of cyber threats, each represented by its unique behavioral traits. Key features are extracted 

from sources such as network traffic data, system logs, and known attack signatures to form a 

comprehensive feature set. With the help of supervised learning models—such as decision trees, support 

vector machines, and neural networks—the system is trained on labeled historical data to recognize and 

categorize different forms of malicious activity. Once trained, the model is integrated into a real-time 

monitoring environment where it actively analyzes ongoing network behavior and identifies potential 

threats. The system is designed to adapt over time by incorporating newly collected data through 
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continuous retraining, ensuring its relevance as threat landscapes evolve. By enabling swift and accurate 

detection, this system strengthens cyber defense efforts, supporting faster response times and effective 

threat mitigation. 

3.2.1 ADVANTAGES 

• Conducted a comparative analysis of multiple supervised machine learning algorithms to identify the 

model with the highest accuracy for cyberattack classification. 

• Developed a user-friendly web application to make the system accessible and easy to operate. 

• Simplicity and explainability 

• R Achieved improved accuracy and performance through effective model tuning and system 

optimization. 

• Simplify implementation process 

 

3.3 FEASIBILITY STUDY 

A feasibility study is conducted to assess the viability of the project and analyze its strengths and 

weaknesses. In this context, the feasibility study is conducted across three dimensions: 

• Economic Feasibility 

• Technical Feasibility 

• Social Feasibility 

3.3.1 ECONOMIC FEASIBILITY 

The proposed system does not require expensive equipment, making it economically feasible. 

Development can be carried out using readily available software, eliminating the need for additional 

investment. 

3.3.2 TECHNICAL FEASIBILITY 

The proposed system is based entirely on a machine learning model utilizing tools such as Anaconda 

prompt, Visual Studio, Kaggle datasets, and Jupyter Notebook, all of which are freely available, ensures 

technical feasibility. The technical skills required to use these tools are practical and accessible, further 

supporting the feasibility of the project. 

3.3.3 SOCIAL FEASIBILITY 

The proposed system is based entirely on a machine learning model. Utilizing tools such as Anaconda 

prompt, Visual Studio, Kaggle datasets, and Jupyter Notebook, all of which are freely available, ensures 

technical feasibility. The technical skills required to use these tools are practical and accessible, further 

supporting the feasibility of the project. 

 

3.4 SYSTEM SPECIFICATION 

An effective system is crucial for any computational task. It's important to have the correct hardware and 

software components to ensure everything runs smoothly. From strong processors to essential software 

packages, each part helps create an efficient environment for data analysis and machine learning tasks. 

3.4.1 HARDWARE SPECIFICATION 

● Processor: Pentium IV/III 

● Ethernet connection (LAN) OR a wireless adapter (Wi-Fi) 

● Hard Drive: Minimum 80 GB; Recommended 200 GB or more 

● Memory (RAM): Minimum 2 GB; Recommended 4 GB or above 
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3.4.2 SOFTWARE SPECIFICATION 

● Operating System: Windows 

● Tools: Python, Anaconda with Jupyter Notebook, HTML 5, CSS 

 

CHAPTER 4 

PROPOSED WORK 

4.1 GENERAL ARCHITECTURE 

 
Figure 4.1: Architecture Diagram 

Figure 4.1 illustrates a machine learning-based architecture for data-driven prediction. It follows a 

structured flow from data collection and preprocessing to model training, evaluation, and output 

generation. 

 

4.2 DESIGN PHASE 

During the design phase of this project, key architectural diagrams were developed to represent system 

components, data flow, and interactions involved in cyberattack classification. Tools such as UML, use 

case, sequence, and data flow diagrams were used to visualize the machine learning pipeline, helping 

stakeholders and developers understand the system's workflow and ensure accurate implementation of 

each module. 
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4.2.1 DATA FLOW DIAGRAM 

 
Figure 4.2: Data Flow Diagram 

Figure 4.2: The diagram represents the flow of data in the cyberattack detection system. It begins with 

Source Data, which undergoes Processing and Cleaning. The refined data is then split into Training and 

Testing Datasets. Machine learning algorithms analyze the training data, leading to the selection of the 

Best Model by Accuracy, which is ultimately used for Cyberattack Detection. 

 

4.2.2 UML DIAGRAM 

 
Figure 4.3: UML Diagram 
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Figure 4.3 presents a UML diagram of the machine learning pipeline, covering data preprocessing, model 

training, and cyberattack prediction. The process begins with refining raw data by filtering noise and 

structuring features. This cleaned data is then utilized to train and fine-tune a machine learning model. 

Ultimately, the trained model predicts cyberattacks, offering crucial insights for cybersecurity 

applications. 

 

4.2.3 USE CASE DIAGRAM 

 
Figure 4.4: Use Case Diagram 

The Figure 4.4 represents a process flow diagram illustrating the key stages of a data classification system. 

It begins with data collection, followed by classification, training, and testing processes. The model is then 

built and used to predict outcomes. Users interact with the system at both the input and output stages, 

contributing data and receiving predictions. 

 

4.2.4 SEQUENCE DIAGRAM 

 
Figure 4.5: Sequence Diagram 
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Figure 4.5 presents a sequence diagram outlining the workflow of a crop prediction system using machine 

learning. The process starts with dataset dispatch, where past data is validated. Once verified, the tuning 

model detects delays and processes the information. The crop prediction module then utilizes an ML-

based method to generate reports, which are ultimately conveyed to the end-users. 

 

4.3 MODULE DESCRIPTION 

The This module ensures the dataset is clean, complete, and consistent, enabling accurate model training. 

It also applies validation techniques to evaluate model performance and guide parameter tuning. 

4.3.1 DATA PREPROCESSING 

Validation techniques in machine learning are used to get the error rate of the Machine Learning (ML) 

model, which can be considered as close to the true error rate of the dataset. If the data volume is large 

enough to be representative of the population, we may not need the validation techniques. However, in 

real-world scenarios, to work with samples of data that may not be a true representative of the population 

of given dataset. To finding the missing value, duplicate value and description of data type whether it is 

float variable or integer. The sample of data used to provide an unbiased evaluation of a model fit on the 

training dataset while tuning model hyper parameters. The evaluation becomes more biased as skill on the 

validation dataset is incorporated into the model configuration. The validation set is used to evaluate a 

given model, but this is for frequent evaluation. It as machine learning engineers use this data to fine-tune 

the model hyper parameters.  Data collection, data analysis, and the process of addressing data content, 

quality, and structure can add up to a time-consuming to-do list. During the process of data identification, 

it helps to understand our data and its properties; this knowledge was used to select an appropriate 

algorithm for model building.. A number of different data cleaning tasks using Python’s Pandas library 

and specifically, it focus on probably the biggest data cleaning task, missing values and it able 

to more quickly clean data. It wants to spend less time cleaning data, and more time exploring and 

modeling. Some of these sources are just simple random mistakes. Other times, there can be a deeper 

reason why data is missing. It’s important to understand these different types of missing data from a 

statistics point of view. The type of missing data will influence how to deal with filling in the missing 

values and to detect missing values, and do some basic imputation and detailed statistical approach 

for dealing with missing data. 

4.3.2 DATA VISUALIZATION 

Data visualization is an important skill in applied statistics and machine learning. Statistics does indeed 

focus on quantitative descriptions and estimations of data. Data visualization provides an important suite 

of tools for gaining a qualitative understanding. This can be helpful when exploring and getting to know 

a dataset and can help with identifying patterns, corrupt data, outliers, and much more. With a little domain 

knowledge, data visualizations can be used to express and demonstrate key relationships in plots and charts 

that are more visceral and stakeholders than measures of association or significance. Data visualization 

and exploratory data analysis are whole fields themselves and it will recommend a deeper dive into some 

the books mentioned at the end. Sometimes data does not make sense until it can look at in a visual form, 

such as with charts and plots. Being able to quickly visualize of data samples and others is an important 

skill both in applied statistics and in applied machine learning. 

4.3.3 ALGORITHM IMPLEMENTATION 

It is important to compare the performance of multiple different machine learning algorithms consistently 

and it will discover to create a test harness to compare multiple different machine learning algorithms in 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250343887 Volume 7, Issue 3, May-June 2025 13 

 

Python . It can use this test harness as a template on our own machine learning problems and add more 

and different algorithms to compare. Each model will have different performance characteristics. Using 

resampling methods like cross validation, we can get an estimate for how accurate each model may be on 

unseen data. It needs to be able to use these estimates to choose one or two best models from the suite of 

models that we have created. When have a new dataset, it is a good idea to visualize the data using different 

techniques in order to look at the data from different perspectives. The same idea applies to model 

selection. We have used a number of different ways of looking at the estimated accuracy of our machine 

learning algorithms in order to choose the one or two to finalize. A way to do this is to use different 

visualization methods to show the average accuracy, variance and other properties of the distribution of 

model accuracies. 

The key to a fair comparison of machine learning algorithms is ensuring that each algorithm is evaluated 

in the same way on the same data and it can achieve this by forcing each algorithm to be evaluated on a 

consistent test harness. 

Performance Metrics to calculate: 

False Positives (FP): A person who will pay predicted as defaulter. When actual class is no and predicted 

class is yes. E.g. if actual class says this passenger did not survive but predicted class tells us that this 

passenger will survive. 

False Negatives (FN): A person who default predicted as payer. When actual class is yes but predicted 

class in no. E.g. if actual class value indicates that this passenger survived and predicted class tells us that 

passenger will die. 

True Positives (TP): A person who will not pay predicted as defaulter. These are the correctly predicted 

positive values which means that the value of actual class is yes and the value of predicted class is also 

yes. E.g. if actual class value indicates that this passenger survived and predicted class tells us the same 

thing. 

True Negatives (TN): A person who default predicted as payer. These are the correctly predicted negative 

values which means that the value of actual class is no and value of predicted class is also no. E.g. if actual 

class says this passenger did not survive and predicted class tells us the same thing. 

True Positive Rate(TPR) = TP / (TP + FN) 

False Positive rate(FPR) = FP / (FP + TN) 

Accuracy: The Proportion of the total number of predictions that is correct otherwise overall how often 

the model predicts correctly defaulters and non-defaulters. 

Accuracy calculation: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Accuracy is the most intuitive performance measure and it is simply a ratio of correctly predicted 

observation to the total observations. One may think that, if we have high accuracy then our model is best. 

Yes, accuracy is a great measure but only when we have symmetric datasets where values of false positive 

and false negatives are almost same. 

Precision: The proportion of positive predictions that are actually correct. 

Precision = TP / (TP + FP) 

Precision is the ratio of correctly predicted positive observations to the total predicted positive 

observations. The question that this metric answer is of all passengers that labelled as survived, how many 

actually survived? High precision relates to the low false positive rate. We have got 0.788 precision which 

is pretty good. 
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Recall: The proportion of positive observed values correctly predicted. (The proportion of actual defaulters 

that the model will correctly predict) 

Recall = TP / (TP + FN) 

Recall (Sensitivity) - Recall is the ratio of correctly predicted positive observations to the all observations 

in actual class - yes. 

F1 Score is the weighted average of Precision and Recall. Therefore, this score takes both false positives 

and false negatives into account. Intuitively it is not as easy to understand as accuracy, but F1 is usually 

more useful than accuracy, especially if we have an uneven class distribution. Accuracy works best if false 

positives and false negatives have similar cost. If the cost of false positives and false negatives are very 

different, it’s better to look at both Precision and Recall. 

General Formula: 

F- Measure = 2TP / (2TP + FP + FN) 

F1-Score Formula: 

F1 Score = 2*(Recall * Precision) / (Recall + Precision) 

The below 3 different algorithms are compared: 

• Adaboost classifier 

• Catboost classifier 

• Naïve Bayes 

Adaboost Classifier: 

An AdaBoost classifier is a meta-estimator that begins by fitting a classifier on the original dataset and 

then fits additional copies of the classifier on the same dataset but where the weights of incorrectly 

classified instances are adjusted such that subsequent classifiers focus more on difficult cases. 

AdaBoost can be used to boost the performance of any machine learning algorithm. It is best used with 

weak learners. These are models that achieve accuracy just above random chance on a classification 

problem. The most suited and therefore most common algorithm used with AdaBoost are decision trees 

with one level. How does the AdaBoost algorithm work explain? 

It works on the principle of learners growing sequentially. Except for the first, each subsequent learner is 

grown from previously grown learners. In simple words, weak learners are converted into strong ones. 

The AdaBoost algorithm works on the same principle as boosting with a slight difference. 

 
Catboost Algorithm: 

CatCatBoost is a gradient boosting algorithm designed for supervised machine learning tasks, particularly 

for classification and regression problems. It is known for its high accuracy, efficient handling of 
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categorical features, and robustness to overfitting. 

Gradient Boosting Ensemble: CatBoost is an ensemble algorithm that combines multiple decision trees 

into a powerful model. It belongs to the gradient boosting family, which sequentially adds decision trees 

to the model, with each tree trying to correct the errors made by the previous ones. 

Categorical Feature Handling: One of CatBoost's standout features is its ability to efficiently handle 

categorical features without requiring extensive preprocessing. It uses a technique called "ordered 

boosting," which assigns a numerical value to each category based on the target variable's statistics. This 

allows CatBoost to naturally incorporate categorical information during training. 

Tree Construction: CatBoost constructs decision trees in a depth-first manner. It selects the best split points 

for each tree node by optimizing a loss function that measures the prediction error. The algorithm also 

employs techniques like leaf-wise splits and the use of oblivious trees to improve tree construction 

efficiency. 

Regularization: CatBoost includes built-in regularization techniques to prevent overfitting. It uses L2 

regularization on leaf values and feature combinations to control model complexity. 

Learning Rate Shrinkage: To improve the overall stability and generalization of the model, CatBoost 

incorporates a learning rate shrinkage strategy. It reduces the contribution of each new tree to the 

ensemble, making the training process more controlled and less prone to overfitting. 

Handling Imbalanced Data: CatBoost provides options for handling imbalanced datasets by adjusting class 

weights or using custom loss functions, making it suitable for tasks with unequal class distributions. 

Early Stopping: To prevent overfitting, CatBoost offers early stopping based on a holdout validation 

dataset. Training stops when the validation error starts to increase, indicating that further iterations may 

lead to overfitting. 

Prediction: Once the model is trained, CatBoost can be used for making predictions. For classification 

tasks, it provides class probabilities or class labels based on the majority class of the trees' leaf nodes. 

Hyperparameter Tuning: CatBoost includes a range of hyperparameters that can be fine-tuned for optimal 

performance, including tree depth, learning rate, and regularization strength. 

Scalability: CatBoost is designed for efficiency and can handle large datasets and complex models. It can 

be parallelized to leverage multiple CPU cores for faster training. 

In summary, CatBoost is a powerful gradient boosting algorithm known for its ability to handle categorical 

features efficiently, its built-in regularization techniques, and its high accuracy in various machine learning 

tasks. It is a valuable tool for data scientists and practitioners working on classification and regression 

problems, particularly when dealing with complex and real-world datasets. 
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Naïve Bayes: 

Naive Bayes is a probabilistic classification algorithm based on Bayes' theorem, which is used for solving 

classification and prediction problems. Despite its simplicity and certain strong assumptions (hence 

"naive"), it often performs remarkably well in various applications, such as text classification, spam 

detection, sentiment analysis, and more. Here's an explanation of how the Naive Bayes algorithm works: 

Bayes' Theorem: At the core of the Naive Bayes algorithm is Bayes' theorem, which is a fundamental 

probability theorem. It relates the conditional probability of an event A given an event B to the conditional 

probability of event B given event A: 

In the context of classification, we can think of: 

A as the class label we want to predict. 

B as the features or attributes of the data. 

Naive Assumption: The "naive" part of Naive Bayes comes from the assumption that the features are 

conditionally independent, given the class label. In other words, the algorithm assumes that each feature 

contributes independently to the probability of an instance belonging to a particular class. This simplifies 

the calculation and makes the algorithm computationally efficient. 

Training: To train a Naive Bayes classifier, we have labeled data where both the class labels and the 

features are known. The algorithm calculates two sets of probabilities: 

Class Probabilities (Prior Probabilities): These represent the probability of each class occurring in the 

dataset. They are estimated by counting the frequency of each class in the training data. 

Conditional Feature Probabilities (Likelihoods): For each feature and each class, Naive Bayes calculates 

the probability of that feature occurring given the class. These probabilities are estimated based on the 

training data. 

Prediction: When given a new data point with features but without a class label, Naive Bayes calculates 

the probability of the data point belonging to each class using Bayes' theorem. The class with the highest 

conditional probability is assigned as the predicted class label.
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CHAPTER 5 

IMPLEMENTATION AND TESTING 

5.1 INPUT AND OUTPUT 

5.1.1 NORMAL TRAFFIC INPUT FROM USER 

 
Figure 5.1: Normal traffic data from user 

Figure 5.1 shows the sample input parameters representing normal network traffic. The data includes 

standard flow metrics such as balanced forward and backward packet counts, stable flow duration, and 

average packet lengths within expected ranges. All flag indicators like SYN, ECE, and others are zero, 

showing there's no unusual handshake or malicious signaling. 

 

5.1.2    OUTPUT FOR THE NORMAL TRAFFIC DATA 

 
FIGURE 5.2  Output for the Normal Traffic Data 

Figure 5.2 shows the output classification result for the normal network traffic input. The system 

successfully identified the traffic as "Normal," indicating that no suspicious or malicious activity was 

detected in the analyzed data. The message "Don't Worry, You are safe" is displayed, providing a user-

friendly reassurance about the safety of the network. This output confirms that the model is functioning 
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correctly in distinguishing benign traffic patterns from potential threats. 

 

5.1.3   MALICIOUS TRAFFIC INPUT FROM USER 

 
Figure 5.3 Malicious traffic data from user 

Figure 5.3 shows the input parameters representing attack traffic, which are noticeably different from 

normal traffic behavior. The total number of forward and backward packets is very low, yet the flow 

packets per second is unusually high, indicating a sudden burst of data — a common characteristic of 

denial-of-service or other similar attacks. The presence of a SYN flag count suggests an attempt to initiate 

a connection, which is often exploited in SYN flood attacks. Additionally, the down/up ratio appears 

abnormally high, pointing to an imbalanced data flow that typically occurs during malicious activity. 

These indicators collectively help the model identify suspicious or harmful traffic patterns. 

 

5.1.4  OUTPUT FOR THE MALICIOUS TRAFFIC DATA 

 
Figure 5.4 OUTPUT FOR THE MALICIOUS TRAFFIC DATA 
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Figure 5.4 displays the output result for a malicious network traffic input. The system correctly detected 

the activity as a Port_Scan attack, which is a reconnaissance technique used by attackers to identify open 

ports and potential vulnerabilities in a network. The interface provides a brief explanation of what a port 

scan is and suggests prevention measures, such as using firewalls and intrusion detection systems. This 

output demonstrates the model’s ability to accurately classify and provide information on cyber threats in 

real time. 

 

5.2 TESTING 

Software testing is a process of evaluation that allows a software application to function as intended. It 

includes executing a piece of software under various conditions with the objective of identifying bugs, 

errors, or performance problems. Testing has emerged as an important need in order to assure quality, 

reliability, and security of software products by verifying features against requirements; it entails diverse 

types of testing, including unit testing, integration testing and functional testing 

5.2.1 TYPES OF TESTING 

5.2.2 UNIT TESTING 

Unit testing is a software testing method where the units of source code is tested to check the efficiency 

and correctness of the program 

 
 

TEST RESULT 

• The unit test Successfully confirmed that input data is processed into the correct format (numerical 

and scaled) before model prediction. 

• Ensured that model outputs either "normal" or specific attack labels without raising exceptions. 

• Verified that individual utility functions (like label decoding and reshaping) worked as expected when 

tested in isolation. 
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5.2.3 Integration Testing 

Integration testing is a software testing procedure where individual units or components of a system are  

combined and tested as a group to identify issues in their interactions. Its primary aim focuses on 

guaranteeing the correctness of interaction of modules that have already been integrated. 

 
 

TEST RESULT 

• The Functional test Confirmed that models train correctly on the provided sample datasets without 

errors or crashes. 

• Verified that sample inputs from the frontend passed correctly through the model and gave 

interpretable outputs. 

• Repeated predictions produced consistent results, confirming stable model behavior on fixed test 

inputs. 

5.2.4 Functional Testing 

Functional testing is that process in the software testing that verifies the system functionalities versus 

specified requirements by testing every function of the software application. Instead, it focuses on 

verifying if the application behaves in the way that is expected and gives the correct output for a given 

input irrespective of the internal structure of its code. 
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Test Result 

• Tested full pipeline from data preprocessing → model loading → prediction → label decoding all 

worked smoothly. 

• Checked if models like GNB, ABC, and CBC integrated without conflict with the shared preprocessing 

and prediction interfaces. 

• Verified that the pipeline handled user-submitted JSON-formatted traffic data and returned detailed, 

readable results. 

 

CHAPTER 6 

RESULTS AND DISCUSSIONS 

6.1 EFFICIENCY OF THE PROPOSED SYSTEM 

The proposed system introduces a data-driven approach using an encoder-decoder architecture to enhance 

cyberattack detection in Cyber-Physical Systems (CPS). By leveraging autoencoders, the system learns to 

identify patterns and reconstruct normal operational data, enabling it to flag deviations indicative of 

potential threats. This unsupervised learning approach eliminates the need for labeled datasets, 

significantly reducing manual effort and enhancing adaptability. Unlike traditional invariant-based 

methods, which may struggle against adversarial inputs or require extensive domain knowledge, this 

model is capable of autonomously detecting anomalies based on reconstruction errors. The system 

currently achieves an accuracy of approximately 40%, with room for optimization through refined training 

and tuning. Its efficiency in handling image-based data and ability to generalize across different domains 

make it a promising alternative or complement to existing invariant-based strategies, especially in 

environments with evolving threat landscapes. 
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Table 6.1 Results 

 

6.2 COMPARISON OF EXISTING AND PROPOSED SYSTEM 

The existing system focuses on the use of invariants—logical rules derived from design parameters or 

operational data—to detect and prevent cyberattacks in Cyber-Physical Systems (CPS). While design-

driven invariants are accurate, they demand significant manual effort and system-specific knowledge. 

Data-driven invariants offer automation but are susceptible to adversarial manipulation and may result in 

false positives. In contrast, the proposed system introduces a more flexible and scalable data-centric 

approach that minimizes manual intervention and adapts more easily to varying datasets. It is capable of 

detecting anomalies based on learned patterns rather than predefined rules, reducing the dependency on 

fixed logic. Additionally, the system is versatile and can be extended to various domains with minimal 

reconfiguration, providing faster deployment and better adaptability in dynamic CPS environments. 

 

 
TABLE 6.2 COMPARISON OF THE EXISTING AND PROPOSED SYSTEM 

 

CHAPTER 7 

CONCLUSION AND FUTURE ENHANCEMENTS 

7.1 CONCLUSION 

The analytical process commenced with thorough data cleaning and preprocessing to ensure the dataset 

was ready for analysis. Missing values were identified and appropriately handled to maintain data 

integrity. Following this, an in-depth exploratory data analysis (EDA) was performed to uncover patterns, 

correlations, and insights within the data. Various machine learning models were then developed and 

evaluated based on their performance metrics. The model that achieved the highest accuracy on the public 

test set was selected for deployment. This chosen model is integrated into the application to effectively 

detect and classify different types of cyberattacks. 
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7.2 FUTURE ENHANCEMENTS 

Accessibility, scalability, and performance. Additionally, efforts will be directed toward optimizing the 

system for integration into IoT environments, allowing for real-time cyberattack detection across 

interconnected smart devices. This will involve fine-tuning the model for low-latency response, efficient 

resource usage, and adaptability to various edge computing scenarios. By extending the model's 

functionality in these directions, the system aims to deliver practical, high-impact solutions in the field of 

cybersecurity. 

 

7.3 RESULTS: 

 
Figure 7.1: Prediction And Input Parameters. 

 

 
Figure 7.2: Model Prediction and Cyber Attack Classification 
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CHAPTER 8 

SOURCE CODE & POSTER PRESENTATION 

8.1 SAMPLE CODE 

DATA PREPROCESSING AND DATA CLEANING 

# Import the necessary libraries. 

import pandas as pd 

import numpy as np 

# Avoid unnecessary warnings, (EX: software updates, version mismatch, and so on.) 

import warnings 

warnings.filterwarnings('ignore') 

# Load the datasets 

df=pd.read_csv('CYBER.csv') 

# Check the top5 values 

df.head() 

# Check the bottom five values. 

df.tail() 

# Check the dimension of our datasets 

df.shape 

# Check the dataset size 

df.size 

# Check the columns of dataset 

df.columns 

# To know the information of our datsets 

df.info() 

# Check the unique columns of our specific column 

df['Label'].unique() 

# Transform the columns value(ex: int to str, str to int) for classification purpose. 

from sklearn.preprocessing import LabelEncoder 

le = LabelEncoder() 

var = ['Label'] 

for i in var: 

df[i] = le.fit_transform(df[i]).astype(int) 

# Check the value is null or notnull 

df.isnull().head() 

# Remove the null value 

df = df.dropna() 

# Describe the datasets into stastical point of view 

df.describe() 

# Check the relation between each individual columns 

df.corr().head() 

# Check the events for specific columns 

pd.crosstab(df["'Tot Fwd Pkts'"], df["'Tot Bwd Pkts'"]).head() 

# Ascending the value of specific columns 
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df.groupby(["'Flow Byts/s'","'Pkt Len Std'"]).groups 

# Check the value counts for specific columns 

df["Label"].value_counts() 

# Check the specific column catagorical distribution 

pd.Categorical(df["'Idle Min'"]).describe() 

# Check if the value is duplicated or not 

df.duplicated() 

# Calculate the total number of duplicated values 

sum(df.duplicated()) 

# Remove the duplicate values 

df=df.drop_duplicates() 

# Calculate the total number of duplicated values 

sum(df.duplicated()) 

 

DATA VISUALIZATION AND DATA ANALYSIS 

# Import the necessary libraries. 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

# Avoid unnecessary warnings, (EX: software updates, version mismatch, and so on.) 

 

df=pd.read_csv('CYBER.csv') 

# Check the top5 values 

df.head() 

# Remove the null value 

df = df.dropna() 

# Remove the duplicate values 

df=df.drop_duplicates() 

# Transform the columns value(ex: int to str, str to int) for classification purpose. 

from sklearn.preprocessing import LabelEncoder 

le = LabelEncoder() 

 

var = ['Label'] 

 

for i in var: 

df[i] = le.fit_transform(df[i]).astype(int) 

# Check the data is balanced or imbalanced so that's why we use Countplot. 

plt.figure(figsize=(12,7)) 

sns.countplot(x='Label',data=df) 

# Plot a Histogram 

plt.figure(figsize=(15,5)) 
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plt.subplot(1,2,1) 

plt.hist(df["'Flow Duration'"],color='red') 

 

plt.subplot(1,2,2) 

plt.hist(df["'Active Std'"],color='blue') 

# Check how many columns are in datasets 

df.columns 

# Plot a Histogram. 

df.hist(figsize=(15,55), color='green') 

plt.show() 

# Plot a Histogram 

df["'Pkt Len Mean'"].hist(figsize=(10,5),color='yellow',bins=25) 

# Check the outliers our datasets. 

plt.boxplot(df["'Pkt Size Avg'"]) 

# Plot a density plot 

df["'Pkt Len Mean'"].plot(kind='density') 

# Plot a distance plot 

sns.displot(df["'Bwd Pkt Len Mean'"], color='purple') 

# barplot, boxenplot, boxplot, countplot, displot, distplot, ecdfplot, histplot, kdeplot, pointplot, violinplot, 

stripplot 

# Plot a distance plot. 

sns.displot(df["'Pkt Len Mean'"], color='coral') # residplot, scatterplot 

# Plot a head map for co relationships for each columns. 

fig, ax = plt.subplots(figsize=(20,15)) 

sns.heatmap(df.corr(),annot = True, fmt='0.2%',cmap = 'autumn',ax=ax) 

# Plot a Piechart 

def plot(df, variable): 

dataframe_pie = df[variable].value_counts() 

ax = dataframe_pie.plot.pie(figsize=(9,9), autopct='%1.2f%%', fontsize = 10) 

ax.set_title(variable + ' \n', fontsize = 10) 

return np.round(dataframe_pie/df.shape[0]*100,2) 

 

plot(df, 'Label') 

 

GaussianNB CLASSIFIER ALGORITHEM 

# Import the necessary libraries. 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

# Avoid unnecessary warnings, (EX: software updates, version mismatch, and so on.) 

import warnings 

warnings.filterwarnings('ignore') 
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# Load the datasets 

df=pd.read_csv('CYBER.csv') 

# Check the top5 values 

df.head() 

del df["'TotLen Fwd Pkts'"] 

del df["'TotLen Bwd Pkts'"] 

del df["'Fwd Pkt Len Max'"] 

del df["'Fwd Pkt Len Min'"] 

del df["'Fwd Pkt Len Mean'"] 

del df["'Fwd Pkt Len Std'"] 

del df["'Bwd Pkt Len Max'"] 

del df["'Bwd Pkt Len Mean'"] 

del df["'Idle Std'"] 

del df["'Flow Byts/s'"] 

del df["'Flow IAT Std'"] 

del df["'Flow IAT Min'"] 

del df["'Pkt Len Max'"] 

del df["'Bwd Pkt Len Min'"] 

del df["'Flow IAT Max'"] 

del df["'Fwd IAT Max'"] 

del df["'Fwd IAT Min'"] 

del df["'Bwd IAT Std'"] 

del df["'Bwd IAT Max'"] 

del df["'Fwd IAT Std'"] 

del df["'Bwd IAT Min'"] 

del df["'Bwd PSH Flags'"] 

del df["'Bwd URG Flags'"] 

del df["'Pkt Len Min'"] 

del df["'Pkt Len Std'"] 

del df["'Pkt Len Var'"] 

del df["'FIN Flag Cnt'"] 

del df["'RST Flag Cnt'"] 

del df["'PSH Flag Cnt'"] 

del df["'ACK Flag Cnt'"] 

del df["'URG Flag Cnt'"] 

del df["'CWE Flag Count'"] 

# Remove the null value 

df=df.dropna() 

# Check the columns of dataset 

df.columns 

# Transform the columns value(ex: int to str, str to int) for classification purpose. 

from sklearn.preprocessing import LabelEncoder 

le = LabelEncoder() 
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var = ['Label'] 

 

for i in var: 

df[i] = le.fit_transform(df[i]).astype(int) 

# Check the top5 values 

df.head() 

# Remove the duplicate values 

df=df.drop_duplicates() 

# Split the datasets into depended and independed variable 

# X is independend variable (Input features) 

x1 = df.drop(labels='Label', axis=1) 

 

# Y is dependend variable (Target variable) 

y1 = df.loc[:,'Label'] 

# This process execute to balanced the datasets features. 

import imblearn 

from imblearn.over_sampling import RandomOverSampler 

from collections import Counter 

 

ros =RandomOverSampler(random_state=42) 

x,y=ros.fit_resample(x1,y1) 

print("OUR DATASET COUNT         : ", Counter(y1)) 

print("OVER SAMPLING DATA COUNT  : ", Counter(y)) 

# Split the datasets into two parts like trainng and testing variable. 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42, stratify=y) 

print("NUMBER OF TRAIN DATASET    : ", len(x_train)) 

print("NUMBER OF TEST DATASET      : ", len(x_test)) 

print("TOTAL NUMBER OF DATASET    : ", len(x_train)+len(x_test)) 

print("NUMBER OF TRAIN DATASET    : ", len(y_train)) 

print("NUMBER OF TEST DATASET      : ", len(y_test)) 

print("TOTAL NUMBER OF DATASET    : ", len(y_train)+len(y_test)) 

# Implement Gaussian naive bayes algorithm learning patterns 

from sklearn.naive_bayes import GaussianNB 

GNB = GaussianNB() 

# Fit is the training function for this algorithm. 

GNB.fit(x_train,y_train) 

# Predict is the test function for this algorithm 

predicted = GNB.predict(x_test) 

# Check classification report for this algorithm 

from sklearn.metrics import classification_report 

cr = classification_report(y_test,predicted) 
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print('THE CLASSIFICATION REPORT OF GAUSSIANNB CLASSIFIER:\n\n',cr) 

# Check the confusion matrix for this algorithms 

from sklearn.metrics import confusion_matrix 

cm = confusion_matrix(y_test,predicted) 

print('THE CONFUSION MATRIX SCORE OF GAUSSIANNB CLASSIFIER:\n\n\n',cm) 

# Check the cross value score of this algorithm. 

from sklearn.model_selection import cross_val_score 

accuracy = cross_val_score(GNB, x, y, scoring='accuracy') 

print('THE CROSS VALIDATION TEST RESULT OF ACCURACY :\n\n\n', accuracy*100) 

# Check the accuracy score of this algorithms. 

from sklearn.metrics import accuracy_score 

a = accuracy_score(y_test,predicted) 

print("THE ACCURACY SCORE OF GAUSSIANNB CLASSIFIER IS :",a*100) 

# Check the hamming loss of this algorithm. 

from sklearn.metrics import hamming_loss 

hl = hamming_loss(y_test,predicted) 

print("THE HAMMING LOSS OF GAUSSIANNB CLASSIFIER IS :",hl*100) 

# Plot a Confusion matrix for this algorithms. 

def plot_confusion_matrix(cm, title='THE CONFUSION MATRIX SCORE OF GAUSSIANNB 

CLASSIFIER\n\n', cmap=plt.cm.cool): 

plt.imshow(cm, interpolation='nearest', cmap=cmap) 

plt.title(title) 

plt.colorbar() 

 

cm1=confusion_matrix(y_test, predicted) 

print('THE CONFUSION MATRIX SCORE OF GAUSSIANNB CLASSIFIER:\n\n') 

print(cm) 

plot_confusion_matrix(cm) 

# Plot the worm plot for this model. 

import matplotlib.pyplot as plt 

df2 = pd.DataFrame() 

df2["y_test"] = y_test 

df2["predicted"] = predicted 

df2.reset_index(inplace=True) 

plt.figure(figsize=(20, 5)) 

plt.plot(df2["predicted"][:100], marker='x', linestyle='dashed', color='red') 

plt.plot(df2["y_test"][:100],  marker='o', linestyle='dashed', color='green') 

plt.show() 

 

ADABOOST CLASSIFIER ALGORITHEM 

# Import the necessary libraries. 

import pandas as pd 

import numpy as np 
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import matplotlib.pyplot as plt 

import seaborn as sns 

# Avoid unnecessary warnings, (EX: software updates, version mismatch, and so on.) 

import warnings 

warnings.filterwarnings('ignore') 

# Load the datasets 

df=pd.read_csv('CYBER.csv') 

# Check the top5 values 

df.head() 

del df["'TotLen Fwd Pkts'"] 

del df["'TotLen Bwd Pkts'"] 

del df["'Fwd Pkt Len Max'"] 

del df["'Fwd Pkt Len Min'"] 

del df["'Fwd Pkt Len Mean'"] 

del df["'Fwd Pkt Len Std'"] 

del df["'Bwd Pkt Len Max'"] 

del df["'Bwd Pkt Len Mean'"] 

del df["'Idle Std'"] 

del df["'Flow Byts/s'"] 

del df["'Flow IAT Std'"] 

del df["'Flow IAT Min'"] 

del df["'Pkt Len Max'"] 

del df["'Bwd Pkt Len Min'"] 

del df["'Flow IAT Max'"] 

del df["'Fwd IAT Max'"] 

del df["'Fwd IAT Min'"] 

del df["'Bwd IAT Std'"] 

del df["'Bwd IAT Max'"] 

del df["'Fwd IAT Std'"] 

del df["'Bwd IAT Min'"] 

del df["'Bwd PSH Flags'"] 

del df["'Bwd URG Flags'"] 

del df["'Pkt Len Min'"] 

del df["'Pkt Len Std'"] 

del df["'Pkt Len Var'"] 

del df["'FIN Flag Cnt'"] 

del df["'RST Flag Cnt'"] 

del df["'PSH Flag Cnt'"] 

del df["'ACK Flag Cnt'"] 

del df["'URG Flag Cnt'"] 

del df["'CWE Flag Count'"] 

# Remove the null value 

df=df.dropna() 
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# Check the columns of dataset 

df.columns 

# Transform the columns value(ex: int to str, str to int) for classification purpose. 

from sklearn.preprocessing import LabelEncoder 

le = LabelEncoder() 

 

var = ['Label'] 

 

for i in var: 

df[i] = le.fit_transform(df[i]).astype(int) 

# Check the top5 values 

df.head() 

# Remove the duplicate values 

df=df.drop_duplicates() 

# Split the datasets into depended and independed variable 

# X is independend variable (Input features) 

x1 = df.drop(labels='Label', axis=1) 

 

# Y is dependend variable (Target variable) 

y1 = df.loc[:,'Label'] 

# This process execute to balanced the datasets features. 

import imblearn 

from imblearn.over_sampling import RandomOverSampler 

from collections import Counter 

 

ros =RandomOverSampler(random_state=42) 

x,y=ros.fit_resample(x1,y1) 

print("OUR DATASET COUNT         : ", Counter(y1)) 

print("OVER SAMPLING DATA COUNT  : ", Counter(y)) 

# Split the datasets into two parts like trainng and testing variable. 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42, stratify=y) 

print("NUMBER OF TRAIN DATASET    : ", len(x_train)) 

print("NUMBER OF TEST DATASET      : ", len(x_test)) 

print("TOTAL NUMBER OF DATASET    : ", len(x_train)+len(x_test)) 

print("NUMBER OF TRAIN DATASET    : ", len(y_train)) 

print("NUMBER OF TEST DATASET      : ", len(y_test)) 

print("TOTAL NUMBER OF DATASET    : ", len(y_train)+len(y_test)) 

# Implement Adaboost classifier algorithm learning patterns 

from sklearn.ensemble import AdaBoostClassifier 

ABC = AdaBoostClassifier() 

# Fit is the training function for this algorithm. 

ABC.fit(x_train,y_train) 
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# Predict is the test function for this algorithm 

predicted = ABC.predict(x_test) 

from sklearn.metrics import classification_report 

cr = classification_report(y_test,predicted) 

print('THE CLASSIFICATION REPORT OF ADABOOST CLASSIFIER:\n\n',cr) 

# Check the confusion matrix for this algorithms. 

from sklearn.metrics import confusion_matrix 

cm = confusion_matrix(y_test,predicted) 

print('THE CONFUSION MATRIX SCORE OF ADABOOST CLASSIFIER:\n\n\n',cm) 

# Check the cross value score of this algorithm. 

from sklearn.model_selection import cross_val_score 

accuracy = cross_val_score(ABC, x, y, scoring='accuracy') 

print('THE CROSS VALIDATION TEST RESULT OF ACCURACY :\n\n\n', accuracy*100) 

# Check the accuracy score of this algorithms. 

from sklearn.metrics import accuracy_score 

a = accuracy_score(y_test,predicted) 

print("THE ACCURACY SCORE OF ADABOOST CLASSIFIER IS :",a*100) 

# Check the hamming loss of this algorithm. 

from sklearn.metrics import hamming_loss 

hl = hamming_loss(y_test,predicted) 

print("THE HAMMING LOSS OF ADABOOST CLASSIFIER IS :",hl*100) 

# Plot a Confusion matrix for this algorithms. 

def plot_confusion_matrix(cm, title='THE CONFUSION MATRIX SCORE OF ADABOOST 

CLASSIFIER\n\n', cmap=plt.cm.cool): 

plt.imshow(cm, interpolation='nearest', cmap=cmap) 

plt.title(title) 

plt.colorbar() 

 

cm1=confusion_matrix(y_test, predicted) 

print('THE CONFUSION MATRIX SCORE OF ADABOOST CLASSIFIER:\n\n') 

print(cm) 

plot_confusion_matrix(cm) 

# Plot the worm plot for this model. 

import matplotlib.pyplot as plt 

df2 = pd.DataFrame() 

df2["y_test"] = y_test 

df2["predicted"] = predicted 

df2.reset_index(inplace=True) 

plt.figure(figsize=(20, 5)) 

plt.plot(df2["predicted"][:100], marker='x', linestyle='dashed', color='red') 

plt.plot(df2["y_test"][:100],  marker='o', linestyle='dashed', color='green') 

plt.show() 
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CAT BOOST CLASSIFIER ALGORITHEM 

# Import the necessary libraries. 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

# Avoid unnecessary warnings, (EX: software updates, version mismatch, and so on.) 

import warnings 

warnings.filterwarnings('ignore') 

# Load the datasets 

df=pd.read_csv('CYBER.csv') 

del df["'TotLen Fwd Pkts'"] 

del df["'TotLen Bwd Pkts'"] 

del df["'Fwd Pkt Len Max'"] 

del df["'Fwd Pkt Len Min'"] 

del df["'Fwd Pkt Len Mean'"] 

del df["'Fwd Pkt Len Std'"] 

del df["'Bwd Pkt Len Max'"] 

del df["'Bwd Pkt Len Mean'"] 

del df["'Idle Std'"] 

del df["'Flow Byts/s'"] 

del df["'Flow IAT Std'"] 

del df["'Flow IAT Min'"] 

del df["'Pkt Len Max'"] 

del df["'Bwd Pkt Len Min'"] 

del df["'Flow IAT Max'"] 

del df["'Fwd IAT Max'"] 

del df["'Fwd IAT Min'"] 

del df["'Bwd IAT Std'"] 

del df["'Bwd IAT Max'"] 

del df["'Fwd IAT Std'"] 

del df["'Bwd IAT Min'"] 

del df["'Bwd PSH Flags'"] 

del df["'Bwd URG Flags'"] 

del df["'Pkt Len Min'"] 

del df["'Pkt Len Std'"] 

del df["'Pkt Len Var'"] 

del df["'FIN Flag Cnt'"] 

del df["'RST Flag Cnt'"] 

del df["'PSH Flag Cnt'"] 

del df["'ACK Flag Cnt'"] 

del df["'URG Flag Cnt'"] 

del df["'CWE Flag Count'"] 
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# Check the columns of dataset 

df.columns 

# Check the top5 values 

df.head() 

# Remove the null value 

df=df.dropna() 

df['Label'].value_counts() 

# Transform the columns value(ex: int to str, str to int) for classification purpose. 

from sklearn.preprocessing import LabelEncoder 

le = LabelEncoder() 

 

var = ['Label'] 

 

for i in var: 

df[i] = le.fit_transform(df[i]).astype(int) 

df['Label'].value_counts() 

# Check the top5 values 

df.head() 

# Remove the duplicate values 

df=df.drop_duplicates() 

# Split the datasets into depended and independed variable 

# X is independend variable (Input features) 

x1 = df.drop(labels='Label', axis=1) 

 

# Y is dependend variable (Target variable) 

y1 = df.loc[:,'Label'] 

# This process execute to balanced the datasets features. 

import imblearn 

from imblearn.over_sampling import RandomOverSampler 

from collections import Counter 

 

ros =RandomOverSampler(random_state=42) 

x,y=ros.fit_resample(x1,y1) 

print("OUR DATASET COUNT         : ", Counter(y1)) 

print("OVER SAMPLING DATA COUNT  : ", Counter(y)) 

# Split the datasets into two parts like trainng and testing variable. 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42, stratify=y) 

print("NUMBER OF TRAIN DATASET    : ", len(x_train)) 

print("NUMBER OF TEST DATASET      : ", len(x_test)) 

print("TOTAL NUMBER OF DATASET    : ", len(x_train)+len(x_test)) 

print("NUMBER OF TRAIN DATASET    : ", len(y_train)) 

print("NUMBER OF TEST DATASET      : ", len(y_test)) 
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print("TOTAL NUMBER OF DATASET    : ", len(y_train)+len(y_test)) 

# Implement Catboost classifier algorithm learning patterns 

from catboost import CatBoostClassifier 

CBC = CatBoostClassifier() 

# Fit is the training function for this algorithm. 

CBC.fit(x_train,y_train) 

# Predict is the test function for this algorithm 

predicted = CBC.predict(x_test) 

# Check classification report for this algorithm 

from sklearn.metrics import classification_report 

cr = classification_report(y_test,predicted) 

print('THE CLASSIFICATION REPORT OF CAT BOOST CLASSIFIER:\n\n',cr) 

# Check the confusion matrix for this algorithms. 

from sklearn.metrics import confusion_matrix 

cm = confusion_matrix(y_test,predicted) 

print('THE CONFUSION MATRIX SCORE OF CAT BOOST CLASSIFIER:\n\n\n',cm) 

# Check the cross value score of this algorithm. 

from sklearn.model_selection import cross_val_score 

accuracy = cross_val_score(CBC, x, y, scoring='accuracy') 

print('THE CROSS VALIDATION TEST RESULT OF ACCURACY :\n\n\n', accuracy*100) 

# Check the accuracy score of this algorithms. 

from sklearn.metrics import accuracy_score 

a = accuracy_score(y_test,predicted) 

print("THE ACCURACY SCORE OF CAT BOOST CLASSIFIER IS :",a*100) 

# Check the hamming loss of this algorithm. 

from sklearn.metrics import hamming_loss 

hl = hamming_loss(y_test,predicted) 

print("THE HAMMING LOSS OF CAT BOOST CLASSIFIER IS :",hl*100) 

# Plot a Confusion matrix for this algorithms. 

def plot_confusion_matrix(cm, title='THE CONFUSION MATRIX SCORE OF CAT BOOST 

CLASSIFIER\n\n', cmap=plt.cm.cool): 

plt.imshow(cm, interpolation='nearest', cmap=cmap) 

plt.title(title) 

plt.colorbar() 

 

cm1=confusion_matrix(y_test, predicted) 

print('THE CONFUSION MATRIX SCORE OF CAT BOOST CLASSIFIER:\n\n') 

print(cm) 

plot_confusion_matrix(cm) 

# Plot the worm plot for this model. 

import matplotlib.pyplot as plt 

df2 = pd.DataFrame() 

df2["y_test"] = y_test 
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df2["predicted"] = predicted 

df2.reset_index(inplace=True) 

plt.figure(figsize=(20, 5)) 

plt.plot(df2["predicted"][:100], marker='x', linestyle='dashed', color='red') 

plt.plot(df2["y_test"][:100],  marker='o', linestyle='dashed', color='green') 

plt.show() 

# Build a model in catboosting algorithms 

import joblib 

joblib.dump(CBC, 'cyber1.pkl') 
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