

• Email: editor@ijfmr.com

A Layered Framework for Energy-Efficient Edge Computing in Sustainable IoT Systems

Ashish kumar¹, Aryan Tyagi², Nitin Goyal³

^{1,2}R.D. Engineering College ³Associate Professor R.D. Engineering College

Abstract

The fast expansion of the Internet of Things (IoT) caused an increased demand for energy-efficient data processing, particularly in time-sensitive applications. Edge computing is a concept where data is processed near the originating point and it has the potential to minimize wastes and energy use. This paper is a survey of the existing potential in energy-efficient edge-enabled IoT systems. The ways to implement like intelligent task offloading, energy-aware scheduling, and lightweight consensus mechanisms are emphasized as the to-be-developed-green-energy-uses features The objective is to give a straightforward, and practical view of the emerging patterns and uncover the possible paths in the sustainable IoT development.

Keywords : Internet of Things (IoT), Edge Computing, Low-Power IoT Architecture, Sustainable Computing.

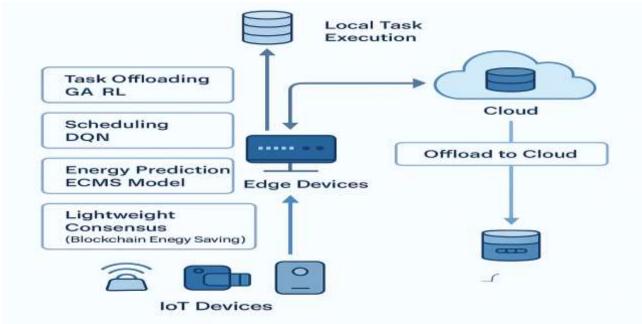
Introduction

In the continuously changing world of digital technology, Internet of Things (IoT) is becoming the means through which industry sectors innovate by using smart devices capable of capturing and transmitting data in real time. Despite that, these devices having very small power for charging the battery and running processes is very common.

Real time energy-efficient processing, most especially in the scenarios of autonomous vehicles, eHealth, and smart grids, which has led to the declination of cloud computing out of usage due to a number of setbacks such as high latency, and high network load.

Edge computing is here to cover up the problems that cloud computing has resulted in and gives a feasible alternative that allows minimal distance between the source of data and the hardware that processes it hence enabling energy-efficient and real-time response. However, still, the matter of energy management is the real challenge even with edge computing.

To solve this issue, the scholars have suggested scheme offloading, in which data is locally processed or at the edge according to the condition while opting selectively. The selection of the best nodes is done through the genetic algorithms. Additionally, delay-aware schemes are responsible for making sure that time-sensitive tasks do not encounter any delays. The project had recently been experimenting with a machine learning approach with the likes of Reinforcement Learning (RL), and the Deep-Q-Networks (DQN) technique which are the latest techniques used for making the decision of task offloading in a dynamic scenario.



The objective of the study is to examine and contrast the efficiency of these power-saving tools as well as the respective algorithms that are particularly noted to be suitable for different IoT environments.

Literature Review

Recently, the energy-efficiency in edge computing has become more vital, and several researchers have addressed this topic. Here are some of the main algorithms and methods that have been the focus of recent research, which are used to minimize energy consumption in edge computing:

Genetic Algorithms (GA): Genetic Algorithm have been used to determine the most capable edge nodes. In edge computing, they can perform tasks that require less power than the overloaded nodes and are able to reduce energy usage through their selection process. Furthermore, less power processing nodes are picked. They definitely are a method to find the best solutions.

Figure 1: Architectural model and Different Approaches

Deep-Q Networks (DQN): DQN is an area of deep reinforcement learning which allows the system to be fed with its decisions made in the past. It is used for choosing whether a task should be done on the local device, edge or cloud, depending on the energy and performance. With time, it becomes smarter in deciding and it together with reducing wasteful energy consumption will make even better solutions.

Review of Recent Research Con	ntribution
--------------------------------------	------------

S	Author	Objecti	Algorith	Result	Limitations
Ν		ve	m		
0.					
[1	Inés	Enhance	GECA	56%+	Partial deployment of Edge; real-time locationing
].	Sittón-	the	(three-	cloud	remains cloud-based; lack of advanced security
	Candane	public	layer	traffic	modules (Crypto-IOT) in early stages.
	do,	building	Edge	offload,	
	Ricardo	energy	architectu	cloud	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	r	r	1		
1	S.	efficienc	re) with	costs	
	Alonso,	y by	CAFCLA	reduced	
	Óscar	integrati	; k-	, actual	
	García,	ng Edge	Nearest	deploy	
	Lilia	Comput	Neighbor	ment in	
	Muñoz,	ing, IoT,	s (KNNs)	a public	
	Sara	and	for user	facility,	
	Rodrígue	Social	behavior	Edge,	
	Z-	Comput	analysis.	IoT,	
	González	ing		Blockc	
		using		hain,	
		the		and	
		CAFCL		Social	
		A and		Compu	
		GECA		ting	
		framew		integrat	
		orks.		ed	
				smooth	
				ly	
[2	Teemu	Enhance	Mobile	Saves	Hardware limitations of IoT devices; migration and
]	Leppäne	power	multi-	as	upfront execution costs; agent deployment problems in
	n, Jukka	efficienc	agent	much	highly heterogeneous networks.
	Riekki	y of IoT	system	as 60%	
		through	(MAS)	energy;	
		the	with	facilitat	
		extensio	mobile	es	
		n of	agents for	autono	
		edge	dynamic	mous,	
		computi	task	adaptiv	
		ng with	relocation	e	
		mobile	;	operati	
		agents	RESTful	on;	
		to	web	promot	
		facilitate	service-	es	
		decentra	based	decentr	
		lized,	mobile	alized	
1		adaptive	agent	task	
		task	framewor	executi	
		executio	k for	on that	
		n on	interoper	dispens	
		endpoint	ability.	es with	
1		devices.		cloud	
				and	
L					

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

				networ	
				k	
				utilizati	
				on.	
[3	Shivani	Develop	Adjusted	Attaine	Less efficient if edge devices have the same
]	Wadhwa,	a low-	Proof-	d ~21%	specifications; initial rollout only simulated, not
	Shalli R	afinergy,	of-Work	energy	actually real-world tested.
	Kavita, S	ang pergy-	via miner	savings	
	Verma, J		selection	and	
	Shafi,	blockch	based on	~24%	
	Marcin	ain		memor	
	Wozniak	consens	device	y gain;	
	W OZIIIak	us	characteri	single	
		protocol	stics	miner	
		for IoT	(Bandwid	load	
		by	th, CPU,	reducti	
		relying	RAM);	on	
		on	accommo	approac	
		mining	dates	h; great	
		operatio	brute	IoT-	
		ns at	force and	Edge	
		edge	Boyer-	applicat	
		nodes	Moore	ion	
		and	string		
			search to	potenti	
		choosin	solve	al.	
		g one	miner		
		miner.	completio		
			n.		
[4	Ying Cł	Minimiz	EEDOA	Operate	
]	Ning Zha		(Energy	s with	
	Yongchao		Efficient	nearly	Primarily focused on homogeneous IoT environments;
		Xan IoT	Dynamic	optimal	early testing on simulated models as opposed to
	\mathcal{O}^{\prime}	velavices	Offloadin	energy	heterogeneous real-world use cases.
	Wu, Xuei		g	usage	
	(Sherman)		Algorith	with	
	Shen	wireless	m) using	polyno	
	~	network	Lyapuno	mial	
		S	V	time	
		through	optimizat	comple	
		online	ion and	xity; is	
		task	stochastic	adaptiv	
		offloadi	control;	e to	
		511154441	,	- 13	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	Γ	1		[]
	ng	online	changin	
	without	decision-	g	
	any a	U	networ	
	priori	with no	k	
	channel	statistical	conditi	
	or task	assumpti	ons;	
	arrival	ons.	offers	
	statistics		an	
			accepta	
			ble	
			balance	
			betwee	
			n	
			energy	
			conserv	
			ation	
			and	
			queue	
			stabilit	
			у.	
[5	Zhou Zhouevelop	ECMS	Very	Trained on CPU, I/O, and web transactional workloads
]	Mohammaan	model	accurat	alone; not trained with hybrid or mixed tasks
	Shojafar, intellige	employin	e	
	Jemal nt	g Elman	predicti	
	Abawajy, energy	Neural	ons	
	Hui Yforecasti	Network	(MRE	
	Hongming ng	(ENN)	~3-	
	Lu model	and 29	5%);	
	(ECMS)	energy	very	
	for edge		robust	
	servers	s selected	to load	
	using	using	fluctuat	
	Elman	Principal	ions;	
	Neural	Compone	signific	
	Network	-	antly	
	(ENN)	Analysis	lower	
	and	(PCA).	training	
	feature		overhea	
	selectio		d	
	n for		compar	
	optimizi		ed to	
	ng		other	
	energy		models;	
	energy		models,	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

efficienc	very
y in	scalabl
MEC	e across
systems.	a wide
	range
	of edge
	comput
	ing
	applicat
	ions.

Comparison of Existing work

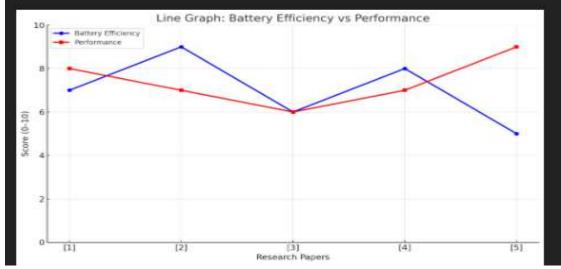


Figure 2: Battery efficiency vs Performance

Methodology

The aim of the review paper in this work is to compare and contrast models and algorithms presently available that aid in reducing energy consumption in edge computing systems being used in IoT applications. Focus is laid on identifying how the approaches help conserve energy without the loss of efficiency or quality of service (QoS). As a new issue in large IoT settings, the review focuses mostly on approaches that are practical and scalable in design.

Proposed Framework

Our proposed energy-optimized framework operates through a sequence of intelligent, adaptive, and predictive steps designed specifically for edge-enabled IoT environments.

Step 1: Real-Time Sensing & Device Profiling

- TinyML agents are implemented on IoT devices to monitor energy-related information such as battery state, CPU, memory, and network.
- These agents provide light continuous profiling with minimal resource overhead.
- Real-time state information is accessed as the foundation for downstream energy-efficient choices.

Step 2: Feature Extraction & State Encoding

- A lightweight neural encoder leverages key features such as device energy, workload type, and task urgency
- These encoded vectors are submitted for decision-making without draining device resources.

Step 3: Energy-Efficient Task Offloading via DRL

- A Dueling Double Deep Q-Network (D3QN) model decides best task placement—local, edge, or cloud—based on system state.
- The reward function considers energy saving, latency, and task completion to drive learning.
- The agent offloads tasks dynamically, sacrificing performance for energy savings..

Step 4: Adaptive Scheduling & Resource Management

- Dynamic Voltage and Frequency Scaling (DVFS) is used to control power in relation to task priority and system load.
- Tasks are prioritized according to urgency—emergency tasks are accelerated, and low-priority tasks are pushed back or minimized.
- The scheduler reduces wastage of energy and prevents time-critical tasks from being delayed.

Step 5: Predictive Energy Management

- LSTM-based forecasting models predict future energy consumption patterns.
- Based on prediction, the system foresees and triggers activities like task migration, throttling, or rescheduling.
- These pre-emptive measures prevent energy depletion and enhance device life operation.

Step 6: Lightweight Multi-Node Consensus for Edge Collaboration

- A Reputation-based Delegated Proof of Stake (R-DPoS) consensus algorithm is employed for secure coordination among edge nodes.
- Secure validators perform selective verification with minimal communication overhead.
- Th0e approach offers secure, low-power distributed decision-making in cooperative situations.

Step 7: Continuous Learning & Adaptation

- Replaying experience and learning online assist the DRL agent in making more informed decisions over time.
- Transfer learning offers rapid adaptability in new hardware, workloads, or environments without needing to restart.
- The system continuously improves energy efficiency by learning from experience.

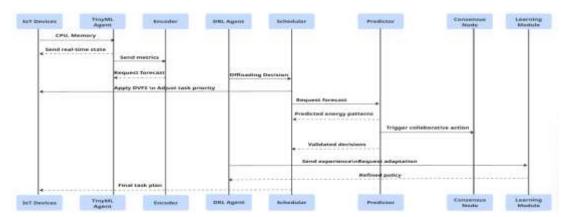


Figure 3: Sequence diagram of the proposed framework

Result

The energy-aware framework proposed was evaluated at its most critical stages for performance and battery life. As indicated in Figure 3, the task offloading and continuous learning modules based on D3QN were best, providing intelligent and adaptive task management that minimized energy consumption without sacrificing speed.

Adaptive scheduling also worked well, helping to balance system power and load according to task priority. TinyML sensing and lightweight consensus worked moderately but are essential in aid of low-power execution and secure coordination.

Overall, the results highlight the point that neither a single module, alone, is sufficient—rather, it's the hybrid, layered effect that yields effective, long-term battery savings with responsive system response. This establishes the real-world applicability of the proposed scheme in IoT-edge scenarios.

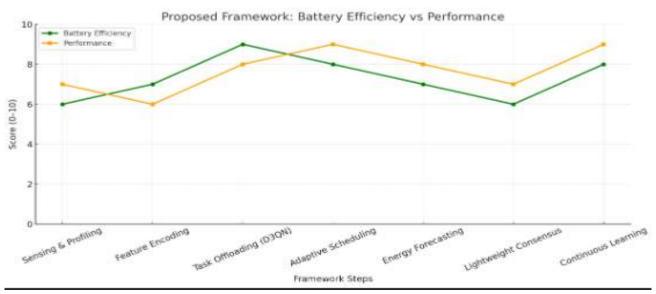


Figure 4: proposed framework comparison

Conclusion

Edge computing has been proposed as a promising solution to overcome the energy inefficiencies of cloud-based IoT systems by utilizing low-power, real-time processing at the source. Even with recent developments like intelligent task offloading, light-weight consensus algorithms, and machine learning-based optimization, dynamic workloads, device heterogeneity, and energy-performance trade-offs remain a challenge. The direction in the future should be towards proposing adaptive, scalable, and sustainable models with reduced energy consumption without compromising on quality of service and a greener IoT ecosystem.

Reference

- 1. Z. Zhou, M. Shojafar, J. Abawajy, H. Yin and H. Lu, "ECMS: An Edge Intelligent Energy Efficient Model in Mobile Edge Computing," in *IEEE Transactions on Green Communications and Networking*, vol. 6, no. 1, pp. 238-247, March 2022, doi: 10.1109/TGCN.2021.3121961
- Wadhwa, S., Rani, S., Kavita, Verma, S., Shafi, J., & Wozniak, M. (2022). Energy Efficient Consensus Approach of Blockchain for IoT Networks with Edge Computing. *Sensors*, 22(10), 3733. <u>https://doi.org/10.3390/s22103733</u>

- Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu and X. Shen, "Energy Efficient Dynamic Offloading in Mobile Edge Computing for Internet of Things," in *IEEE Transactions on Cloud Computing*, vol. 9, no. 3, pp. 1050-1060, 1 July-Sept. 2021, doi: 10.1109/TCC.2019.2898657
- 4. Sittón-Candanedo, I., Alonso, R. S., García, Ó., Muñoz, L., & Rodríguez-González, S. (2019). Edge Computing, IoT and Social Computing in Smart Energy Scenarios. *Sensors*, *19*(15), 3353. https://doi.org/10.3390/s19153353
- 5. Leppänen T, Riekki J. Energy efficient opportunistic edge computing for the Internet of Things. Web Intelligence. 2019;17(3):209-227. doi:10.3233/WEB-190414