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Abstract:  

This paper provides a detailed overview of differential cryptanalysis, with particular emphasis on its 

application to Substitution-Permutation Networks (SPNs). Differential cryptanalysis is a powerful attack 

that exploits patterns in the differences between plaintext pairs and the corresponding ciphertext pairs to 

reveal information about the secret key. The paper outlines the fundamental concepts of SPN structure, 

including the role of substitution and permutation layers, and demonstrates how differential characteristics 

can be leveraged to trace the propagation of differences through the cipher. By analysing the effect of 

these differences over multiple rounds, it becomes possible to weaken the cipher’s security and reduce the 

search space for potential key candidates. 
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INTRODUCTION 

The distinguisher of an SPN (Substitution-Permutation Network) cipher is crucial because it serves as a 

measure of the cipher’s strength and security. In cryptography, the ideal goal is for a cipher to produce 

output that is indistinguishable from a truly random permutation, ensuring that attackers cannot detect any 

patterns or weaknesses. A distinguisher, however, identifies non-random behavior in the cipher’s output, 

which could be leveraged to gain insights into the cipher’s structure or even break it. The existence of a 

distinguisher suggests that the cipher might not be as secure as intended, highlighting potential 

vulnerabilities that could be exploited in cryptographic attacks. 

In the context of SPN ciphers, where the design aims to create a strong diffusion and con-fusion of input 

data, the existence of a distinguisher indicates a flaw in the design’s ability to achieve these goals. This 

can prompt further investigation and refinement of the cipher’s structure, leading to improved versions 

that are more resistant to cryptanalysis. Understanding and addressing distinguishers is essential for 

cryptographers, as it helps ensure that the ciphers they develop can withstand sophisticated attacks and 

provide robust security in real-world applications. 

Differential cryptanalysis is a crucial technique used to distinguish and analyse ciphers by examining how 

differences in input pairs influence the resulting differences in output pairs after encryption. This method 

involves selecting specific input differences and observing how they propagate through the rounds of the 

cipher. By identifying patterns or predictable behaviors in the output differences, cryptanalysts can detect 

deviations from what would be expected in a truly random permutation. These deviations serve as 

distinguishers, indicating that the cipher may exhibit non-random characteristics that could be analysed 

further. 
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This analysis is particularly effective against certain ciphers, especially those based on Substitution-

Permutation Networks (SPNs). If a cipher shows consistent or predictable behavior when processing 

specific input differences, it suggests that the cipher might not be fully randomizing the data as intended. 

Differential cryptanalysis thus plays a key role in evaluating the security of ciphers by revealing potential 

weaknesses in their design, particularly in their ability to diffuse and obscure input data effectively. 

Understanding how differential cryptanalysis can distinguish a cipher is essential for developing and 

refining cryptographic algorithms that resist such analytical techniques. 

Grassi et al. introduced subspace trail cryptanalysis as an extension of invariant subspaces, which they 

used to develop the first five-round distinguisher for AES. Although this method is broadly applicable, it 

has so far only been used for AES and PRINCE. A key challenge hindering wider adoption of this 

technique has been the lack of a general analysis algorithm. 

In this work, we aim to provide efficient and general algorithms that enable the computation of the 

provably optimal subspace trails for any substitution-permutation cipher. 

 

LITERATURE SURVEY 

Differential Cryptanalysis of the Data Encryption Standard [8]. In this paper, a differential attack on 

DES(Data encryption System) involves examining how specific differences in input pairs affect the 

differences in the resulting ciphertexts. By analysing how these differences propagate through DES’s 

rounds, particularly through its Sboxes and Feistel function, attackers can identify patterns in the output. 

These patterns reveal deviations from random behavior, and a distinguisher can be found. Grassi et al., 

Subspace Trail Cryptanalysis and its Applications to AES [4] The paper introduces Subspace Trail 

Cryptanalysis, a new method for analysing block ciphers like AES. This technique focuses on identifying 

trails in a specific subspace of the cipher’s state space, enabling a more efficient analysis of its security. 

The method is used to assess the resilience of AES against various attacks by exploring the propagation 

of certain patterns (trails) through its rounds. The findings highlight potential weaknesses in AES and offer 

insights into how these vulnerabilities could be exploited in practice. The paper demonstrates the practical 

applications of this technique, showing its effectiveness in enhancing cryptanalytic methods. The paper 

[5] breaks PRINT cipher using the Invariant Subspace Attack by exploiting structural weaknesses. It 

enables full key recovery more efficiently than brute force. The paper [2] introduces the Nonlinear 

Invariant Attack, a new cryptanalytic technique. It is applied successfully to break full SCREAM, 

iSCREAM, and Midori64 under certain weak-key assumptions. The attack leverages nonlinear invariant 

properties that persist through the cipher rounds. These results raise concerns about the use of involutive 

and low-algebraic-degree components in cipher design. The paper [9] analyzes the AEAD cipher ASCON 

using truncated, impossible, and improbable differential techniques. It improves understanding of 

ASCON’s differential properties without threatening its full-round security. The authors explore 

differential trails in the permutation to find distinguishers. These results guide future design and analysis 

of sponge-based ciphers. The paper [6] studies how undisturbed bits in S-boxes relate to other 

cryptographic properties like differential uniformity and nonlinearity. It shows that undisturbed bits can 

signal structural weaknesses in S-box design. The authors establish bounds and relationships between 

these properties. The results help in evaluating and designing stronger S-boxes. 

 

PROPOSED SYSTEM ARCHITECTURE 

We are planning to provide an input difference to the SPN cipher along with sufficient plaintext, and then 
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we will determine the difference set after one round. We will identify the subspace generated by this 

difference set and repeat the procedure for several rounds. We will stop when the dimension of the 

subspace becomes full. And then we will distinguish the cipher. 

 

Preliminaries 

By  we 𝕗2 denote the finite field with two elements and by 𝕗2
𝑛 the ndimensional vector space over 𝕗2. 

Definition[Derivative]: Let F : 𝕗2
𝑛 → 𝕗2

𝑛 The derivative of F in direction α is defined as 

∆𝛼(F(x)) = F(x) + F(x + α). 

Definition- [S-box layer]: Let F : 𝕗2
𝑛 → 𝕗2

𝑛 be an S-box. Then S-box layer 𝐹𝑘  is the parallel application 

of F for k times 

𝐹𝑘: (𝕗2
𝑛)𝑘 → (𝕗2

𝑛)𝑘 

𝐹𝑘 (x1, x2, · · · xk) = (F(x1), F(x2), · · · F(xk)). 

Definition[Subspace Trail]: Let F : 𝕗2
𝑛 → 𝕗2

𝑛. Linear subspaces U, V ⊆ 𝕗2
𝑛 are called a(one round) 

subspace trail, 

 

∀a : ∃b : F(U + a) ⊆ V + b 

We denote this by U → V . 

An r + 1 -tuple of subspaces (U1, ..., Ur+1) is called a subspace trail (over r rounds), 

 

if Ui → Ui+1 ∀i ∈ {1, 2, · · · r + 1}. 

 

SOME MATHEMATICAL RESULT 

Lemma : 

Given U → V be a subspace trail. Then 

∀u ∈ U : Im(∆u(F)) ⊆ V 

 

Moreover, for any subspace U ⊆ 𝕗2
𝑛 it holds that 

 

U → span (⋃ 𝐼𝑚(∆𝑢(𝐹))𝑢∈𝑈 ) 

 

Proof. Let u ∈ U. Because U → V is a subspace trail for F, for any x ∈ 𝕗2
𝑛 both, x and x+u, are in a coset 

U +x of U. 

 

Due to the subspace trail, they get mapped to a coset of V : F(x), F(x + u) ∈ V +b. 

 

Therefore, their sum is again in V: F(x) + F(x + u) ∈ V. 

 

Computing A Trail for a Given Input Difference 

A starting point for finding subspace trails is: Given an initial subspace, how to compute the resulting 

trail? One approach is based on Lemma 1. In order to compute V , we have to compute the images of the 

derivatives of F in direction U. To speed this up, we can exploit two facts. First, when choosing x ∈ 𝕗2
𝑛 , 

assuming a random behavior, it is sufficient to take slightly more than n many x to compute the subspace 

spanned by the image. Second, we do not need to compute the image of every element in U; instead it is 
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enough to take a basis of U, see the following lemma. 

 

Given U ⊆ 𝕗2
𝑛 and a basis b1, ..., bk of U, then span (∪u∈U Im(∆u(F)) = span (∪0<i<k+1 Im(∆bi(F)). 

 

Proof. It is clear that the set on the right side is a subset of the set on the left side of the equation. Thus, 

we are left with showing that the left side is a subset of the right side. Moreover, as we consider the linear 

span on both sides, it suffices to show that any 

 

v ∈ ∪u∈U Im(∆u(F) is contained in span (∪0<i<k+1 Im(∆bi(F)). 

 

We will prove this by induction over the dimension of U. The case dim(U) = 1 is trivial. Now assume that 

the statement is correct for any U’ of dimension smaller than k. We consider 

 

v ∈ Im(∆u(F)) 

 

for u ∈ U. That is, there exist an element x ∈ 𝕗2
𝑛  such that 

v = ∆u(F)(x) = F(x) + F (x + u). 

As the bi form a basis of U, we can express u as a linear combination of the bi , that is 

 

u = ∑ 𝜆𝑖 𝑏𝑖𝑘
𝑖=1  

 

for suitable λi ∈ F2. Thus 

 

v = F(x) + F(x + ∑ 𝜆𝑖𝑏𝑖𝑘
𝑖=1 ) 

By defining x′ = x + λk bk we get 

 

v = F(x) + F(x + ∑ 𝜆𝑖𝑏𝑖𝑘
𝑖=1 ) 

 

 

v = F(x’ + λk bk) + F(x’ + ∑ 𝜆𝑖𝑏𝑖𝑘
𝑖=1 ) 

 

v = F(x’ + λk bk) + F(x’) + F(x’) + F(x’ + ∑ 𝜆𝑖𝑏𝑖𝑘
𝑖=1 ) 

 

= λk∆bk (F)(x′) + λ′∆u′(F)(x′) 

 

Where    λ′ = ⋁  λi𝑘−1
1       u′ =  ∑ 𝜆𝑖𝑏𝑖𝑘−1

𝑖=1  

 

Thus v ∈ span (Im(∆b1 (F)) ∪ Im(∆u′(F))), 

 

and the lemma follows by induction as u′ is contained in a (k − 1) dimensional subspace 

U′ = span {b1, · · · bk} 

Assembling the above observations, we get the recursive Algorithm 1 to compute the optimal subspace 

trail for a given starting subspace U 

https://www.ijfmr.com/
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Algorithm 

Given: A nonlinear, bijective function F: 𝕗2
𝑛 → 𝕗2

𝑛 and a subspace U 

1. function Compute Trail (F, U) 

2. if dimension(U) = n then 

return the U 

3. V ← ϕ 

4. for bi basis vectors of U do 

5. for enough x ∈ random 𝕗2
𝑛 do 

6. V ← V ⋃△bi (F)(x) 

7. V ← span (V ) 

8. return U + Find Trail (F, V) 

 

Details of Some SPN Ciphers 

a. Present 

Present is a lightweight block cipher proposed by Bogdanov et al. The block size and key size are 64 and 

80 bits, respectively. The round function consists of three operations, namely AddRoundKey, sBoxlayer 

and pLayer which are described as follows. 

1. AddRoundKey: This step XORs a 64-bit subkey and a round constant to the state. 

2. sBoxlayer: It applies the 4-bit PRESENT S-box in parallel to 16 4-bit inputs. The 4-bit S-box of present 

in hexadecimal notation is given in Table 1. 

 
Table 1: present S-box 

3. pLayer: It takes a 64-bit state as an input and applies the PRESENT bitwise permutation P to obtain a 

64-bit state. The bitwise permutation P maps i-th bit of state to the bit position P(i) as shown below in 

Table 2. 

 

 
Table 2: present Permutation 

b. GIFT 

GIFT is a lightweight block cipher proposed by Banik et al. at CHES’17. It has two variants, namely 

GIFT-n where n ∈ {64, 128} is the block size in bits and the key size is 128 bits for both versions. The 

round function consists of three operations, namely Subcells, Permbits, and AddRoundKey which are 

described as follows. 

1. Subcells: It applies the 4-bit GIFT S-box in parallel to n/4 many 4-bit inputs. The 4-bit S-box of GIFT 

in hexadecimal notation is given in Table 3. 
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Table 3: Gift S-box 

 

2. Permbits: It takes an n-bit state as an input and applies the GIFT bitwise permutation Pn to obtain an 

n-bit state. GIFT-n uses a bitwise permutation Pn. It maps i-th bit of the state to bit position Pn(i), ∀i 

∈ {0, 1, . . . , n−1}. For n = 64 and 128, the permutations P64 and P128 are given in Table 4 and Table 

5. 

 
Table 4: Gift-64 Permutation 

 
Table 5: Gift-128 Permutation 

3. AddRoundKey: This step XORs a n/2-bit subkey to the state followed by a round constant addition. 

- Number of Rounds: 28 for Gift-64 and 40 for Gift-128. 

 

c. DEFAULT 

The details the 128-bit version of proposed DFA protecting layer (DEFAULT-LAYER). It can be used to 

encrypt 128-bit block. 

1. SubCells : It uses the 4-bit S SBox. 

The 4-bit S-box of DEFAULT in hexadecimal notation is given in Table 6. 

https://www.ijfmr.com/
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Table 6: DEFAULT S-box 

This SBox is applied to every nibble of the state. 

2. PermBits: The bit-permutation is the same as the permutation P128 in GIFT-128. 

3. Rounds : 16 

 

Application 

In the table below, we have mentioned the number of rounds covered by the algorithm. It provides 

information on how many rounds of the cipher are distinguishable. 

1. Application for Present 

Here, we provided a subspace trail for the present cipher with the following subspace. 

0x1: 3 - 15 - 63 - 64 

we observed that for the subspace 0x1, it covers 3 rounds of the block cipher, meaning this cipher is 

distinguishable up to 3 rounds. For the other subspaces, we obtained coverage for less than 3 rounds, 

so we did not consider them. 

2. Application for Gift-64 

0x1: 3 - 15 - 63 - 64 

Gift-128 

Ox1: 4 - 15 - 60 - 128 

3. Application for DEFAULT 

0x1: 2 - 5 - 15 - 42 - 74 - 106 – 128 

 
 

Conclusion 

In this work, we consider a subspace generated by a given input difference. Using a sufficient number of 

plaintexts and a fixed difference, we identify the corresponding differential trail. We repeat this process 

for several rounds, and once we obtain the full dimension of the subspace, we stop. At that point, we say 

that the cipher is distinguishable. In this study, we apply this method to the PRESENT, GIFT-64, and 

GIFT-128, Default block ciphers, and we provide their corresponding trails. 
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