

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 1

Design and Implementation of Memory

Controller for Byte Access from Data Memory

for SoC’s Devices

Preethi K1, Pruthvika R2, Vaishnavika SG3, Vathsala HK4, Manasa MG5

1,2,3,4,5Department of Electronics and Communication Engineering, Sapthagiri College of Engineering,

Bengaluru Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New

Delhi

Abstract:

A System-on Modern computing systems, particularly System-on-Chip (SoC) architectures, incorporate

multiple processors, integrated memory, and control logic to enhance efficiency. These architectures are

prevalent in contemporary electronic devices like smartphones, tablets, and smartwatches, all of which

demand high-performance memory management. Ensuring smooth data exchange within these memory-

intensive devices is crucial for optimal functionality. This paper presents a specialized memory

controller designed to regulate data transfer between multiple processors and peripheral components.

The controller is based on the Advanced eXtensible Interface (AXI) protocol, which facilitates parallel

communication between various SoC components. The proposed memory access controller (MAC)

efficiently manages data transmission speeds, minimizes processor workload, and enhances overall

system performance.

KEYWORDS: System-on-Chip (SoC), Advanced eXtensible Interface (AXI), Memory Access

Controller (MAC)

I. INTRODUCTION

A memory controller plays a pivotal role in computing systems by serving as an intermediary between

the central processing unit (CPU) and different memory modules. It is responsible for directing data flow

between these units, ensuring efficient read and write operations. The memory controller converts CPU-

generated access requests into commands compatible with memory hardware. This involves address

decoding, where CPU-specified memory locations are mapped to their physical counterparts in memory

modules.

Additionally, the controller synchronizes data transfers, adhering to predefined timing constraints and

memory protocols. It generates control signals and ensures precise coordination to maintain system

efficiency. Many modern memory controllers integrate error detection and correction mechanisms to

enhance reliability.

control signals and ensures precise coordination to maintain system efficiency. Many modern memory

controllers integrate error detection and correction mechanisms to enhance reliability. Advanced features

such as memory interleaving and banking further optimize performance by improving data access speed

and distribution.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 2

Managing data transfer, memory controllers often incorporate features for error detection and correction.

Moreover, memory controllers may support advanced memory management techniques such as

interleaving and memory banking, which further optimize memory access and utilization.

In the domain of Very Large-Scale Integration (VLSI) design, memory controllers are indispensable, as

they manage multiple aspects of data exchange, from command translation to execution. By optimizing

memory bandwidth and reducing access latency, these controllers contribute significantly to overall

system efficiency. As computing technology evolves, memory controllers continue to incorporate cutting-

edge features, supporting new memory standards and adapting to various workload requirements.

Overall enabling efficient communication subsystems in computing systems. By overseeing data

transfer, address decoding, timing control, procedure of designing and implementing involves a

systematic approach. Initially, clear requirements are specified, encompassing byte-level access

capability, of the memory interface protocols and timing constraints is crucial for timings.

II. METHODOLOGY

The procedure of designing and implementing involves a systematic approach. Initially, clear

requirements are specified, encompassing byte-level access capability, supported memory types, and

performance metrics. Next, a thorough understanding of the memory interface protocols and timing

constraints is crucial for compatibility. SystemVerilog is then utilized to implement the design,

employing modules, interfaces, and state machines to encapsulate functionality and promote modularity.

Throughout the process, thorough testing and verification ensure that the memory controller meets

specifications and performs efficiently.

Fig. 1: AXI Memory-controller block

The proposed design consists of several interconnected components, as illustrated in Figure 1

1. Dual-Port RAM: A 32-bit wide, 8-bit deep memory unit that supports simultaneous read and write

operations. It is an active- high block, and signal configuration allows access to either port.

2. Memory Controller: The core unit that regulates data flow, stores essential information such as

addresses, and commands the AXI slave interface.

3. AXI Slave: An intermediate communication module between the memory controller and RAM,

facilitating parallel data transfer.

The memory controller serves as the primary processing unit, issuing commands to the AXI slave to

coordinate dual-port RAM operations.

A memory controller is a critical component in digital systems responsible for managing the interaction

between the CPU or processing unit and the memory subsystem. Its primary function is to ensure

efficient and reliable access to memory resources, including RAM, ROM, and other storage devices.

Memory controller is the intermediate block unit which is the heart of our design. It takes the command

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 3

from the top block. We can say this unit as CPU of our design. It gives the command to AXI slave to

operate the dual-port RAM.

Memory Controller:

Fig. 2: Memory controller block

It is the main unit which performs the operation of read- write into and from the dual-port RAM.

Figure 2 shows the block of memory controller. The memory controller serves as a crucial component of

the system, functioning as an intermediate control unit that facilitates communication between different

blocks. It operates as the core processing unit of the design, receiving commands from the top-level

module and instructing the AXI slave to execute operations on the dual-port RAM

The dual-port RAM features a 32-bit data width and an 8-bit depth, enabling simultaneous read and write

operations through two distinct ports. As an active-high module, it only functions when the

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 4

corresponding control signals are activated. The memory controller regulates which port is accessed by

configuring control signals appropriately.

The memory controller is responsible for storing memory addresses and data, ensuring efficient

communication between memory and processing units. Acting as the primary control entity, it sends

directives to the AXI slave, which then facilitates data transfer between the memory and other system

components. By optimizing data flow, it enhances system performance and minimizes delays.

Figure 2 depicts the memory controller block, which includes several operational signals:

• Control signals for memory management

• Write channel address signals

• Write data channel signals

• Write response channel signals

• Read address channel signals

• Read data channel signals

• Register control signals

AXI slave:

The AXI slave module functions as a link between the memory controller and dual-port RAM, utilizing

a parallel communication protocol to ensure smooth data exchange. It regulates the data flow, ensuring

proper interaction between the memory controller and RAM, thereby playing a critical role in system

efficiency.

The Advanced eXtensible Interface (AXI) is a component of ARM's Advanced Microcontroller Bus

Architecture (AMBA). It is a high- performance, synchronous, multi-initiator, multi-target interface

designed primarily for on-chip data communication. The AXI-4 protocol, an advancement over AXI-3,

introduces improved data handling capabilities, including support for burst lengths of up to 256 bits, as

shown in Figure 3.

These channels operate simultaneously, enabling efficient memory transactions while reducing

processing overhead. The AXI slave module ensures seamless coordination between the memory

controller and dual-port RAM, improving overall system performance and reliability.

The AXI protocol is burst-based and defines the following independent transaction channels:

• read address

• read data

• write address

• write data

III. Operation

coordinating memory operations efficiently.

To develop the system, Verilog and SystemVerilog were utilized for The design consists of Memory

controller acting as master and design and verification. The functional correctness was validated using

dual port RAM as slave to perform the read-write. It has five testbenches, ensuring compliance

with performance metrics. The channels to perform the operation

• Address read channel

• Data read channel

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 5

• Address write channel

• Data write channel

• Response write channel

Fig. 5: Operations of Memory controller and AXI slave to drive dual port RAM

IV. Implementation

The implementation of the memory controller was carried out using a structured approach to ensure

efficient functionality within an SoC environment. The design was developed on a Field-Programmable

Gate Array (FPGA), which offers flexibility and reconfigurability, making it suitable for rapid

prototyping. Unlike fixed-function ASICs, FPGAs allow designers to modify the architecture based on

specific system requirements.

The memory controller consists of various interconnected components, including a dual-port RAM, an

AXI-based slave module, and a top- level control unit. Each of these blocks was individually designed

and later integrated into a complete system. The dual-port RAM facilitates simultaneous read and write

operations, ensuring faster data access. The AXI slave serves as an intermediary between the memory

controller and RAM, handling data transfer with parallel processing capabilities. The memory controller

unit acts as the central control block, managing data flow, generating control signals, and

synthesized design was implemented using Cadence Genus, which provided a gate-level netlist

representation, optimizing area and power consumption. The proposed architecture successfully

manages memory access, reducing processor workload while enhancing overall system performance.

Major Implementation steps:

1. Understanding of AXI protocol and Read-Write- Modify operations to know the data flow from and

into the Memory block.

2. Design of dual port RAMS to store and retrieve the data.

3. Design of Memory controller unit to control the data flow in the dual port RAMS.

4. Design of AXI slave for AXI protocol-based data transmission and reception from the dual port

RAM.

5. Design of top block to instantiate the lower-level blocks.

6. Verifying the functionalities of top block by using test bench.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 6

Tools and Resources:

1. RTL Designing: Cadence xcelium

2. Verification: Simvision

3. Synthesis: Genus

V. Results

The test case used here is using direct test bench. Simply, memory flash is assumed to be initially stores

some data in specific addresses. The scenario as follows, the host sends read command and then the

initially stored data is transferred into the buffer to be serialized and sent to the host on the data serial

link. Write command is issued by the host to store new data in the memory flash core. The host sends the

data form on the serial data link to be stored in the buffer. Then the data in the buffer is transferred to the

memory flash core. The old data and new data both are exist in the memory core, i.e. no overwrite

occurred. Finally, erase command is issued by the host to delete all stored data in the memory flash core.

The command is transferred from host to device serially. It takes 19 simulation clock cycles to store the

whole command frame in the device registers. Data to be transferred between the memory flash core and

the buffer takes just 1 simulation clock cycle. Notice that before the host begins the communication with

the device, it must reset the device .

• First, the host assert hardware reset pin for 1 clock cycle, after this reset pin de-asserted again as

shown in figure 6

.

Fig. 6: Reset pin asserted for 1 clock cycle and the de-asserted

• Memory flash core is initially sore some random data blocks – 6 data blocks from address 0h to

address 5h as shown in figure 6.

Fig. 6: Memory flash core is initialized with random data

• Host starts to issue read command as shown in figure 7, at clock cycle 220 the read command frame

is completely stored in the device.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 7

Fig. 7: read command frame is completely stored in device

Fig. 7: Memory flash core is transferred successfully to the buffer

• New data is transferred from buffer to the flash memory core successfully

Fig. 8: New data is transferred from buffer to the memory core successfully

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 8

• The design of the memory controller built is synthesized using cadence genus where the gate

level netlist along with the block interleaving can be seen in the system.

• The figure 9 shows the design where individual block explained above in the block diagram can be

seen.

Fig. 9: Synthesis of Memory controller

• The design contains the Memory controller unit along with dual-port RAM which is interfaced using

AXI protocol as shown in the figure 10 and figure 11.

Fig. 10: AXI slave and dual-port RAM

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 9

Fig. 11: Memory controller interfaced with AXI slave

VI. Conclusion

The memory controller architecture, designed and verified using Verilog and SystemVerilog UVM,

respectively, showcases a balance between simplicity and integration, seamlessly merging Flash and

DRAM memory types. Its design prioritizes power efficiency, aligning with global trends, and

incorporates powerful features from six diverse protocols for enhanced functionality. With support for

parallel operations, up to two simultaneous operations boost performance, while its multi-point to single-

point model enables communication with multiple hosts, though limited to four in a switching manner.

Manufacturers benefit from its configurable nature, adaptable to various applications, while data security

remains paramount, with encryption implemented in both memory cores to safeguard against potential

hacks. This architecture serves as a blueprint for future designs, providing invaluable insights into

essential features for upcoming architectural developments.

VII. Future Scope

For every door your close in research, two new doors are opened. This section discusses interesting

future work and open issues in the context of this work. It contains a important features, more advanced

features by developing the used techniques in the proposed memory controller. The current design

implementation can move memory controllers for byte access in System-on-Chip (SoC) designs is

poised for significant advancements driven by emerging trends such as the proliferation of IoT and edge

computing, the demand for AI and machine learning acceleration, and the adoption of heterogeneous

memory architectures.

REFERENCES

1. Mohammed Altaf Ahmed and Jaber Aloufi, “A Smart Memory Controller for System on Chip-

Based Devices”,in Department of Computer Engineering, College of Computer Engineering &

Sciences, Prince Sattan Bin Abdulaziz University,Alkharj-11942, Saudi Arabia.

2. [Rashmi Samanth, Subramanya G. Nayak, “Design and SV Based Verification of AMBA AXI

Protocol for SOC Integration” in International Journal of Recent Technology and Engineering

(IJRTE) ISSN: 2277-3878 (Online), Volume-8 Issue- 2, July 2019.

3. Khaled Khalifa, Haytham Fawzy, Sameh El-Ashry, Khaled Salah, “Memory Controller

Architectures: A comparative Study” by Sameh El-Ashry on 20 September 2015.

4. Gregorio Zlotnik and Aaron Vansintjan, “Memory: An Extended Definition” in Clinique de la

Migraine de Montreal, Montreal, QC, Canada, 2 Department of Film, Media and Cultural Studies,

Birkbeck, University of London, London, United Kingdom.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250344553 Volume 7, Issue 3, May-June 2025 10

5. Mohammed Altaf Ahmed, Abdullah Aljumah and M. Gulam Ahmad, “Design and Implementation

of direct memory access controller for embedded systems” in Department of Computer Engineering,

College of Computer Engineering & Sciences, Prince Sattam Bin Abdulaziz University, Alkharj

11942, Saudi Arabia.

6. Prof. Dr. Mohamed Rizk, Alexandria University Dr. Khaled Salah, Mentor Graphics Egypt, “Thesis

book of Universal Memory Controller”, Alexandria University, Egypt, July 2014.

7. Balakrishna K. Rajesh N “Design of remote monitored solar powered grass cutter robot with

obstacle avoidance using IoT”, Global Transitions Proceedings Volume 3, Issue 1,June 2022, Pages

109-113

8. Rajesh N Li-Fi (Light Fidelity): The Future Vision In Wireless Communication, IJRECE Volume

9,Issue3 JULY- SEPT2021 ISSN: 2393-9028 (PRINT) |ISSN: 2348-2281|

9. M.Rajendra and N.Suresh Babu. ‘‘Speed and Area optimized Design of DDR3 SDRAM (Double

Data Rate3 Synchronously Dynamic RAM) Controller for Digital TV Decoders”, International

Journal of Engineering Trends and Technology”, 2013, Vol.06 Issue 4, pp 204- 211.

10. Ms.Seema Sinha and Md.Tariq Anwar. ‘‘design and verification of ddr3 memory

controller”.International Journal of Advanced Technology in Engineering and science, 2014, Vol.02,

Issue 05,pp.199-207

https://www.ijfmr.com/

