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Abstract:  

This paper presents a new cross-layer simulation framework which combines deep learning (DL) 

approaches at the physical (PHY) layer and hybrid automatic repeat request (HARQ) techniques at the 

medium access control (MAC) layer for effective wireless communication. The system is structured on a 

MIMO-OFDM configuration with 8 transmit and 8 receive antennas, QPSK modulation, and 64 

subcarriers. In order to simulate actual communication scenarios, different fading channel models such as 

AWGN, Rayleigh, and Rician are added along with other degrading factors like channel estimation errors 

and changes in signal-to-noise ratio (SNR) levels. At the PHY layer, a very deep neural network (DNN) 

was used to improve the output of a conventional MMSE equalizer. The DNN learns to remove the noise 

and distortion created by the wireless channel as well as the imperfect channel state information (CSI) in 

the decoding process. This provides additional improvement to the decoded signal beyond that which can 

be achieved from normal signal processing. 

At the MAC layer, there is a CRC-based HARQ mechanism. A cyclic redundancy check (CRC) is applied 

to each data packet, and the system uses the result to trigger retransmissions, up to a maximum of three 

attempts. This imitation is of practical feedback mechanisms in current wireless protocols like LTE and 

5G. Extensive simulations are created in order to estimate system performance based on bit error rate 

(BER), symbol error rate (SER), training loss, latency, and decision accuracy (ROC curves). The proposed 

framework realizes notable improvements in reliability and decoding accuracy, which manifest the success 

of combining DL-based PHY enhancements and intelligent MAC-layer feedback control. 
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1. Introduction: 

The rapid increase in wireless data traffic coupled with the spread of connected devices is stretching the 

limits of classical communication system design. The advancement of modern wireless networks from 5G 

to forthcoming generations, including 6G, will need to accommodate staggering demands related to ultra-

reliable low-latency communication (URLLC), extensive connectivity, and high efficiency in the use of 

electromagnetic spectrum. Achieving these goals will require fundamental changes not only in the 
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hardware and signal processing techniques, but in the entire approach to detection, decoding, and 

information recovery at the physical and medium access control layers. 

In the past, PHY layer techniques have been built from rigorous mathematical theory. Techniques like 

linear equalization, maximum likelihood detection, and Kalman filtering worked well under idealized 

conditions. Similarly, MAC layer protocols such as hybrid automatic repeat request (HARQ) have ensured 

reliability by requesting retransmission when cyclic redundancy checks (CRC) are in error. But these 

historic systems are typically plagued by fixed design, rigid heuristics, and channel linearity and 

stationarity assumptions—conditions that never exist in actual deployment situations. 

In this evolving context, machine learning (ML) and more particularly deep learning (DL) is being pursued 

with vigor to address these needs in performance and adaptability. DL models have demonstrated 

remarkable ability in learning complex mappings directly from data, adapting to time-varying contexts, 

and generalizing across a wide range of operation conditions without needing explicit analytical 

modelling. DL in wireless communications has ranged from channel estimation and equalization to end-

to-end system learning and modulation recognition. 

Even with such a promise, most prior attempts were targeted towards the PHY layer alone and not so much 

on the feedback and control that could be had at the MAC layer. In comparison, conventional HARQ 

schemes operate without utilizing any gained knowledge or signal-level properties, relying only on binary 

CRC outputs. This PHY encumbrance to the MAC layer limits the potential benefits of learning-based 

approaches and misses the opportunity to create cross-layer intelligent systems that optimize decoding and 

reliability methods simultaneously. 

In this work, we introduce a new cross-layer framework combining DL-based PHY-layer signal 

improvement with a MAC-layer CRC-based HARQ feedback. As an example, implementation, we 

simulate a MIMO-OFDM system where each transmitter-receiver pair goes through realistic wireless 

channel models like AWGN, Rayleigh, and Rician fading, coupled with other degradations such as 

imperfect channel estimation and SNR loss. On the receiver side, a neural network is learned to post-

process the output of a minimum mean square error (MMSE) equalizer, which is trained to recover 

transmitted QPSK symbols from noisy and distorted observations. 

At the MAC layer, a CRC is calculated over the original data bits, and decoding success is confirmed 

through an emulated CRC check on the estimated bits. In case the check fails, a retransmission is initiated, 

to a maximum number of attempts, thus simulating real-world HARQ behaviour. The mechanism 

facilitates adaptive retransmissions and takes advantage of the increased decoding capability of the DL-

aided receiver to possibly lower the number of required retransmissions. To validate the system, we 

evaluate key performance indicators such as bit error rate (BER), symbol error rate (SER), training loss 

convergence, confusion matrices for symbol detection, latency analysis with and without retransmissions, 

and receiver operating characteristic (ROC) curves based on CRC decisions. Our results demonstrate that 

integrating DL into the PHY layer significantly improves decoding accuracy and that the CRC-guided 

HARQ logic effectively manages retransmissions, leading to a robust and intelligent communication 

system 

This work serves as a proof-of-concept for combining learning-based signal processing with protocol-

level decision-making, opening the door for further innovations in end-to-end, adaptive, and data-driven 

wireless communication design. 

1.1 : What is Deep Learning? 

Deep learning is a form of machine learning that focuses on using multi-layered neural networks in model- 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250345056 Volume 7, Issue 3, May-June 2025 3 

 

ing complex patterns in data. Deep learning systems are founded on artificial neural networks with 

numerous hidden layers, and each of them can learn increasingly abstract representations of input features. 

 

 
Fig.1: Explaining deep learning, machine learning are subset of Artificial Intelligence 

 

At its core, a deep learning model learns to map inputs to outputs by minimizing a loss function through 

iterative optimization (e.g., gradient descent). Each neuron processes weighted inputs and passes them 

through a non-linear activation function, enabling the network to capture non-linear relationships. Layers 

are stacked to form a deep architecture that progressively transforms raw data into high-level features. 

Deep learning excels in tasks where traditional algorithms struggle due to data complexity or noise. In 

wireless communications, it is particularly effective for problems involving: 

• Signal denoising 

• Channel estimation 

• Modulation recognition 

• Adaptive decoding 

Unlike conventional model-based approaches that rely on analytical formulations, deep learning can learn 

directly from data—making it highly suitable for dynamic, uncertain, or non-linear environments, such 

as fading wireless channels with imperfect channel state information (CSI). 

In this work, deep learning is applied to the physical layer receiver to enhance the performance of MMSE 

equalization. By learning residual signal patterns post-equalization, the neural network improves symbol 

recovery, leading to better bit error rates (BER) and reduced retransmissions. 

 

2. System Model: 

We simulate an orthogonal frequency-division multiplexing (OFDM) system configured with 64 

subcarriers and 500 symbols per transmission frame. A cyclic prefix of length 16 is appended to each 

OFDM symbol to mitigate inter-symbol interference (ISI) caused by multipath propagation. QPSK 

(Quadrature Phase Shift Keying) modulation is employed due to its computational simplicity and 

robustness, making it particularly suitable for low to moderate signal-to-noise ratio (SNR) environments. 

The communication system utilizes a multiple-input multiple-output (MIMO) configuration with 8 

transmit and 8 receive antennas, enabling spatial multiplexing and diversity techniques to improve spectral 

efficiency and link robustness. Pilot symbols are embedded within each OFDM frame to facilitate channel 

estimation at the receiver. 
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Fig.2: Flowchart of System 

To emulate realistic wireless conditions, the simulation includes multiple channel models: 

• AWGN (Additive White Gaussian Noise): A simple baseline channel model for benchmarking. 

• Rayleigh Fading: Models rich-scattering, non-line-of-sight (NLOS) environments typically 

encountered in urban deployments. 

• Rician Fading: Captures line-of-sight (LOS) propagation conditions with a dominant signal path, 

common in rural and mmWave communications. 

The channel estimation errors are modelled as the addition of complex Gaussian noise to some channel 

state information (CSI) associated with the receiver, demonstrating imperfect receiver knowledge. Inter-

channel interference along with the individual component parts of the transmitted signal is divided using 

MMSE (Minimum Mean Square Error) equalization. HYBRID Automatic Repeat Request (HARQ) 

scheme is designed as a sublayer of the MAC layer. Each transmission frame undergoes cyclic redundancy 

check (CRC) on the receiver’s end. If the check indicates a CRC failure, a retransmission is initiated 

(maximum of 3 attempts). The retransmission strategy is implemented under the chase combining 

paradigm-enabling the receiver to coherently integrate several energy versions to one signal) to increase 

the reliability of the decoding process. 

Deep neural networks (DNNs) are used to improve the performance parameters of the system. A DNN is 

added after the received signal undergoes MMSE equalization. The DNN’s task is to reconstruct the QPSK 

symbols, overcoming the residual distortions and noise channel imposed. The network is trained with 

MSE (Mean Squared Error) loss computed from real and imaginary values of the equalized subcarriers. 

The DL-aided architecture of the physical layer (PHY WITH DEEP LEARNING) achieves improved 

accuracy of decoded information and lower re-transmission, even when under noisy or time-varying 

conditions. As a result, the proposed system provides a more resilient and adaptive communication 

framework compared to traditional signal processing and HARQ implementations. 

 

3. Deep Learning Decoder: 

The core of the decoding enhancement lies in a deep feedforward neural network, designed to post-process 

the output of the MMSE equalizer and accurately reconstruct transmitted symbols. The architecture 
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consists of an input layer that receives concatenated real and imaginary components of the received OFDM 

symbols, followed by two hidden layers with 256 and 128 neurons respectively, each activated using ReLU 

functions. The final output layer predicts the reconstructed real and imaginary parts of the original QPSK 

symbols. 

The network is trained offline using supervised learning, with the original transmitted symbols serving as 

the ground truth. The training dataset is generated under varying SNR conditions and includes data 

affected by fading and estimation errors, allowing the model to generalize well to real-world impairments. 

The loss function used is mean squared error (MSE), which penalizes deviations between predicted and 

actual signal values. 

During simulation, the trained model is applied to new received data in real time. By correcting residual 

distortions after MMSE equalization, the deep learning decoder significantly reduces symbol error rate 

(SER) and bit error rate (BER), especially in low-SNR or highly faded scenarios. This leads to fewer failed 

CRC checks and reduces the need for retransmissions. 

A cyclic redundancy check (CRC) is appended to each encoded bitstream. After DL-based symbol 

recovery and demodulation, the decoded bits undergo CRC validation. A successful check results in an 

ACK, while failure triggers HARQ retransmission. The integration of DL decoding with CRC feedback 

makes the overall system more robust, adaptive, and capable of achieving high reliability with reduced 

latency. 

 

4. HARQ Logic with CRC Feedback: 

At the MAC layer, a hybrid automatic repeat request (HARQ) scheme is implemented to enhance the 

reliability of data transmission. Each transmission attempt is followed by a cyclic redundancy check 

(CRC) performed on the decoded bitstream. If the CRC check passes, the receiver sends an 

acknowledgment (ACK) to the transmitter, confirming successful reception and terminating the current 

communication session for that packet. 

If the CRC check fails, indicating that the received data is corrupted or incorrectly decoded, the receiver 

issues a negative acknowledgment (NACK). This NACK feedback triggers a retransmission from the 

transmitter. The system supports a maximum of three retransmission attempts, beyond which the packet 

is considered lost if CRC validation still fails. 

To improve performance during retransmissions, the system employs Chase Combining. This approach 

allows the receiver to combine multiple retransmissions coherently, effectively increasing the signal-to-

noise ratio (SNR) of the accumulated signal. As each retransmission adds to the energy and information 

available, the likelihood of successful decoding improves. 

The HARQ controller coordinates this feedback loop, ensuring that CRC outcomes directly influence the 

transmission state. This structure mimics practical feedback-based protocols in contemporary wireless 

standards such as LTE, 5G NR, and Wi-Fi. 

The integration of this logic ensures adaptive, reliable communication even under adverse channel 

conditions. Combined with the deep learning-assisted PHY decoding, the CRC-guided HARQ mechanism 

forms a crucial part of the cross-layer optimization strategy that enhances end-to-end system performance. 

 

5. Evaluation Metrics and Graphs 

To comprehensively evaluate the performance of the proposed DL-assisted HARQ system, several key 

metrics and visual tools are used: 
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• BER vs. SNR: Demonstrates the system’s ability to maintain low bit error rates under varying signal-

to-noise ratios. DL-based decoding consistently outperforms traditional methods across AWGN, 

Rayleigh, and Rician channels. 

 

 
Fig.3: BER vs SNR 

• BER vs. Retransmissions: Tracks how the bit error rate improves with each HARQ attempt. The first 

transmission often has higher BER, which decreases significantly after combining retransmissions 

using Chase Combining. 

 
Fig.4: BER vs Retransmission Attempts 

• Training Loss Curve: Shows the convergence behaviour of the neural decoder during training. A 

steadily decreasing MSE loss indicates effective learning and stability across epochs. 

 
Fig.5: Training Loss per Epoch 
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• SER vs. SNR: Highlights the system’s accuracy in predicting QPSK symbols at different SNR levels. 

It reflects the effectiveness of DL in recovering clean symbols from noisy and distorted inputs. 

 
Fig.6: SER vs SNR 

 

• BER vs. Estimation Error: Evaluates robustness against channel state information (CSI) imperfections. 

DL models can compensate better than conventional methods when estimation errors increase. 

 
Fig.7: BER vs Channel Estimation Error 

• Latency Analysis: Compares total transmission time (with and without retransmissions). While HARQ 

introduces latency, the number of retransmissions drops due to improved decoding, resulting in a 

favourable trade-off. 

 
Fig.8: Latency vs SNR 
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• ROC Curve: Analyses the reliability of CRC-based ACK/NACK decisions. A high area under the curve 

(AUC > 0.95) shows that the CRC validation step is highly effective as a binary classifier. 

 
Fig.9: CRC Decision ROC Curve 

• Confusion Matrix: Captures symbol-level prediction errors and distributions. It visualizes 

misclassifications among QPSK symbols and helps quantify decoder accuracy on a granular level. 

 
Fig.10: QPSK Symbol Confusion Matrix 

Together, these metrics validate that the proposed system achieves a balance between accuracy, reliability, 

and efficiency across various channel conditions and implementation scenarios. 

 

6. Results and Discussion: 

The experimental results clearly highlight the effectiveness of the proposed DL-assisted HARQ 

framework under multiple channel conditions. Integration of deep learning at the PHY layer leads to 

significant performance improvements in terms of bit error rate (BER) and symbol error rate (SER), 

especially in low SNR and fast-fading environments. The neural decoder is able to effectively denoise 

MMSE-equalized signals, allowing for more accurate symbol recovery and fewer decoding errors. 
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In all tested scenarios—including AWGN, Rayleigh, and Rician channels—the DL-based system 

consistently achieved lower BERs than traditional receivers. When combined with the CRC-guided 

HARQ mechanism, the system demonstrated strong reliability improvements. The BER decreased 

significantly with each retransmission attempt, validating the effectiveness of Chase Combining. 

The receiver operating characteristic (ROC) analysis further supports the reliability of the HARQ logic. 

With an area under the curve (AUC) consistently greater than 0.95, the CRC-based ACK/NACK decision 

mechanism proves highly dependable for transmission success determination. 

Additionally, latency analysis indicates that while HARQ inevitably introduces some retransmission delay, 

the overall communication reliability is significantly enhanced. In practice, the improved decoding 

accuracy from the DL model reduces the number of retransmissions needed, thus partially offsetting the 

latency trade-off. 

Overall, the system achieves a favourable balance between decoding performance and transmission 

efficiency. These results confirm the viability of combining DL techniques with adaptive feedback 

mechanisms to achieve robust, high-performance wireless communication in realistic conditions. 

 

7. Conclusion: 

This paper demonstrates the feasibility of combining deep learning at the PHY layer with CRC-guided 

HARQ logic at the MAC layer for enhanced performance in MIMO-OFDM systems under fading 

conditions. The proposed cross-layer framework effectively integrates signal-level learning and adaptive 

retransmission to reduce BER and SER while maintaining transmission reliability. 

The results suggest that data-driven signal recovery significantly improves decoding accuracy over 

traditional equalization techniques, especially in scenarios with non-ideal channel conditions and limited 

CSI. Furthermore, the synergy between intelligent decoding and CRC feedback minimizes retransmission 

overhead, balancing error control and system latency. 

The flexibility of this architecture allows it to be adapted to more complex communication scenarios, such 

as higher-order modulations, advanced coding schemes, and emerging neural architectures including 

recurrent or transformer-based models. It sets the groundwork for practical, scalable deployment of ML-

assisted PHY-MAC designs in future wireless networks. 

 

8. Future Work: 

To further enhance the performance and practicality of the proposed framework, several directions can be 

explored. First, incorporating more advanced HARQ strategies such as soft-combining or incremental 

redundancy could improve decoding success rates, especially in low-SNR scenarios. On the deep learning 

side, the current feedforward neural network could be extended to more expressive architectures like 

attention-based models or recurrent neural networks (RNNs), which are better suited for capturing 

temporal and contextual dependencies in wireless signals. Another important step is to implement and 

validate the proposed system on real hardware platforms, such as Universal Software Radio Peripheral 

(USRP) or field-programmable gate arrays (FPGAs), to assess real-time performance and scalability. 

Finally, integrating adaptive modulation and coding (AMC) schemes would allow the system to 

dynamically adjust transmission parameters based on channel conditions, further optimizing throughput 

and reliability in diverse environments. 
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