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Abstract 

Hierarchical data structures emerge when observations are nested within higher-level units or clusters. 

Existing research often ignores the hierarchical structure of data, leading to biased estimates, suboptimal 

model selection, and challenges in identifying important predictors and dependencies. This study 

contributes to hierarchical frameworks by addressing interpretability challenges of random effects, 

scalability, regularization and transparency in the standard Bayesian model. This study specific aims are 

to use a unique hierarchical Bayesian model to improve the analysis of hierarchical data and also to test 

and compare the performance and interpretability of this unique hierarchical Bayesian model against the 

standard model empirically. The unique Bayesian hierarchical model advances the Standard Bayesian 

Hierarchical Model by introducing a contextual variable (Xijz) and parameters to the random effects. These 

advancements significantly improve the accuracy, reliability, and interpretability of the model. 

Hierarchical Bayesian Information Criteria (HBIC) was the technique used for model selection. This 

reduces overfitting and improves the accuracy of estimation, particularly in accounting for heterogeneity.  

The findings indicate that the introduction of the contextual variable ‘Xijz’ (Estimate = −0.0505, 

SE=0.0127, p<0.01) enables the model to account for cluster-specific effects, thereby improving its ability 

to identify region-specific phenomena. The fixed effect values for age factor (Estimate = 0.008, 

SE=0.0012, p<0.01) and religious factor (Estimate=0.0282, SE=0.0096, p<0.05) highlight the essential 

relationships captured by the unique model. The introduction of shrinkage parameters ϕj  and ψj  plays a 

crucial role in regulating parameter estimates toward a common value. The random effects demonstrated 

variability at the group level with county intercept variance (0.135) and age factor variance (0.00328), 

indicating the model's capacity to capture group-specific heterogeneity.  Lastly, the study demonstrates 

that this unique hierarchical Bayesian model outperforms the standard model by improving accuracy, 

interpretability, scalability, and regularization. 
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Introduction 

There has been a surge in modern research and an interest in learning and understanding data-driven 

decision-making. Having a larger dataset for analysis is no more sophisticated, as insights in the 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250345511 Volume 7, Issue 3, May-June 2025 2 

 

underlying huge dataset are no more hidden which makes it exciting and appealing (Larbi et al., 2024). 

Despite such advancement in research methodologies, there is a limitation in hierarchical model procedure 

where potential researchers find it difficult to extract all issues surrounding the data. Most fascinating 

studies have looked into examining the predictor variables separately ignoring the aspect of interaction 

and the nested aspect within the dataset (Johnson, 2018). Hierarchical models and structures including the 

levels of data or clustered observations are common in social science, ecology, and epidemiology areas 

(Green & White, 2017). Disregarding such structures leads to estimation bias and incorrect conclusions 

demanding robust statistical tools that address the complexity of data (Rajaraman, 2020). A common 

approach in analysing multilevel data is through a hierarchical framework by introducing random effects 

to account for variability in the level of structures (James & Douglas, 2016). The Unique model adopts a 

hierarchical structure where the individual-level predictors fixed effects, and group-level variables are 

captured through the random effects (Larbi et al., 2024; Klein & Moeschberger, 2018).  It incorporates 

interactions within the individual-level explanatory variables and group-level random effects which 

regulate whether a lower-level factor can moderate that of a higher-level one (Larbi et al., 2024; Gelman 

& Hill, 2007). 

Hierarchical Bayesian modelling is a formal statistical framework that has established norms that guide 

its application and interpretation. Hierarchical modelling ensures that the procedure for a model is valid, 

reproducible, and transparent. The hierarchical model basic norm concentrates specifically on the prior 

distribution of parameters which should be clearly defined. The knowledge and beliefs of the parameters 

considered in the model ought to be chosen in the right manner (Larbi et al., 2024). Hierarchical modelling 

allows for the nested structures within data and the incorporation of uncertainty, prior information, and 

variability with the structure settings. The parameters of interest are treated as random variables in 

Hierarchical modelling. Prior distributions are also defined for each parameter of interest at different levels 

in the hierarchy to cater for the uncertainty about the parameters before the data is observed. Bayesian 

theorem is used to observe the posterior distribution of data. The posterior distribution is updated using 

the combination of likelihood data and prior information. 

The hierarchical Bayesian model has gained several successes although there have been teething 

limitations and challenges that ought to be considered to formulate a parsimonious model. One of the 

biggest challenges encountered by researchers in hierarchical modelling is its intensiveness in computing 

large datasets and at times complex structures. This results in long computational times, high 

autocorrelation, and slow convergences because of the posterior inferences from the Markov Chain Monte 

Carlo (MCMC) algorithm. Informative priors that present accurate prior knowledge selection are essential 

but become a challenge when there is no or slight essential information. Wrong specification of priors 

results in biased estimates and unreliable conclusions (Klein & Moeschberger, 2018). If the model does 

not include important predictors or it is not well understood how the data was designed, it can fail to 

represent significant structures and patterns contained in the data. The hierarchical structure of data is 

many at times ignored by researchers which leads the model to bias in estimation, suboptimal model 

selection, and also challenges to be able to identify the essential predictors and dependencies which leads 

to potential suboptimal model construction and interpretation (Larbi et al., 2024). 

However, the major hope for researchers in addressing the aforementioned challenges is through the use 

of the Hierarchical Bayesian model. Bayesian hierarchical modelling provides a reproducible framework 

and transparency with articulated guidelines for validating models. There are even practical challenges 

with model transparency, uncertainty quantification, scalability, interpretability of the random effects, and 
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computational feasibility of which researchers have to be circumspect (Larbi et al., 2024). Failure of 

existing research or statistical methodologies in identifying problems to accommodate hierarchical 

structures in datasets often leads to suboptimal model and variable selection, and inefficient and biased 

estimates. Therefore, in order to address hierarchical data analysis challenges and enable accurate model 

interpretability, transparency, and making informed decisions, there is a need to address model comparison 

challenges, reproducibility, uncertainty quantification, and model transparency through a robust statistical 

technique. 

The hierarchical structure of a data is addressed amidst the limitations encountered in hierarchical 

modelling methodologies by using the unique model formulated by Larbi et al., (2024) to enhance the 

robustness and predictive accuracy as well as accounting for heterogeneity.  The use of model selection 

criterion Hierarchical Bayesian Information Criteria (HBIC) as a tool for the selection of best variables 

into the unique model improves the regularisation and also reduces overfitting. The existing research 

methodologies regarding model selection procedures focused on individual characteristics; though the 

unique model addresses the heterogeneity and dependencies within nested data. The stability of the 

variables selected in the model, the interpretability of model results, model fitness, and predictive accuracy 

is the outcome of the unique hierarchical Bayesian model. The general objective of this study is to advance 

on the standard Bayesian model to enhance accuracy, interpretability, and generalizability. This study has 

specific aims which are to use the unique hierarchical Bayesian model to improve the analysis of 

hierarchical data and also to test and compare the performance and interpretability of the unique 

hierarchical Bayesian model against the standard model empirically. 

The study contributes to scientific knowledge by introducing a hierarchical Bayesian model that is based 

on a global test (of fixed or random effects) under the likelihood ratio test framework. Secondly, the study 

uses model selection techniques within the hierarchical modelling framework to improve the performance 

of the model. The results of this study have direct implications in a wide range of domains including 

education, finance, healthcare, and social sciences, where hierarchical structures and high-dimensional 

data are common. The study also enhances the quality and interpretability of methods used in science and 

other investigations. Specifically, by introducing a unique model Larbi et al., (2024) enhanced the accuracy 

and interpretability data in the hierarchical arena. This paper aims to make more feasible good decisions 

where transparency and understanding of model outputs are of utmost priority. 

 

Literature Review 

Modern data analysis has brought a surge in statistical literature on hierarchical model and variable 

selection techniques for addressing complex data more interpretably and transparently. These techniques 

have gained much attention as a result of the hierarchical structure’s ability to provide insight into data 

patterns and address its selection limitation to approaches.  The hierarchical model allows for accurate 

capture of complex relationships and also models the dependencies among observations within the 

hierarchies. Improving the model’s parsimony and interpretability is ensuring that a model selection 

technique is employed to elect the right predictors. A valuable contribution was made to the literature on 

Bayesian hierarchical modelling, by introducing a new approach to improving predictive performance 

through model selection criteria (Zong & Bradley, 2023). The article’s theoretical and empirical 

contributions provide a valuable resource to researchers seeking to improve the accuracy and efficiency 

of Bayesian hierarchical models across a diverse set of applications by incorporating an often-used 

criterion from model selection (Zong & Bradley, 2023). A special case of several information criteria 
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expressions was proposed by Zong & Bradley (2023) which they labelled as Covariance Penalized Error 

(CPE). By the variance empirical Bayes estimator, a penalized mean value was formed. Zong & Bradley's 

(2023) prime aim was to obtain a small value of the CPE criterion, by truncating the joint support of the 

data and the parameter space using Bayesian hierarchical modelling. The authors achieved their objective 

of minimizing the squared error by identifying a subset parameter space that produces lower values than 

the Bayesian model averaging yields, provided that there is a non-zero probability value within this 

truncated set. 

CPE = E[(g(θ) −  ǵ(y))2] + λ ⸳ Tr[Cov(ǵ(y))]   [1] 

Where 

• The 1st term of equation 1 measures the mean square error 

• The 2nd term of equation 1 is the penalty term involving the trace of the Covariance matrix of the 

estimator 

• λ is the Penalty weight 

• Tr(Cov) reflects the posterior uncertainty (variable estimator) 

• The Penalty helps in controlling overfitting in model selection 

They introduced the idea of restricting the parameter space or the joint support of (y, θ); thus, effectively 

using a truncated version of the hierarchical posterior to get better predictions: 

θ ∈ Θ∗  ⊂  Θ such that P(θ ∈ Θ∗ | y) > 0 

Parameter truncation; This subset Θ* is selected to minimize the CPE, i.e., find a "simpler" model where 

predictions remain good with lower uncertainty. 

Variance Empirical Bayes Estimator (VEB) was used as a penalized mean estimator, 

𝜃𝑉𝐸𝐵
́ = arg  𝑚𝑖𝑛⏟

𝜃

 {(𝑦 −  𝜃)2 +  λ ∙ 𝑉𝑎𝑟 (𝜃|𝑦)}    [2] 

Penalized estimator: This combines the square error (fit) and Posterior variance (complexity penalty) 

The limitation in their paper comprises complexity of implementation, interpretability and Transparency, 

and Dependency on Criterion Selection. 

The paper by Gomez-Mendez and Chainarong (2023) examines poverty-related variables such as income, 

education, and others in the multiresolution governing structural data of Thailand.  Bayesian hierarchical 

models are utilized for this analysis. The authors discuss the progression of their modelling methodology 

from simple to more complex models and assess each model's effectiveness based on its ability to explain 

relevant variables while balancing complexity considerations. The methodology in the article “Income, 

education, and other poverty-related variables: a journey through Bayesian hierarchical models” by 

Gómez-Méndez and Chainarong (2023) can be summarized in mathematical and statistical terms as 

follows: 

The hierarchical model aims to explain income and other poverty-related variables in Thailand. It can be 

represented as: 

Yij = β0 +  ∑ βkXijk 
p
k=1 + ϕjφ0j+ εij        [3] 

Where 

Yij is the income or poverty − related variable for observation i in region j, 

β0 is the intercept 

βk are the coefficients for covariates 𝑋𝑖𝑗𝑘 (such as education  level, household characteristics, etc.), 

ϕj is the regional random effect capturing unobserved heterogeneity at the regional level, 
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φ0j represents the random effect for region j, 

εij is the error term 

The journey started by the authors in designing the hierarchical models in a simple and then gradually 

complex form. The performance of each model was assessed based on the ability to explain the variability 

in income and poverty-related variables. In practice, the preference for simpler models should not only be 

based on the explanatory power but also the complexity by accounting for dependencies. If two models 

provide comparable explanatory power a simpler model is preferred to a more complex one. So, the 

evaluation of model fit, overfitting, and computational complexity for each model should be discussed. 

Thus, the regularization techniques (e.g., fixed-effects, random-effects, and mixed-effects models), model 

averaging, and sensitivity analysis for Bayesian hierarchical models. The limitations highlighted in 

G´omez-M´endez and Chainarong (2023) article as a single policy may not adequately address poverty-

related issues in different areas, each with its unique challenges. Custom-made policies for each area 

separately are unrealistic due to resource limitations. The article points out the limitation of ignoring 

dependencies or relationships between different geographic areas when formulating poverty-related 

policies. While Bayesian hierarchical models provide a flexible and powerful framework for analyzing 

complex data, the authors' model has drawbacks, such as challenges in model specification, computational 

complexity, and potential overfitting because a large number of parameters were included. The 

availability, and quality, of data, may also limit the utility of the modelling approach. 

The Article by Porter et al., (2023) titled “Objective Bayesian Model Selection for Spatial Hierarchical 

Models with Intrinsic Conditional Autoregressive Priors” addresses the problem of model selection for 

Gaussian hierarchical models with intrinsic conditional autoregressive (ICAR) spatial random effects.  

Porter et al., (2023) acknowledges the problem of selecting covariates and spatial model structure 

independently in spatial hierarchical models; previously, methods required one to be fixed a priori and the 

other to be selected, which necessitated arbitrary decisions. Methods for simultaneous selection solve this 

problem but there are few Bayesian methods for simultaneous selection; the Article aims to do so, using 

fractional Bayes factors for model selection under automatic reference priors. In developing this 

methodological contribution, the Article first develops Bayesian model selection by fractional Bayes 

factors, so that fixed effects especially are selected simultaneously with spatial model structure; the 

approach also uses automatic reference priors, so that hyperparameters for priors do not need to be 

specified. The Article then establishes the stochastic ordering of two ICAR specifications and its 

implication for the fractional Bayes factor for the ICAR model under the reference prior. A comparison 

of the methodology to traditional model selection criteria and its performance in a simulation study is also 

undertaken. 

Porter et al., (2023) hierarchical model under review is represented as: 

𝑌𝑖 = 𝛽0 +  ∑ 𝛽𝑘𝑋𝑖𝑘 𝑝
𝑘=1 + ϕi + εi       [4] 

Where 

Yi is the response varable for observation i 

β0 is the intercept 

βk are the coefficients for covariates 𝑋𝑖𝑘 

εi is the error term 

Spatial Random Effects: The model includes spatial random effects represented by the ICAR prior, 

denoted as ϕi. 
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Fractional Bayes Factors (FBFs): FBFs are used for model selection.  M0 represents the null model with 

no covariates and only spatial random effects, and M1 represents the model with covariates and spatial 

random effects. The Fractional Bayes Factors (FBFs) for comparing models M0 and M1 are as follows: 

FBF01 = 
BF01

1+ PBF01
          [5] 

where 

𝐵𝐹01 is the Bayes factor comparing models M0 and M1, 

FBF01 is the fractional Bayes factor. 

Porter et al., (2023) approach offers a unique solution to model selection in spatial hierarchical models. 

Porter et al., (2023) model in the hierarchical framework has challenges including computational 

complexity, potential challenges in applying the method to large-scale spatial datasets, and sensitivity to 

prior specifications that the researchers encountered. Additionally, the approach’s performance may vary 

based on the unique characteristics of each dataset and model specifications. Porter et al., (2023) limitation 

could be addressed using the Larbi et al., (2024) model which could be relevant to the article in these 

aspects. 

 

Methodology 

The methodology section of this paper outlines the systematic approach employed to achieve the 

objectives of adding a unique variable to the Standard Bayesian model postulated by Larbi et al., (2024) 

using empirical data. The paper advances the Standard Bayesian model with a unique variable to the fixed 

effect and parameters to the random effects respectively. The paper is an extension of Larbi et al., (2024) 

which adopted a theoretical design approach; highlighting how the introduction of a unique variable and 

shrinkage parameters improve the model's theoretical grounding and possibly align it more closely. The 

theoretical design approach focuses on the conceptual justification that explores model structures 

conceptually without needing empirical validation thereby accounting for unobserved heterogeneity or the 

group-level effects.  Larbi et al., (2024) emphasizes on the theoretical significance of the introduction of 

parameters ϕj, ψj, and Xijz  as a contextual factor to be observed in the model. This paper validates the 

theoretical design, the performance of the Standard Bayesian model and the unique model formulated by 

Larbi et. Al, (2024) using real-world data from PMA 2022. The dependent variable considered was 

Maternal Health Utilisation (General Health of Mothers) and the explanatory variables were age and 

religious factors after study employed variable and model selections techniques for the selection of such 

predictors into the model. This was to prevent the model from suffering from multicollinearity, overfitting 

and select the best variables for parsimonious hierarchical structure. The PMA dataset contained 50, 938 

observations out of which 11,053 were eligible for the study. The predictive Mean Marching approach was 

employed to handle missing values under the Multiple Imputation by Chained Equation (MICE) 

framework.  The MICE use an iterative approach based on Gibbs sampling where an initial guess is made 

using the simple technique of the mean. The variables were treated based on their characteristics(type) as 

Linear Regression for Continuous and Logistic Regression for Categorical Variables under the umbrella 

of Gibbs for the clean-up. 

 

Model Selection 

The Hierarchical Bayesian Information Criterion (HBIC) was employed for the model selection. 

Inclusively targeting all levels, it merges information standards while integrating adaptive penalizations 
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corresponding to hierarchy gradation that combats overfitting via weighting level contribution based on 

intrinsic hierarchal intricacy. 

HBIC =  −2 ∑ log {P(yi|θi)} +N
i=1  k ∑ wj(logNj)

J
j=1      [6] 

Where: 

N is the total number of observations, P(yi|θi) is the likelihood for observation i given parameters θi, 

k is a penalty factor for the model complexity, 

J is the number of levels in the hierarchy 

wj is the weight associated with level j,                               

Nj is the number of observation at level j. 

 

Original /Standard Hierarchical Bayesian Model 

Below is the Standard Bayesian hierarchical model: 

Yij =  β0 +  β1Xij1 +  β2Xij2 +  u0j + u1jXij1  +  εij        [7] 

Where: 

Yij is the dependent variable for observatjion 𝑖 in group 𝑗 

Xij1, Xij2 are the predictor variables, 

u0j , u1j are group − specific random effects, 

β0, β1, β2 are the fixed effects, 

εij is the individual − level error term. 

 

Introduction of a Unique Variable to the Model 

The introduction of a unique variable, Xijz, where z represents the innovative variable capturing a unique 

aspect within each cluster. The new model then becomes: 

Yij =  β0 +  β1Xij1 +  β2Xij2 +  β3Xijz + u0j +  u1jXij1  +  εij                    [8] 

 

Where: 

Yij is the dependent variable for observatjion 𝑖 in group 𝑗 

Xij1, Xij2 are the predictor variables, 

u0j , u1j are group − specific random effects, 

β0, β1, β2 𝛽3 are the fixed effects, 

the introduction of Xijz  allows the model to capture cluster-specific effects associated with the 

innovative (z) aspect, 

εij is the individual − level error term. 

 

New Methodology and Combine Hierarchical Model 

The unique variable formulated by Larbi et al., (2024) that brings contribution to the field of Hierarchical 

Bayesian model is found below: 

Yij =  β0 +  β1Xij1 +  β2Xij2 +  β3Xijz + ϕju0j +  ψju1jXij1  +  εij      [9] 

Where: 

Yij is the dependent variable for observatjion 𝑖 in group 𝑗 

Xij1, Xij2 are the predictor variables, 
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u0j , u1j are group − specific random effects, 

β0, β1, β2 𝛽3 are the fixed effects, 

ϕj, ψj   are cluster-specific shrinkage parameters 

the introduction of Xijz  allows the model to capture cluster-specific effects associated with the novel (z) 

aspect, 

εij is the individual − level error term. 

 

Assumptions of Hierarchical Bayesian Shrinkage 

Several assumptions are necessary for the estimates of the model to be reliable and valid. Assumptions of 

Hierarchical Bayesian Shrinkage include: 

1. The model assumes a hierarchical structure, where parameters are organized into different levels or 

clusters (e.g., individual-level, individual, and cluster-level parameters). By allowing for the 

borrowing of information across groups, this assumption facilitates the generation of more consistent 

and standardized estimates - an essential valuable feature when there are insufficient observations 

within particular units or groups. 

2. The clusters and levels in the hierarchy are assumed to be exchangeable, which implies that the 

statistical properties of one cluster are assumed to be identical to any other cluster. The exchangeability 

assumption is foundational for pooling information across clusters. Information sharing makes it 

possible to estimate group-specific parameters more accurately by borrowing strength from other 

clusters when data within the specific cluster is/are limited. 

3. The data distributions of the random effects at the cluster level are assumed to be normally distributed; 

that is the assumption is necessary when using shrinkage methods (Gaussian shrinkage priors). 

Normality makes the model so easy to control and allows for closed-form solutions. It also facilitates 

the prediction and interpretation of the hierarchical shrinkage process. 

4. The variance of the random effects is homogeneous across all clusters. The assumption of homogeneity 

is a simplifying device in the model and prevents the shrinkage procedures from overly favouring one 

particular cluster. This assumption can often be relaxed for more flexible models. 

5. Each cluster has enough observations to inform the estimation of group-level parameters adequately. 

When the number of observations is too small in a cluster or unit, hierarchical shrinkage may not result 

in much improvement and regularisation; the estimates might be dominated by the prior. 

6. Assuming independence among observations within each cluster and across the hierarchies is 

necessary for maintaining the meaningfulness of the hierarchical structure and accurate differentiation 

between variability within- versus between groups. 

 

Assumptions Underlying Hierarchical Modelling 

For hierarchical Bayesian modelling to perform well, it is essential not to ignore the underlying assumption 

which provides a concrete foundation. Avoiding the violation of the underlying assumption is by 

employing diagnostic tools to verify whether the model is devoid of bias estimates or inefficient parameter 

estimates. The following assumptions underlying hierarchical modelling need to be considered. The 

observations within each level of the hierarchy are assumed to be independent. This assumption is 

necessary for the model to accurately estimate the within-level and between-level variation by the 

researchers doing empirical validation. The random effects at each hierarchy level are assumed to be 

normally distributed; this assumption allows the model to estimate the mean and variance of the random 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250345511 Volume 7, Issue 3, May-June 2025 9 

 

effects. The relationships between the dependent and explanatory variables, at both the individual and the 

group levels, are assumed to be linear. This assumption means that the effects of the predictors of the 

outcome are additive.  The variance of the dependent variable is assumed to be constant across different 

levels of the hierarchy. This assumption ensures that the model captures the variation in the outcome 

variable. The variance of the random effects at each hierarchy level is assumed to be constant. This 

assumption implies that the variation between groups is consistent across the hierarchy levels. The random 

effects at each level are assumed to be normally distributed with a mean of zero. The assumption allows 

the model to estimate the variation in the outcome variable attributable to the different levels of the 

hierarchy. 

 

Performance and Interpretability 

Table 1 shows the model selection output of which the best two predictors  were selected to test the 

performance of both the standard and unique Bayesian models. A composite variable was formed labelled 

Contextual Variable Factor (CVF) which is represented as ‘Xijz’ in the unique model which is one of the 

variables introduced to the model with insurance, education, household income, marital status, religion 

and environmental factor as the inclusion variables.  The Least Absolute Shrinkage and Selection Operator 

(Lasso) as a variable selection technique was employed to select the variables that formed the CVF(z) and 

formation of other variables to contest for the model selection based on their posterior mean values. It is 

worthy to note that, all the aforementioned variables were used in the formation of z because the variables 

indicated consistent inclusion across the iterations processes which makes them significant for inclusivity.  

On model selection criteria, the Hierarchical Bayesian Information Criterion (HBIC) was employed to 

select Age and Religious Factor from among the factors Socio-economic Factor (SEF), Age, 

Environmental Factor, and Religious Factor. The HBIC reassesses the accuracy versus complexity trade-

off to tackle the centralized hierarchical learning issue and Age and Religious Factor were found to have 

the lowest HIC Scores respectively. 

 

Table 1; HBIC Model Selection of Maternal Health Indicators 

Predictors HIC 

Age 

Religious Factor 

Socio-economic Factor (SEF) 

Environmental Factor 

22688.21 

22688.21 

22855.84 

22866.72 

Source: R Software output from PMA Data, 2025 

 

Table 2 illustrates the test performance of the standard and the unique models based on their statistical 

indexes.  The test performance is to determine whether the unique model outperforms the standard model 

using a real-world dataset considering the age and religious factor of mothers influences on the general 

health of mothers using Performance Monitoring for Action (PMA) dataset, 2022. 
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Table 2; Test of Performance of the Standard and Unique Model 

Indicator Standard Model Unique Model p-value 

 Estimate (SE) Estimate (SE)  

REML Criterion 22117.3 22112.8  

Fixed Effects    

Intercept 1.8286 (0.0534) 1.60 (0.0500)  

T - statistic 34.240 32.1  

CVF or ‘Xijz’ Not Present -0.0505 (0.0127) < 0.01 

Age 0.0874 (0.0112) 0.008 (0.0012) 
< 0.01 

T - statistic 7.808 6.58 

Religious Factor 0.0311 (0.0096) 0.0282 (0.0096) 
<0.05 

T - statistic 3.251 2.94 

Correlation 0.57 -0.00514  

Random Effects    

County V = 0.0270 (0.1643) V = 0.135 (0.57)  

Age V = 0.0009 (0.0307) V = 0.00328 (0.057)  

Residual V = 0.4303 (0.656) V = 0.656 (0.810)  

Source: R Software output from PMA Data 

 

It is realised in terms of model fitness in table 2 that, both models have very similar Restricted (Residual) 

Maximum Likelihood (REML) criteria (22117.3 vs. 22112.8), suggesting comparable fit to the data. The 

difference of 4.5 magnitude fitness over the standard model portrays how the unique model outperforms 

the standard one. The rule of thumb stipulates that a REML point of 2 indicates a significant difference. 

REML fitness of 2 points lower of comparable hierarchical models portrays a significant impact especially 

with nested models (West et al., (2015); Zuur et al. (2009)). The study revealed that the unique model’s 

Contextual Variable Factor (CVF) is significant with a negative effect unlike the standard Bayesian 

hierarchical model where the Standard Bayesian model only included maternal age and religion as 

significant predictors.  The CVF provides additional insights regarding how contextual factors affect 

general health of mothers beyond just age and religion. 

 

Fixed Effects 

The slightly higher intercept in the standard model (1.8286) suggests it accounts for higher baseline 

general health of mothers compared to the model with the contextual variable (i.e. unique model). The 

Age factor's influence is smaller in the unique variable model (0.008) compared to the standard model 

(0.0874) although they are all significant. This demonstrates that the inclusion of the contextual variable 

has absorbed much variability that was initially attributed to the Age factor. The religious factor's effect is 

slightly reduced in the unique variable model, indicating it has less explanatory power when the contextual 

variable is included. The contextual variable (CVF) has a statistically significant negative effect, 

suggesting it plays a pivotal role in shaping general health conditions of mothers, potentially competing 

with other variables in explaining variance. 

 

Random Effects 

The unique Bayesian model (0.135) postulated in table 2 shows greater variability in general health of  
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mothers across counties as against the standard model (0.027). This indicates that the introduction of 

contextual variable amplifies differences at the county level. The Age Factor exhibits slightly greater 

variability in the unique variable model (0.00328), suggesting the Contextual Variable Factor interacts 

with Age factors across counties. Residual variance is larger in the unique variable model (0.656), 

suggesting that the contextual variable factor introduces complexity, leaving more unexplained variance 

in the data. 

The correlation between the intercept and the Age factor in the unique model is -0.00514, indicating a 

near-zero relationship. This contrasts with the standard model, where no correlation is explicitly 

mentioned, implying less interaction between random effects in the standard model. 

 

Comparison and Implications of Performance 

The study found that the standard Bayesian model shows smaller variance and residuals values, suggesting 

that it is more stable and parsimonious. This implies that the standard model provides a more 

straightforward interpretation (simple model), which is suitable for general applications where contextual 

variables are not considered and complexity. However, the unique Bayesian hierarchical model introduces 

higher variability and greater complexity, indicating that the contextual variable explains new dimensions 

of variance that are not captured by the standard Bayesian model. The contextual variable (Xijz) has a 

significant negative effect on general health conditions of mothers. Its inclusion shifts the contribution of 

other factors, Age and religious factors, implying that the ‘Xijz’ captures some context-specific 

determinants of general health of mothers that were previously unexplained in the standard model. The 

unique model highlights the importance of contextual factors, such as marital status, household income, 

environmental or societal influences, which can be critical for policy-making and targeted interventions 

at the local level or communities. The results suggest that the unique Bayesian hierarchical model 

introduced in this study outperformed the standard Bayesian hierarchical model regarding accuracy, 

interpretability, scalability, and regularisation through shrinkage parameters and contextual variable (Xijz). 

The negative value from ‘Xijz’ (-0.0505) even further demonstrates the model’s ability to mitigate 

unobserved heterogeneity, thus demonstrating the model’s robustness and reliability. The adaptive and 

Laplace priors activeness in the random intercept’s variance (0.135) and Age factor (0.00328) suggest 

enhancement in estimating group-level variations, proving the model’s versatility. The inclusion of both 

fixed and random effects demonstrates that the unique model can be utilized for analyses on different 

scales from national to community, overcoming the limitations of standard Bayesian models. The unique 

hierarchical model characterized in this study mitigates the concerns stated in Zong & Bradley (2023) 

which pertains to the underspecified model’s lack of simplicity and broad applicability to varying datasets. 

The unique Bayesian hierarchical model introduces a contextual variable (Xijz), providing a mechanism to 

account for unobserved heterogeneity. This feature simplifies model application by addressing 

community-specific effects, as shown in the significant and negative ‘Xijz’ estimate (-0.0505, p<0.01) 

reinforcing the model’s purpose. The inclusion of ‘Xijz’ to the study allows to analyze context-specific 

phenomena (i.e. healthcare and other socioeconomic interventions), making the model adaptable for 

different scenarios (i.e. national, urban and rural). Also, Gómez-Méndez & Chainarong (2023) limitation 

which was the inability of previous models to account for group-specific heterogeneity using cluster-

specific random effects and shrinkage parameters. The random effects for county intercepts (0.135) and 

Age factor (0.00328) demonstrate the model’s ability to capture heterogeneity. It was discovered that, the 

correlation between intercepts and Age factor (−0.00514) highlights the significant relationships observed 
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across groups. This approach enables better regularization of group-specific effects in sparsely populated 

clusters (Counties), allowing for more precise identification of unique characteristics (i.e. differences 

between rural and urban counties). Lastly, Porter et al. (2022) limitations which was separately modelling 

fixed and spatial effects limited the robustness of spatial dependencies in previous models are addressed 

by integrating both fixed and random effects, the unique model accounts for spatial dependencies and 

covariate influences simultaneously. The fixed effects (Age and religious factors) capture most essential 

influences, while random effects account for region-specific effects. This integration mitigates the problem 

of spatial confounding and enhances the reliability of regional policy interventions, most especially for 

contextually influenced factors like socioeconomic, healthcare or education access. 

 

Conclusion 

The findings confirm that the Unique Bayesian Hierarchical Model is a significant advancement over the 

Standard Model. By the introduction of shrinkage parameters ϕj and ψj and a unique contextual variable 

(Xijz), the Unique Model demonstrated superior performance in terms of model fit, interpretability, and 

handling heterogeneity. These advancements make the Unique Bayesian hierarchical Model a powerful 

tool for analyzing hierarchical data across diverse settings. Also, the innovative model (unique model) 

outperforms the standard model by improving accuracy, interpretability, scalability, and regularization. 

The study demonstrated that both models generally meet the assumptions for Bayesian hierarchical 

modelling and shrinkage. The unique Bayesian hierarchical model postulated has the ability to address 

limitations in prior literature by incorporating contextual variables (Xijz), adaptive shrinkage priors, and a 

flexible hierarchical structure. These features make the model a powerful tool for analyzing complex 

relationships and dependencies, particularly in spatial and group-specific contexts. Lastly, combining 

fixed and random effects improves the model's predictive capacity for health outcomes, making it ideal 

for counties or regions with sparse data or significant variability. 

 

5.3 Recommendations 

Based on the study objectives and findings, the following key interventions are recommended: 

• The significant residual variance suggests further research is needed to explore individual factors 

affecting the health of women in Kenya, such as education, lifestyle choices, or cultural practices that 

influence maternal health. 

• Opinion leaders in the communities and counties must help address contextual factors that influence 

maternal health and pose challenges such as poverty, housing, etc... which have negative effect on the 

well being of mothers. 

• Encourage community and religious institutions to promote maternal health, particularly in areas with 

limited healthcare access as this will reduce mortality on the mothers and inborn. 

• The model's flexibility ensures it can be applied across diverse datasets, from national surveys to 

localized studies. This adaptability is crucial for researchers and policymakers aiming to address 

context-specific health disparities. 

• Insights into the contextual variable Xijz allow policymakers to identify and target region-specific 

needs, such as designing tailored healthcare programs in counties with unique challenges. 

• Researchers and practitioners should include contextual variables like z to capture group- or region-

specific effects in hierarchical data because of geographical differences. This can improve the 

identification of critical factors influencing maternal health outcomes in different areas (counties). 
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• Shrinkage parameters ϕj  and ψj  should be utilized in hierarchical models to enhance regularization, 

reduce overfitting, and improve scalability in large or complex datasets which improve the 

transparency of a model forecast. 
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