

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 1

CodeForesight: AI – Powered Learning and

Coding Assistant

Om Awari1, Serene D’Souza2, Gaurav Kakad3, Nikita Khuspe4,

Pratima Patil5

1,2,3,4Student, Department of Information Technology, Trinity Academy of Engineering, Pune
5Professor, Department of Information Technology, Trinity Academy of Engineering, Pune

Abstract

The increasing complexity of cybersecurity concepts poses a challenge for learners and professionals who

seek clear, concise, and visual explanations. This paper presents CodeForesight, an AI-powered learning

and coding assistant designed to generate visual representations and theoretical explanations of

cybersecurity topics based on user prompts. Traditional learning methods often lack interactivity and

adaptability to individual learning styles, especially when dealing with technical subjects like

cybersecurity. Existing AI tools provide text-based assistance but rarely offer simultaneous visual support

tailored to the query context. CodeForesight addresses this gap by delivering customized visual aids,

helping users grasp abstract security mechanisms more intuitively. This dual-modality approach aims to

improve cognitive retention and foster a deeper conceptual understanding. The system leverages a fine-

tuned LLama model to provide responses with added capabilities for diagrammatic output and natural

language processing. We describe the model training pipeline, data sources, architectural design, and

interface implementation. Results indicate high user satisfaction and meaningful learning enhancement

through visual outputs. This research contributes to the field of educational AI by integrating generative

models into cybersecurity pedagogy.

Keywords: CodeForesight, Cybersecurity education, Generative AI, LLaMA model, Visual explanation,

Educational assistant, Diagram generation, Natural language processing, Fine-tuned language model

1. Introduction

The continuous evolution of artificial intelligence (AI) and cybersecurity has introduced innovative

avenues for transforming the learning experience in technical education. Despite these advancements,

students often encounter significant difficulties in understanding abstract cybersecurity theories,

conceptualizing network mechanisms, and correlating theoretical knowledge with practical

implementation. These learning challenges highlight the need for a more intuitive and supportive

educational platform tailored to complex technical domains. To address these issues, we introduce

CodeForesight, an AI-powered educational assistant specifically developed to enhance students’

comprehension of cybersecurity concepts through dynamic explanations and interactive visualizations.

Traditional instructional approaches frequently struggle to bridge the gap between theoretical abstraction

and real-world application, leaving learners overwhelmed by the complexity of topics such as encryption,

attack frameworks, and network security protocols. CodeForesight leverages large language models

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 2

(LLMs) and advanced prompt engineering strategies to offer real-time assistance by generating theoretical

explanations and visual representations like flowcharts, data flow diagrams, and system architectures. This

integration enables students to explore cybersecurity topics in a more engaging and digestible format. The

platform emphasizes strengthening foundational conceptual knowledge—a critical skill set for students in

cybersecurity and software development. The platform offers a webbased interface that facilitates user

interaction through natural language prompts. Once a prompt is entered, the system generates a Graphviz-

based diagram and a corresponding textual explanation tailored to the user’s learning goal. This

dualmodality design fosters improved conceptual retention and supports students in developing analytical

skills essential for navigating the complexities of cybersecurity. Furthermore, its cloud-based accessibility

ensures seamless use across devices without the need for local installations, thus promoting an

uninterrupted, guided learning experience. By offering contextualized visual and textual content,

CodeForesight enhances students’ capacity for independent learning and critical thinking. It bridges the

gap between traditional textbook-based education and the demands of contemporary technical problem-

solving. As AI continues to influence education and cybersecurity, CodeForesight aims to empower future

professionals with tools that adapt to evolving learning needs. The system architecture of CodeForesight

illustrates the complete workflow from user input on the web interface to the model-generated response,

as shown in the figure.

Fig. 1. CodeForesight System Architecture

2. Related Work

Recent advances in educational technology have seen large language models (LLMs) increasingly used to

automate responses to student inquiries and to generate source code. Despite these successes, the majority

of such tools remain focused on text-based assistance and do not adequately support visual learning—

which is crucial for mastering intricate topics like cybersecurity. The LLaMA (Large Language Model

Meta AI) series represents a notable open alternative to closed-source, largescale models. By striking a

pragmatic balance between computational efficiency and output quality, LLaMA models are well suited

for adaptation to specialized domains. In CodeForesight, we employ a fine-tuned variant of LLaMA that

not only produces textual explanations but also generates diagram code in response to user prompts. To

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 3

make fine-tuning more practical on modest hardware, we integrate parameterefficient techniques such as

Low-Rank Adaptation (LoRA) and quantized low-rank adaptation (QLoRA) during our training pipeline.

Prompt-driven coding frameworks have illustrated how carefully designed prompts can accelerate the

development of software snippets. However, these frameworks generally overlook the incorporation of

visual elements and lack deep domain awareness. While diffusion-based architectures have been trialed

for generating illustrative content, their potential for creating instructional diagrams tailored to pedagogy

remains largely untapped. To date, few AI-driven educational platforms deliver an integrated experience

combining natural language generation, structured diagram creation, and domain-specific expertise.

CodeForesight fills this void by fusing NLP capabilities with automated diagram synthesis, yielding a

dual-modality learning environment customized for cybersecurity education. This integrated approach

empowers learners with instantaneous textual and visual guidance, fostering deeper comprehension and

facilitating self-directed study.

3. Methodology

CodeForesight is designed as an intelligent, web-based educational assistant that leverages artificial

intelligence to facilitate the learning of complex cybersecurity concepts. It does so by interpreting natural

language prompts submitted by users and generating two synchronized outputs: a theoretical explanation

and a corresponding visual representation in the form of a diagram. The system’s architecture integrates

user interaction, prompt processing, model inference, visual rendering, and data management into a

seamless and efficient workflow. The following subsections describe the core components and

implementation strategies of the CodeForesight platform.

3.1. Dataset used in the CodeForesight

The accuracy and relevance of CodeForesight’s responses are underpinned by a meticulously curated

dataset tailored to cybersecurity education. This dataset was specifically designed to reflect real-world

cybersecurity practices and academic frameworks. Each data instance consists of three components: a

natural language Prompt, the corresponding Graphviz Code, and a detailed Explanation. The dataset

covers a wide spectrum of topics such as Security Operations Center (SOC) workflows, threat intelligence

lifecycles, risk assessment models, Zero Trust architecture, incident response procedures, disaster

recovery frameworks, and more. Every entry was manually crafted to ensure high educational value,

contextual clarity, and diagrammatic accuracy. This dual-layered structure enabled the model to

simultaneously learn how to explain and visualize cybersecurity concepts in a consistent and

pedagogically effective manner.

Table 1. CodeForesight Dataset for Finetune

No. Prompt Graphviz Code Explanation

1 Visualize

the Zero

Trust

Security

Model

digraph ZeroTrust { rankdir=TB;

node [shape=box];

Identity_Verification ->

Access_Policy; Access_Policy ->

Resource_Protection;

Resource_Protection ->

Network_Segmentation;

This diagram shows Zero Trust components:

Identity Verification checks all access

attempts, Access Policy defines permissions,

Resource Protection implements controls,

Network Segmentation isolates resources,

and Continuous Monitoring ensures security.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 4

Network_Segmentation ->

Continuous_Monitoring; }

2 Map Secu-

rity Opera-

tions Cen-

ter Work-

flow

digraph SOC { Alert_Generation ->

Triage; Triage -> Investigation; In-

vestigation -> Response; Response -

> Documentation; }

Illustrates SOC workflow from alert genera-

tion through triage, investigation, incident re-

sponse, to final documentation. Shows criti-

cal path for security incident handling.

3 Create In-

cident Re-

sponse

Frame-

work

digraph IR { Preparation -> Detec-

tion; Detection -> Analysis; Analy-

sis -> Containment; Containment ->

Eradication; Eradication -> Recov-

ery; }

Shows incident response lifecycle: Prepara-

tion establishes procedures, Detection identi-

fies incidents, Analysis evaluates impact,

Containment limits damage, Eradication re-

moves threats, Recovery restores systems.

4 Visualize

Data Loss

Prevention

Architec-

ture

digraph DLP { Network -> End-

point; Endpoint -> Storage; Storage

-> Classification; Classification ->

Policy; }

Demonstrates DLP components: Network

monitors data in transit, Endpoint protects

device data, Storage secures stored data,

Classification categorizes data, Policy en-

forces protection rules.

5 Map

Threat In-

telligence

Process

digraph TI { Collection -> Pro-

cessing; Processing -> Analysis;

Analysis -> Dissemination; Dissem-

ination -> Action; }

Shows threat intelligence workflow: Collec-

tion gathers data, Processing normalizes in-

formation, Analysis derives insights, Dis-

semination shares intelligence, Action imple-

ments defenses.

3.2. Model Initialization

For the core architecture of CodeForesight, we selected Meta’s LLaMA 3 (Large Language Model Meta

AI) as the foundational pre-trained model because of its cutting-edge capabilities in natural language

understanding and generation. LLaMA 3 introduces notable enhancements over earlier versions, including

improved scalability, deeper contextual awareness, and more efficient token utilization—features essential

for developing an intelligent AI assistant tailored to cybersecurity education. The decision to use LLaMA

3 was motivated by its openly accessible weights, solid transformer-based design, and strong

generalization across a wide range of tasks. It supports processing of multilingual inputs, extended context

windows, and detailed reasoning—capabilities that align perfectly with CodeForesight’s requirements to

comprehend technical prompts, generate code examples, deliver theoretical explanations, and provide

visual elements like diagrams or system architecture flows. Furthermore, LLaMA 3 integrates well with

popular opensource ecosystems such as Hugging Face’s Transformers and PyTorch frameworks, allowing

smooth incorporation into our development workflow. Its flexible and modular architecture enables

domain-specific customization for cybersecurity, where accurate terminology, structured output, and

precise response generation are critical. By grounding our project in LLaMA 3, we established a robust

base model that supports efficient fine-tuning and maintains high-quality outputs across specialized and

complex tasks.

3.3. Fine-Tuning Setup and Process

The LLaMA 3 model underwent fine-tuning to tailor its performance specifically for the objectives of

CodeForesight—namely, producing precise theoretical content alongside Graphviz-based diagram code

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 5

for cybersecurity topics. This adaptation aimed to empower the model to interpret domainfocused prompts

and generate educational materials comprising both explanatory text and code that creates relevant

visualizations, thus enhancing learners’ conceptual understanding.

Training Environment Setup:

To handle the demanding compute requirements of training a large language model, we utilized a high-

performance computing setup featuring NVIDIA A100 GPUs and multi-core CPUs. The training

environment was constructed using Python, leveraging established libraries such as PyTorch and Hugging

Face’s Transformers, which facilitated tokenizer integration, model configuration, training orchestration,

and evaluation. For consistency, scalability, and ease of deployment, the environment was containerized

using Docker and hosted on GPU-enabled cloud platforms. This infrastructure ensured optimal utilization

of resources and enabled flexible experimentation with different training parameters and dataset iterations.

Fine-Tuning Strategy:

The fine-tuning methodology employed a supervised learning paradigm, training LLaMA 3 on a carefully

compiled dataset consisting of user prompts paired with corresponding cybersecurity theoretical

explanations and Graphviz code snippets. These code snippets were designed to generate instructional

diagrams such as flowcharts, attack trees, protocol diagrams, and network models relevant to cybersecurity

concepts queried by users. This deliberate and controlled fine-tuning process enabled the model to

specialize in producing both accurate theoretical content and executable diagram code, effectively

transforming LLaMA 3 into a dependable educational assistant within the CodeForesight platform.

3.4. Evaluation and Validation

To ensure the quality and reliability of the fine-tuned LLaMA 3 model, a multi-metric evaluation approach

was employed. This process assessed the model’s ability to accurately interpret cybersecurity-related

prompts and generate both meaningful textual explanations and corresponding Graphviz code for

educational diagrams. The evaluation phase focused on three main dimensions: visual relevance, semantic

fidelity, and educational value.

• Average CLIP Score: Visual Relevance to Prompt: The CLIP (Contrastive Language–Image

Pretraining) model was used to compute the Average CLIP Score, which measured the alignment

between the cybersecurity-related prompts and the images generated from the model’s Graphviz

output. This metric was crucial in evaluating how well the visual representations reflected the intended

cybersecurity concept described in the user’s prompt. A high CLIP score indicated that the generated

diagram was contextually relevant and accurately depicted structures such as firewalls, attack vectors,

network architectures, or encryption flows, thereby confirming the visual clarity and appropriateness

of the response.

• Average SBERTScore: Semantic Closeness of Textual Explanation: To evaluate the textual portion

of the output, we used SBERTScore, which leverages Sentence-BERT to assess the semantic similarity

between the generated explanation and the original input prompt. This metric was particularly useful

for measuring how effectively the model understood and articulated complex cybersecurity topics.

Unlike traditional surface-level metrics such as BLEU or ROUGE, SBERTScore captures deeper

sentence-level contextual and semantic alignment. This makes it especially suitable for domain-

specific tasks like cybersecurity, where conceptual accuracy and the correct use of technical

vocabulary are crucial. A higher SBERTScore indicated that the generated content was semantically

faithful to the prompt, thus maintaining conceptual integrity.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 6

• Average Human Score: Educational Usefulness: To assess the real-world impact of the system,

particularly its effectiveness in educational settings, we conducted a manual evaluation by

cybersecurity instructors and final-year engineering students. They rated each output based on three

criteria: accuracy of explanation, diagram clarity, and overall usefulness for learning. This qualitative

metric was aggregated into an Average Human Score, which offered insights into the model’s ability

to generate content that is not only technically correct but also pedagogically valuable. This human-

centered evaluation helped validate the system’s role as an AI-powered learning assistant.

3.5. Web-Based Deployment

To ensure accessibility and usability of the CodeForesight system, a complete web-based deployment

architecture was implemented. The system is divided into three main components: the frontend, backend,

and database, all integrated via secure RESTful APIs.

Frontend:

Built using Flutter, the frontend provides a user-friendly interface for submitting prompts and viewing

AIgenerated explanations and diagrams.

Backend:

Implemented in Python, the backend follows a structured three-phase processing pipeline:

• Prompt Classification: Incoming prompts are categorized into types such as flowchart generation,

dataflow diagram, system architecture explanation, or concept visualization.

• Theoretical Explanation Generation: A domain-specific textual explanation is generated to describe

the cybersecurity concept in detail.

• Diagram Generation: Corresponding Graphviz Dot code is generated, rendered into an image, and

encoded into Base64 format for seamless delivery to the frontend.

Database (MongoDB):

Four interconnected collections manage application data:

• Users: Stores user information including hashed credentials and account status.

• Prompts: Logs user-submitted queries with metadata such as category and timestamp.

• Responses: Contains AI-generated explanations and model metadata.

• Images: Stores Dot code and Base64-encoded diagrams for frontend display.

API Integration: RESTful APIs, developed using Flask or FastAPI, enable secure and efficient

communication between frontend and backend. Endpoints support user authentication, prompt

submission, response retrieval, and profile access. JWT-based token authentication and middleware ensure

secure and scalable operations. This modular and efficient deployment design enables realtime interaction,

secure data handling, and effective delivery of AI-driven educational content in the field of cybersecurity

4. Results

To begin using the CodeForesight AI Assistant, users must first create an account on the mobile or web-

based platform. The registration process includes entering basic credentials such as name, email,

password, gender, and mobile number. Upon submission, the user details are stored securely in the

backend database. This step ensures identity verification and personalization of user data within the

application. After successfully registering, users can log in using their registered credentials. The login

system validates the input email or username and password against the stored values in the database. If

the credentials are correct and the user is active, access is granted to the dashboard. If any mismatch occurs

or the user is deactivated, appropriate alerts are shown to the user, preventing unauthorized access.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 7

Fig 2. CodeForesight Application Sign – up and Login Page

Once logged in, the user is directed to the dashboard interface. Here, the user can view their past

interactions through chat history. A prompt input box is provided where users can type their queries or

coding-related prompts. The clean and responsive layout of the dashboard supports real-time

communication with the CodeForesight assistant. The user enters a specific query or task into the prompt

box. These prompts usually relate to cybersecurity topics and may include questions like: “Visualize the

Zero Trust Security Model”}. This allows learners or developers to gain structured visualizations or code

explanations related to cybersecurity architectures and principles.

Fig 3. CodeForesight Application User Dashboard

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 8

After the user submits the prompt, the request is processed through the backend, the AI assistant interprets

the request contextually, queries the knowledge base, and generates a detailed response which is then

returned to the frontend and displayed in a chat-style format. This process occurs seamlessly, to ensure a

smooth user experience.

Fig 4. CodeForesight Application Prompt Processing and AI Response

5. Performance Evaluation

The effectiveness of the CodeForesight: AI-Powered Learning and Coding Assistant was evaluated using

a combination of quantitative and qualitative metrics. The focus was to determine how well the AI-

generated content—both visual and textual—aligns with user prompts, and whether it supports meaningful

learning in the domain of cybersecurity. The following evaluation metrics were used:

• CLIP Score

• SBERTScore

• Human Evaluation

Model CLIP Score SBERTScore Human Score Notes

CodeForesight 0.305 0.673 0.769 Image and Text

generated

ChatGPT

(DALL.E)

0.322 0.641 0.431 Image and Text

generated

Stable Diffusion 0.278 - 0.22 Only Image

generated

Table 2. Comparison of Model Outputs on cybersecurity prompts using CLIP, SBERT and

Human evaluation

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 9

These offer a well-rounded assessment of the assistant’s ability to generate relevant, meaningful, and

educationally valuable content. This multidimensional evaluation ensures that the system is not only

technically accurate but also pedagogically effective in the domain of cybersecurity.

Fig 5. Model Evaluation based on CLIP, SBERT and Human evaluation scores

From the table and visualization:

• CLIP Score: ChatGPT (DALL·E) is slightly ahead.

• SBERTScore: CodeForesight has the highest.

• Human Score: CodeForesight performs best, significantly better than others.

Based on a holistic comparison of CLIP Score (visual-text alignment), SBERTScore (semantic

explanation quality), and Human Evaluation (perceived performance), CodeForesight emerges as the

best-performing model overall for generating both image and textual explanations on cybersecurity

prompts.

6. Conclusion

In this research, we presented CodeForesight, an AI-powered educational assistant designed to assist users

in understanding complex cybersecurity concepts through both textual explanations and visual diagrams.

By fine-tuning a pre-trained LLaMA model and integrating it with a robust web-based system,

CodeForesight generates accurate, domain-specific content, ensuring that users receive both theoretical

insights and visual representations. The implementation of a secure, scalable API and a well-structured

backend ensures seamless interaction between the frontend and model, enhancing the overall user

experience. Evaluation metrics, including CLIP scores, SBERTScore, and human assessments,

demonstrate the system’s effectiveness in generating educationally valuable content. This work paves the

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 10

way for future advancements in AI-driven educational tools for cybersecurity, with potential applications

in automated learning platforms and online training resources.

7. Acknowledgements

We would like to acknowledge all the teachers and friends who helped and assisted us throughout our

project work. First of all, we would like to express our sincere gratitude to our respected guide Mrs. P. R.

Patil for her continuous guidance, support, and encouragement. This project would not have been possible

without her insightful suggestions and valuable ideas. Furthermore, we are deeply thankful to Dr. R. J.

Patil, Principal of Trinity Academy of Engineering, for the continuous support during our project work.

We also extend our heartfelt thanks to all the faculty members of the Information Technology Department

at Trinity Academy of Engineering, Pune, for their cooperation and support. We acknowledge the use of

the LLaMA model by Meta AI for generating code snippets and visual representations to support the

development of the CodeForesight platform, with all responsibility for the final content resting with the

authors. We would like to thank our parents for their unwavering support and inspiration throughout this

journey, as well as our friends for their suggestions, help, and constant encouragement. Finally, we would

like to acknowledge the blessings of the Almighty, whose grace kept our morale high during challenging

times.

References

1. Youjia L., Jianjun S., Zheng Z., “An Approach for Rapid Source Code Development Based on

ChatGPT and Prompt Engineering”, IEEE Access, 2024, 12, 53074–53087.

https://doi.org/10.1109/access.2024.3385682

2. Sunny A., “A Review on Various Methods of Cryptography for Cyber Security”, Journal of Algebraic

Statistics, May 2022. https://publishoa.com/index.php/journal/article/view/1353

3. Shuaib A.W., Areej F.M., Aun Y., Ramesh K., Farhan B.S., “Encryption Techniques and Algorithms

to Combat Cybersecurity Attacks: A Review”, VAWKUM Transactions on Computer Sciences, Jun.

2023, 11 (1), 295–305. https://doi.org/10.21015/vtcs.v11i1.1521

4. Vijayaraghavan M., Chandra M., Imad A., et al., “AI-Assisted Code Authoring at Scale: Fine-Tuning,

Deploying, and Mixed Methods Evaluation”, Proceedings of the ACM on Software Engineering, Jul.

2024, 1 (FSE), 1066–1085. https://doi.org/10.1145/3643774

5. Y. Wang, H. Le, A.D. Gotmare, N. Bui, J. Li, S. Hoi, “CodeT5+: Open Code Large Language Models

for Code Understanding and Generation”, GitHub, May 2023. https://github.com/salesforce/CodeT5-

plus

6. Mohammed L.S., Shafayat H.M., Maisha R.M., Sourov J., Joanna, “An Empirical Study of Code

Smells in Transformer-based Code Generation Techniques”, 2022 IEEE 22nd International Working

Conference on Source Code Analysis and Manipulation (SCAM), Oct. 2022.

https://doi.org/10.1109/scam55253.2022.00014

7. Chanda H., Enda F., Paul C., Kieran F., Deepak Y., “A Comparative Study of Intent Classification

Performance in Truncated Consumer Communication using GPT-Neo and GPT-2”, 2023 International

Conference on Emerging Techniques in Computational Intelligence (ICETCI), Sep. 2023.

https://doi.org/10.1109/icetci58599.2023.10331337

https://www.ijfmr.com/
https://doi.org/10.1109/access.2024.3385682
https://publishoa.com/index.php/journal/article/view/1353
https://doi.org/10.21015/vtcs.v11i1.1521
https://doi.org/10.1145/3643774
https://github.com/salesforce/CodeT5-plus
https://github.com/salesforce/CodeT5-plus
https://doi.org/10.1109/scam55253.2022.00014
https://doi.org/10.1109/icetci58599.2023.10331337

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250345552 Volume 7, Issue 3, May-June 2025 11

8. Toka A.M., Mohamed H.K., Ahmed B.E., Ahmed S.I., “A Proposed Model for Distinguishing Be-

tween Human-Based and ChatGPT Content in Scientific Articles”, IEEE, Aug. 22, 2024. https://iee-

explore.ieee.org/document/10564718

9. Tingshuai C., Ye Y., Bingyang Y., “Application of Prompt Engineering in AIGC — Taking Stable

Diffusion as an Example”, 2024 4th International Conference on Machine Learning and Intelligent

Systems Engineering (MLISE), Jun. 2024, 465–469.

https://doi.org/10.1109/mlise62164.2024.10674412

10. Michael C., Muhammad R., William S., H. Lucky, J.V. Moniaga, “Accuracy and Fidelity Comparison

of Luna and DALL-E 2 Diffusion-Based Image Generation Systems”, IEEE Xplore, 2024. https://iee-

explore.ieee.org/document/10552890

11. Donghao H., Zhenda H., Zhaoxia W., “Performance Analysis of Llama 2 Among Other LLMs”, 2024

IEEE Conference on Artificial Intelligence (CAI). https://doi.org/10.1109/CAI59869.2024.00108

12. Xiao-Yang L., Jie Z., Guoxuan W., Wei T., Ahmed W., “Efficient Pretraining and Finetuning of Quan-

tized LLMs with Low-Rank Structure”, 2024 IEEE Conference on Computational Intelligence.

https://doi.org/10.1109/CIC58760.2024.00098

13. Avik P., Om S., Mallika A., Shek D.S., Anupam T., “Performance Analysis of LoRA Finetuning

Llama-2”, 2023 7th International Conference on Electronics, Materials Engineering Nano-Technology

(IEMENTech), Dec. 2023. https://doi.org/10.1109/iementech60402.2023.10423400

14. Junyi L., Lei Y., Xiaojia L., Li Y., Chun Z., “LLaMA-Reviewer: Advancing Code Review Automation

with Large Language Models through Parameter-Efficient Fine-Tuning”, 2023 IEEE 34th Interna-

tional Symposium on Software Reliability Engineering (ISSRE), Oct. 2023.

https://doi.org/10.1109/issre59848.2023.00026

15. Harshil T., A. Manimaran, “Comprehensive Examination of Instruction-Based Language Models: A

Comparative Analysis of Mistral-7B and Llama-2-7B”, IEEE International Conference on Emerging

Research in Computational Science – ICERCS’23, Dec. 2023.

https://doi.org/10.1109/icercs57948.2023.10434081

16. Hugo T., Thibaut L., Gautier I., et al., “LLaMA: Open and Efficient Foundation Language Models”,

arXiv preprint, Feb. 2023. https://arxiv.org/abs/2302.13971

17. Ashish V., Noam S., Niki P., et al., “Attention Is All You Need”, arXiv preprint, Jun. 2017.

https://arxiv.org/abs/1706.03762

18. Edward H., Yelong S., Phillip W., et al., “LoRA: Low-Rank Adaptation of Large Language Models”,

arXiv preprint, Oct. 2021. https://arxiv.org/abs/2106.09685

19. Tim D., Artidoro P., Luke Z., “QLoRA: Efficient Finetuning of Quantized LLMs”, arXiv preprint,

May 2023. https://arxiv.org/abs/2305.14314

https://www.ijfmr.com/
https://ieeexplore.ieee.org/document/10564718
https://ieeexplore.ieee.org/document/10564718
https://doi.org/10.1109/mlise62164.2024.10674412
https://ieeexplore.ieee.org/document/10552890
https://ieeexplore.ieee.org/document/10552890
https://doi.org/10.1109/CAI59869.2024.00108
https://doi.org/10.1109/CIC58760.2024.00098
https://doi.org/10.1109/iementech60402.2023.10423400
https://doi.org/10.1109/issre59848.2023.00026
https://doi.org/10.1109/icercs57948.2023.10434081
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2305.14314

