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Abstract 

The increasing complexity of cybersecurity concepts poses a challenge for learners and professionals who 

seek clear, concise, and visual explanations. This paper presents CodeForesight, an AI-powered learning 

and coding assistant designed to generate visual representations and theoretical explanations of 

cybersecurity topics based on user prompts. Traditional learning methods often lack interactivity and 

adaptability to individual learning styles, especially when dealing with technical subjects like 

cybersecurity. Existing AI tools provide text-based assistance but rarely offer simultaneous visual support 

tailored to the query context. CodeForesight addresses this gap by delivering customized visual aids, 

helping users grasp abstract security mechanisms more intuitively. This dual-modality approach aims to 

improve cognitive retention and foster a deeper conceptual understanding. The system leverages a fine-

tuned LLama model to provide responses with added capabilities for diagrammatic output and natural 

language processing. We describe the model training pipeline, data sources, architectural design, and 

interface implementation. Results indicate high user satisfaction and meaningful learning enhancement 

through visual outputs. This research contributes to the field of educational AI by integrating generative 

models into cybersecurity pedagogy. 
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1. Introduction 

The continuous evolution of artificial intelligence (AI) and cybersecurity has introduced innovative 

avenues for transforming the learning experience in technical education. Despite these advancements, 

students often encounter significant difficulties in understanding abstract cybersecurity theories, 

conceptualizing network mechanisms, and correlating theoretical knowledge with practical 

implementation. These learning challenges highlight the need for a more intuitive and supportive 

educational platform tailored to complex technical domains. To address these issues, we introduce 

CodeForesight, an AI-powered educational assistant specifically developed to enhance students’ 

comprehension of cybersecurity concepts through dynamic explanations and interactive visualizations. 

Traditional instructional approaches frequently struggle to bridge the gap between theoretical abstraction 

and real-world application, leaving learners overwhelmed by the complexity of topics such as encryption, 

attack frameworks, and network security protocols. CodeForesight leverages large language models 
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(LLMs) and advanced prompt engineering strategies to offer real-time assistance by generating theoretical 

explanations and visual representations like flowcharts, data flow diagrams, and system architectures. This 

integration enables students to explore cybersecurity topics in a more engaging and digestible format. The 

platform emphasizes strengthening foundational conceptual knowledge—a critical skill set for students in 

cybersecurity and software development. The platform offers a webbased interface that facilitates user 

interaction through natural language prompts. Once a prompt is entered, the system generates a Graphviz-

based diagram and a corresponding textual explanation tailored to the user’s learning goal. This 

dualmodality design fosters improved conceptual retention and supports students in developing analytical 

skills essential for navigating the complexities of cybersecurity. Furthermore, its cloud-based accessibility 

ensures seamless use across devices without the need for local installations, thus promoting an 

uninterrupted, guided learning experience. By offering contextualized visual and textual content, 

CodeForesight enhances students’ capacity for independent learning and critical thinking. It bridges the 

gap between traditional textbook-based education and the demands of contemporary technical problem-

solving. As AI continues to influence education and cybersecurity, CodeForesight aims to empower future 

professionals with tools that adapt to evolving learning needs. The system architecture of CodeForesight 

illustrates the complete workflow from user input on the web interface to the model-generated response, 

as shown in the figure. 

 

 
Fig. 1. CodeForesight System Architecture 

 

2. Related Work 

Recent advances in educational technology have seen large language models (LLMs) increasingly used to 

automate responses to student inquiries and to generate source code. Despite these successes, the majority 

of such tools remain focused on text-based assistance and do not adequately support visual learning—

which is crucial for mastering intricate topics like cybersecurity. The LLaMA (Large Language Model 

Meta AI) series represents a notable open alternative to closed-source, largescale models. By striking a 

pragmatic balance between computational efficiency and output quality, LLaMA models are well suited 

for adaptation to specialized domains. In CodeForesight, we employ a fine-tuned variant of LLaMA that 

not only produces textual explanations but also generates diagram code in response to user prompts. To 
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make fine-tuning more practical on modest hardware, we integrate parameterefficient techniques such as 

Low-Rank Adaptation (LoRA) and quantized low-rank adaptation (QLoRA) during our training pipeline. 

Prompt-driven coding frameworks have illustrated how carefully designed prompts can accelerate the 

development of software snippets. However, these frameworks generally overlook the incorporation of 

visual elements and lack deep domain awareness. While diffusion-based architectures have been trialed 

for generating illustrative content, their potential for creating instructional diagrams tailored to pedagogy 

remains largely untapped. To date, few AI-driven educational platforms deliver an integrated experience 

combining natural language generation, structured diagram creation, and domain-specific expertise. 

CodeForesight fills this void by fusing NLP capabilities with automated diagram synthesis, yielding a 

dual-modality learning environment customized for cybersecurity education. This integrated approach 

empowers learners with instantaneous textual and visual guidance, fostering deeper comprehension and 

facilitating self-directed study. 

 

3. Methodology 

CodeForesight is designed as an intelligent, web-based educational assistant that leverages artificial 

intelligence to facilitate the learning of complex cybersecurity concepts. It does so by interpreting natural 

language prompts submitted by users and generating two synchronized outputs: a theoretical explanation 

and a corresponding visual representation in the form of a diagram. The system’s architecture integrates 

user interaction, prompt processing, model inference, visual rendering, and data management into a 

seamless and efficient workflow. The following subsections describe the core components and 

implementation strategies of the CodeForesight platform. 

3.1. Dataset used in the CodeForesight 

The accuracy and relevance of CodeForesight’s responses are underpinned by a meticulously curated 

dataset tailored to cybersecurity education. This dataset was specifically designed to reflect real-world 

cybersecurity practices and academic frameworks. Each data instance consists of three components: a 

natural language Prompt, the corresponding Graphviz Code, and a detailed Explanation. The dataset 

covers a wide spectrum of topics such as Security Operations Center (SOC) workflows, threat intelligence 

lifecycles, risk assessment models, Zero Trust architecture, incident response procedures, disaster 

recovery frameworks, and more. Every entry was manually crafted to ensure high educational value, 

contextual clarity, and diagrammatic accuracy. This dual-layered structure enabled the model to 

simultaneously learn how to explain and visualize cybersecurity concepts in a consistent and 

pedagogically effective manner. 

 

Table 1. CodeForesight Dataset for Finetune 

No. Prompt Graphviz Code Explanation 

1 Visualize 

the Zero 

Trust 

Security 

Model 

digraph ZeroTrust { rankdir=TB; 

node [shape=box]; 

Identity_Verification -> 

Access_Policy; Access_Policy -> 

Resource_Protection; 

Resource_Protection -> 

Network_Segmentation; 

This diagram shows Zero Trust components: 

Identity Verification checks all access 

attempts, Access Policy defines permissions, 

Resource Protection implements controls, 

Network Segmentation isolates resources, 

and Continuous Monitoring ensures security. 
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Network_Segmentation -> 

Continuous_Monitoring; } 

2 Map Secu-

rity Opera-

tions Cen-

ter Work-

flow 

digraph SOC { Alert_Generation -> 

Triage; Triage -> Investigation; In-

vestigation -> Response; Response -

> Documentation; } 

Illustrates SOC workflow from alert genera-

tion through triage, investigation, incident re-

sponse, to final documentation. Shows criti-

cal path for security incident handling. 

3 Create In-

cident Re-

sponse 

Frame-

work 

digraph IR { Preparation -> Detec-

tion; Detection -> Analysis; Analy-

sis -> Containment; Containment -> 

Eradication; Eradication -> Recov-

ery; } 

Shows incident response lifecycle: Prepara-

tion establishes procedures, Detection identi-

fies incidents, Analysis evaluates impact, 

Containment limits damage, Eradication re-

moves threats, Recovery restores systems. 

4 Visualize 

Data Loss 

Prevention 

Architec-

ture 

digraph DLP { Network -> End-

point; Endpoint -> Storage; Storage 

-> Classification; Classification -> 

Policy; } 

Demonstrates DLP components: Network 

monitors data in transit, Endpoint protects 

device data, Storage secures stored data, 

Classification categorizes data, Policy en-

forces protection rules. 

5 Map 

Threat In-

telligence 

Process 

digraph TI { Collection -> Pro-

cessing; Processing -> Analysis; 

Analysis -> Dissemination; Dissem-

ination -> Action; } 

Shows threat intelligence workflow: Collec-

tion gathers data, Processing normalizes in-

formation, Analysis derives insights, Dis-

semination shares intelligence, Action imple-

ments defenses. 

 

3.2. Model Initialization 

For the core architecture of CodeForesight, we selected Meta’s LLaMA 3 (Large Language Model Meta 

AI) as the foundational pre-trained model because of its cutting-edge capabilities in natural language 

understanding and generation. LLaMA 3 introduces notable enhancements over earlier versions, including 

improved scalability, deeper contextual awareness, and more efficient token utilization—features essential 

for developing an intelligent AI assistant tailored to cybersecurity education. The decision to use LLaMA 

3 was motivated by its openly accessible weights, solid transformer-based design, and strong 

generalization across a wide range of tasks. It supports processing of multilingual inputs, extended context 

windows, and detailed reasoning—capabilities that align perfectly with CodeForesight’s requirements to 

comprehend technical prompts, generate code examples, deliver theoretical explanations, and provide 

visual elements like diagrams or system architecture flows. Furthermore, LLaMA 3 integrates well with 

popular opensource ecosystems such as Hugging Face’s Transformers and PyTorch frameworks, allowing 

smooth incorporation into our development workflow. Its flexible and modular architecture enables 

domain-specific customization for cybersecurity, where accurate terminology, structured output, and 

precise response generation are critical. By grounding our project in LLaMA 3, we established a robust 

base model that supports efficient fine-tuning and maintains high-quality outputs across specialized and 

complex tasks. 

3.3. Fine-Tuning Setup and Process 

The LLaMA 3 model underwent fine-tuning to tailor its performance specifically for the objectives of 

CodeForesight—namely, producing precise theoretical content alongside Graphviz-based diagram code 
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for cybersecurity topics. This adaptation aimed to empower the model to interpret domainfocused prompts 

and generate educational materials comprising both explanatory text and code that creates relevant 

visualizations, thus enhancing learners’ conceptual understanding. 

Training Environment Setup: 

To handle the demanding compute requirements of training a large language model, we utilized a high-

performance computing setup featuring NVIDIA A100 GPUs and multi-core CPUs. The training 

environment was constructed using Python, leveraging established libraries such as PyTorch and Hugging 

Face’s Transformers, which facilitated tokenizer integration, model configuration, training orchestration, 

and evaluation. For consistency, scalability, and ease of deployment, the environment was containerized 

using Docker and hosted on GPU-enabled cloud platforms. This infrastructure ensured optimal utilization 

of resources and enabled flexible experimentation with different training parameters and dataset iterations. 

Fine-Tuning Strategy: 

The fine-tuning methodology employed a supervised learning paradigm, training LLaMA 3 on a carefully 

compiled dataset consisting of user prompts paired with corresponding cybersecurity theoretical 

explanations and Graphviz code snippets. These code snippets were designed to generate instructional 

diagrams such as flowcharts, attack trees, protocol diagrams, and network models relevant to cybersecurity 

concepts queried by users. This deliberate and controlled fine-tuning process enabled the model to 

specialize in producing both accurate theoretical content and executable diagram code, effectively 

transforming LLaMA 3 into a dependable educational assistant within the CodeForesight platform. 

3.4. Evaluation and Validation 

To ensure the quality and reliability of the fine-tuned LLaMA 3 model, a multi-metric evaluation approach 

was employed. This process assessed the model’s ability to accurately interpret cybersecurity-related 

prompts and generate both meaningful textual explanations and corresponding Graphviz code for 

educational diagrams. The evaluation phase focused on three main dimensions: visual relevance, semantic 

fidelity, and educational value. 

• Average CLIP Score: Visual Relevance to Prompt: The CLIP (Contrastive Language–Image 

Pretraining) model was used to compute the Average CLIP Score, which measured the alignment 

between the cybersecurity-related prompts and the images generated from the model’s Graphviz 

output. This metric was crucial in evaluating how well the visual representations reflected the intended 

cybersecurity concept described in the user’s prompt. A high CLIP score indicated that the generated 

diagram was contextually relevant and accurately depicted structures such as firewalls, attack vectors, 

network architectures, or encryption flows, thereby confirming the visual clarity and appropriateness 

of the response. 

• Average SBERTScore: Semantic Closeness of Textual Explanation: To evaluate the textual portion 

of the output, we used SBERTScore, which leverages Sentence-BERT to assess the semantic similarity 

between the generated explanation and the original input prompt. This metric was particularly useful 

for measuring how effectively the model understood and articulated complex cybersecurity topics. 

Unlike traditional surface-level metrics such as BLEU or ROUGE, SBERTScore captures deeper 

sentence-level contextual and semantic alignment. This makes it especially suitable for domain-

specific tasks like cybersecurity, where conceptual accuracy and the correct use of technical 

vocabulary are crucial. A higher SBERTScore indicated that the generated content was semantically 

faithful to the prompt, thus maintaining conceptual integrity. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250345552 Volume 7, Issue 3, May-June 2025 6 

 

• Average Human Score: Educational Usefulness: To assess the real-world impact of the system, 

particularly its effectiveness in educational settings, we conducted a manual evaluation by 

cybersecurity instructors and final-year engineering students. They rated each output based on three 

criteria: accuracy of explanation, diagram clarity, and overall usefulness for learning. This qualitative 

metric was aggregated into an Average Human Score, which offered insights into the model’s ability 

to generate content that is not only technically correct but also pedagogically valuable. This human-

centered evaluation helped validate the system’s role as an AI-powered learning assistant. 

3.5. Web-Based Deployment 

To ensure accessibility and usability of the CodeForesight system, a complete web-based deployment 

architecture was implemented. The system is divided into three main components: the frontend, backend, 

and database, all integrated via secure RESTful APIs. 

Frontend: 

Built using Flutter, the frontend provides a user-friendly interface for submitting prompts and viewing 

AIgenerated explanations and diagrams. 

Backend: 

Implemented in Python, the backend follows a structured three-phase processing pipeline: 

• Prompt Classification: Incoming prompts are categorized into types such as flowchart generation, 

dataflow diagram, system architecture explanation, or concept visualization. 

• Theoretical Explanation Generation: A domain-specific textual explanation is generated to describe 

the cybersecurity concept in detail. 

• Diagram Generation: Corresponding Graphviz Dot code is generated, rendered into an image, and 

encoded into Base64 format for seamless delivery to the frontend. 

Database (MongoDB): 

Four interconnected collections manage application data: 

• Users: Stores user information including hashed credentials and account status. 

• Prompts: Logs user-submitted queries with metadata such as category and timestamp. 

• Responses: Contains AI-generated explanations and model metadata. 

• Images: Stores Dot code and Base64-encoded diagrams for frontend display. 

API Integration: RESTful APIs, developed using Flask or FastAPI, enable secure and efficient 

communication between frontend and backend. Endpoints support user authentication, prompt 

submission, response retrieval, and profile access. JWT-based token authentication and middleware ensure 

secure and scalable operations. This modular and efficient deployment design enables realtime interaction, 

secure data handling, and effective delivery of AI-driven educational content in the field of cybersecurity 

 

4. Results 

To begin using the CodeForesight AI Assistant, users must first create an account on the mobile or web-

based platform. The registration process includes entering basic credentials such as name, email, 

password, gender, and mobile number. Upon submission, the user details are stored securely in the 

backend database. This step ensures identity verification and personalization of user data within the 

application. After successfully registering, users can log in using their registered credentials. The login 

system validates the input email or username and password against the stored values in the database. If 

the credentials are correct and the user is active, access is granted to the dashboard. If any mismatch occurs 

or the user is deactivated, appropriate alerts are shown to the user, preventing unauthorized access. 
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Fig 2. CodeForesight Application Sign – up and Login Page 

 

Once logged in, the user is directed to the dashboard interface. Here, the user can view their past 

interactions through chat history. A prompt input box is provided where users can type their queries or 

coding-related prompts. The clean and responsive layout of the dashboard supports real-time 

communication with the CodeForesight assistant. The user enters a specific query or task into the prompt 

box. These prompts usually relate to cybersecurity topics and may include questions like: “Visualize the 

Zero Trust Security Model”}. This allows learners or developers to gain structured visualizations or code 

explanations related to cybersecurity architectures and principles. 

 

 
Fig 3. CodeForesight Application User Dashboard 
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After the user submits the prompt, the request is processed through the backend, the AI assistant interprets 

the request contextually, queries the knowledge base, and generates a detailed response which is then 

returned to the frontend and displayed in a chat-style format. This process occurs seamlessly, to ensure a 

smooth user experience. 

 

 
Fig 4. CodeForesight Application Prompt Processing and AI Response 

 

5. Performance Evaluation 

The effectiveness of the CodeForesight: AI-Powered Learning and Coding Assistant was evaluated using 

a combination of quantitative and qualitative metrics. The focus was to determine how well the AI-

generated content—both visual and textual—aligns with user prompts, and whether it supports meaningful 

learning in the domain of cybersecurity. The following evaluation metrics were used: 

• CLIP Score 

• SBERTScore 

• Human Evaluation 

Model CLIP Score SBERTScore Human Score Notes 

CodeForesight 0.305 0.673 0.769 Image and Text 

generated 

ChatGPT 

(DALL.E) 

0.322 0.641 0.431 Image and Text 

generated 

Stable Diffusion 0.278 - 0.22 Only Image 

generated 

Table 2. Comparison of Model Outputs on cybersecurity prompts using CLIP, SBERT and 

Human evaluation 
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These offer a well-rounded assessment of the assistant’s ability to generate relevant, meaningful, and 

educationally valuable content. This multidimensional evaluation ensures that the system is not only 

technically accurate but also pedagogically effective in the domain of cybersecurity. 

 

 
Fig 5. Model Evaluation based on CLIP, SBERT and Human evaluation scores 

 

From the table and visualization: 

• CLIP Score: ChatGPT (DALL·E) is slightly ahead. 

• SBERTScore: CodeForesight has the highest. 

• Human Score: CodeForesight performs best, significantly better than others. 

Based on a holistic comparison of CLIP Score (visual-text alignment), SBERTScore (semantic 

explanation quality), and Human Evaluation (perceived performance), CodeForesight emerges as the 

best-performing model overall for generating both image and textual explanations on cybersecurity 

prompts. 

 

6. Conclusion 

In this research, we presented CodeForesight, an AI-powered educational assistant designed to assist users 

in understanding complex cybersecurity concepts through both textual explanations and visual diagrams. 

By fine-tuning a pre-trained LLaMA model and integrating it with a robust web-based system, 

CodeForesight generates accurate, domain-specific content, ensuring that users receive both theoretical 

insights and visual representations. The implementation of a secure, scalable API and a well-structured 

backend ensures seamless interaction between the frontend and model, enhancing the overall user 

experience. Evaluation metrics, including CLIP scores, SBERTScore, and human assessments, 

demonstrate the system’s effectiveness in generating educationally valuable content. This work paves the 
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way for future advancements in AI-driven educational tools for cybersecurity, with potential applications 

in automated learning platforms and online training resources. 
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