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Abstract 

In this paper, the reductive perturbation method is used to derive the KdV Burgers’ equation in dusty 

plasmas in the presence of the Boltzmann distribution of electrons and ions and charged dust grains. A 

numerical solution to the KdV Burgers’ equation has been obtained by using the explicit finite 

difference method, and the solitary and shock structures have been studied at various values of the 

dispersion coefficient and the dissipation coefficient. A comparison of solitary and shock structures is 

also shown by plotting the analytical and numerical solutions. The accuracy and efficiency of the present 

method have been evaluated by comparing the absolute error of the numerical results obtained with the 

analytical solution. An analysis of Von Neumann stability is conducted and it shows that the scheme is 

unconditionally stable. 
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1. Introduction 

The branch of exploring the nonlinear wave phenomena propagating through dusty plasma has been the 

fastest-growing branch in recent years since dusty plasma is essential for understanding various forms of 

collaborative processes in the space environment, including the lower and upper mesospheres, 

radiofrequency plasma discharge, cometary tails, planetary rings, plasma crystals, asteroid zones, 

planetary magnetosphere, interplanetary spaces, interstellar medium, and the environment on the Earth, 

etc. [1,2].The appearance of unusual electrostatic wave types, such as solitary or shock waves like dust 

acoustic waves (DAWs) [3],dust ion acoustic waves (DIAWs) [4],and dust lattice waves (DLWs),[5] is 

thought to be caused by the presence of charged dust grains, which are typically much larger and heavier 

than the plasma particle in a two-component electron ion plasma. There are several uses for the 

propagation of nonlinear waves, particularly solitary or shock waves [6, 7], in space as well as in 

laboratory dusty plasmas [8, 9]. To analyse the properties of solitary and shock waves in dusty plasmas, 

the KdVB equation has therefore been extensively employed [10, 11, 12, 13, 14]. Exploring the modest 

influences of dispersion, dissipation, and nonlinearity in waves propagating through a liquid-filled 

elastic tube results in the formulation of the KdV Burgers’ equation, as originally introduced by Su and 

Gardner [15]. The Korteweg-de Vries Burgers’ (KdVB) equation is the best description of a medium 

with considerable dissipative effect and dispersion, which favours favours the generation of both shock 

waves and solitary waves. The Burgers’ term in the nonlinear KdVB equation results from dissipative 

phenomena such as wave-particle interactions, turbulence, dust charge fluctuations in a dusty plasma, 
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multi-ion streaming, Landau damping, anomalous viscosity, etc [16, 17, 18]. Typically, the Burgers’ 

equation [19] and the KdV equation [20] are combined to form the Korteweg-deVries Burgers’(KdVB) 

equation. 

The Korteweg-de Vries-Burgers’(KdV- Burgers’) equation is a fundamental nonlinear partial differential 

equation that models various phenomena,including fluid dynamics and plasma physics.Numerous 

authors have studied numerical methods for solving KdVB equations over the past few decades. 

Parumasur et al. [21] introduced the orthogonal collocation on finite elements (OCFE) method,utilizing 

quadratic and cubic B-splines with quasilinearization. This approach is subsequently applied to solve 

Burgers’ equation, along with the modified Burgers’ and KdV–Burgers’ equations. 

Cao et al. [22] compared the space-time polynomial particular solutions method (ST-MPPS) to the 

Fourier spectral method for solving the KdV and KdV–Burgers equations across different final 

times.Ahmad et al [23] proposed an improved version of the Variational Iteration Algorithm-II (VIA-II), 

specifically designed to solve nonlinear evolution equations such as the Burgers equation, Korteweg–de 

Vries equation, and Korteweg–de Vries-Burgers equation.Koroche and Chemeda [24] introduced a 

sixth-order compact finite difference method to solve the one-dimensional KdV-Burgers equation.Datta 

et al. [25] developed numerical solutions for the KdV and KdV-Burger equations using an innovative 

approach based on the differential quadrature method. Chentouf and Guesmia [26] examined the 

stability and well-posedness of the KdV Burgers and Kuramoto-Sivashinsky equations, highlighting 

their applicability to modeling long-term behavior in plasma systems. Their work provides insights into 

the mathematical properties essential for simulating sustained dynamics in plasma environments.El-

Tantawy et al. [27] examines solutions to the damped nonplanar KdV-Burgers equation using homotopy 

perturbation methods, analyzing nonlinear structures in strongly coupled dusty plasmas.Kumar and 

Jana[28] investigated approximate analytical solutions for solitons and shock waves in the damped 

Korteweg-de Vries (DKdVB) Burgers’ model, specifically considering the effects of acoustic dust-ion 

particles. Their study contributes to understanding the complex dynamics of wave interactions in dusty 

plasma environments.Ballav et al [29] derived the KdV–Burger equation, the investigation of shock 

fronts in plasma caused by explosive events associated with Gamma-Ray Bursts (GRBs) takes place, 

providing insight into a variety of space plasma phenomena. Solutions are achieved by applying the” 

hyperbolic-tangent method” in addition to the” Cole-Hoff transformation,” which enables a detailed 

examination of the dynamic properties of shock solitons. Shargatov et al [30] suggested the Korteweg-de 

Vries-Burgers equation to explore traveling wave solutions. Dissipation coefficients with a smoothed 

step-like profile, which fluctuate in both space and time, are included in this equation. Understanding the 

effects of small-scale dissipation and dispersion processes is emphasized, especially in high-gradient 

zones.Tanwar and Wazwaz [31] examine the nonlinear behavior of ion acoustic waves in a plasma 

composed of superthermal electrons and isothermal positrons.They analyze the KdV–Burgers’ equation 

with dissipation in dusty plasmas, constructing Lie symmetries, infinitesimal generators, and 

commutation relations based on the invariance properties of Lie group transformations.Korkut et al. [32] 

proposed a novel approach that combines a mesh-free technique, known as the Taylor wavelet method, 

with the Euler method to approximate solutions to 

the general form of the KdV-Burgers’ equation.Roy et al. [33] investigate progressive solitary and shock 

solutions for dust-ion-acoustic waves (DIAWs) in a collisional, unmagnetized dusty plasma. This plasma 

consists of negatively charged dust grains, positive ions, neutral particles, and Maxwellian electrons. In 
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this research work, the KdVB equation is numerically solved to examine some important characteristics 

of dust acoustic shock and solitary waves that occur in dusty plasmas. 

The organization of the paper proceeds as follows: The fundamental equations that describe the plasma 

model are covered in Section 2. In Section 2, the modified Burgers’ equation in dusty plasmas is also 

obtained. The existence and uniqueness result of a solution of the KdV Burgers’ equation is described in 

Section 3 The explicit finite difference approach is introduced in Section 4. Stability analysis of the 

numerical scheme is discussed in Section 5. The numerical findings and discussion portion are covered 

in Section 6, and the conclusion is provided in Section 7. 

 

2. Derivation of KdV Burgers’ equation and discussion 

The basic equations, governing the dust charge grains that are in fluid description, the equations of 

continuity and momentum which can be written in the following form: 
𝜕𝑛𝑑

𝜕𝑡
+

∂

∂x
(𝑛𝑑𝑢𝑑) = 0,                                                                                                   (1) 

𝜕𝑢𝑑

𝜕𝑡
+ 𝑢

𝜕𝑢𝑑

𝜕𝑥
+

𝜎𝑑

𝑛𝑑

𝜕𝑝𝑑

𝜕𝑥
= 𝑧𝑑

𝜕𝜙

𝜕𝑥
+ 𝜂

𝜕2𝑢𝑑

𝜕𝑥2 ,                                                             (2) 

𝜕𝑝𝑑

𝜕𝑡
+ 𝑢

𝜕𝑝𝑑

𝜕𝑥
+ 3𝑝𝑑

𝜕𝑢𝑑

𝜕𝑥
= 0,                                                                              (3) 

Supplemented by the Poisson’s equation as 

𝜕2𝜙

𝜕𝑥2 = 𝑧𝑑𝜇𝑛𝑑 + (1 − 𝜇)𝑛𝑒 − 𝑛𝑖,                                                                                (4) 

The electron and ion-density may be described by a Boltzmann distribution i.e. 

𝑛𝑒 = 𝑛𝑒0
𝑒𝑥𝑝(𝜙)                                                                                                         (5) 

𝑛𝑖 = 𝑛𝑖0
𝑒𝑥𝑝(−𝛾𝜙)                                                                                                     (6) 

Where 𝑛𝑑,𝑛𝑒,𝑛𝑖,𝑢𝑑,𝑝𝑑,𝜙,𝑥,𝑡 are the dust particle number density, electron number density, ion number 

density, dust fluid velocity, dust fluid pressure, electrostatics potential, space variable and time, 

respectively and they have been normalized by 𝑛𝑑0
(unperturbed dust particle number 

density),𝑛𝑒0
(unperturbed electron particle number density) and 𝑛𝑖0

(unperturbed ion particle number 

density);𝜇 =
𝑛𝑑0

𝑛𝑖0

,𝛾 =
𝑇𝑒

𝑇𝑖
 ,𝜎𝑑 =

𝑇𝑑

𝑇𝑒
 where 𝑇𝑑,𝑇𝑒,𝑇𝑖 are the temperature for dust, electron and ion.𝜇𝑑 is the 

fluid velocity normalized to the dust acoustic speed 𝐶𝑑 = (
𝑧𝑑𝑛𝑑0𝑒𝜇+3𝜎𝑑𝐾𝐵𝑇𝑒𝑞

𝑚𝑑𝑞
)

1

2
 with 𝑞 = (1 − 𝜇)𝑛𝑒0

+

𝛾𝑛𝑖0
 and 𝐾𝐵,𝑚𝑑 and 𝑧𝑑 being the Boltzmann constant, dust acoustic mass and charged number of dust 

particles.𝑝𝑑 is the pressure normalized to 𝑛𝑑0
𝐾𝐵𝑇𝑑;𝜙 is the electrostatic wave potential normalized by 

(
𝐾𝐵𝑇𝑖

𝑒
),with 𝑒 being the electron charged;the space variable normalized to the dust Debye length 𝜆𝑑 =

(
3𝜎𝑑𝐾𝐵𝑇𝑒𝑚𝑑

4𝜋𝑛𝑑0(𝑧𝑑
2+𝑞𝑒)

)

1

2
 and the time variable is normalized to the dust period 𝜔𝑝𝑑

−1=(
𝑚𝑑

4𝜋𝑛𝑑0𝑧𝑑
2𝑒2

)

1

2
.The coefficient 

of viscosity 𝜂 is a normalized quantity given by 𝜔𝑝𝑚𝜆𝑚
2 𝑚𝑑𝑛𝑑0

. 

The overall charge neutrality condition has been maintained throughout the plasma system by the 

following relation: 

𝑧𝑑𝜇𝑛𝑑0
+ (1 − 𝜇)𝑛𝑒0

= 𝑛𝑖0
                                                                                       (7) 

In order to derive the KdV Burgers’ equation, the following stretched coordinates are used: 

𝜉 = 𝜀
1

2(𝑥 − 𝜆𝑡),𝜏 = 𝜀
3

2𝑡,  𝜂 = 𝜀
1

2𝜂0                                           (8) 
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Where 𝜆 is the phase velocity of the wave along the 𝑥 direction and normalized by acoustic velocity and 

𝜀 is a smallness dimensionless expansion parameter which measuring strength of the dispersion. 

The physical variables of plasma parameters namely 𝑛𝑑,𝑢𝑑,𝑝𝑑,𝜙 are expanded in power series written in 

general form as: 

𝑛𝑑 = 1 + 𝜀𝑛𝑑
(1)

+ 𝜀2𝑛𝑑
(2)

+ 𝜀3𝑛𝑑
(3)

+ ⋯,                                                                    (9) 

𝑢𝑑 = 𝜀𝑢𝑑
(1)

+ 𝜀2𝑢𝑑
(2)

+ 𝜀3𝑢𝑑
(3)

+ ⋯,                                                                        (10) 

𝑝𝑑 = 1 + 𝜀𝑝𝑑
(1)

+ 𝜀2𝑝𝑑
(2)

+ 𝜀3𝑝𝑑
(3)

+ ⋯,                                                                  (11) 

𝜙 = 𝜀𝜙(1) + 𝜀2𝑝𝑑
(2)

+ 𝜀3𝑝𝑑
(3)

+ ⋯,                                                                          (12) 

Substituting Eqs. (8) – (12) into the basic Eqs. (1) – (6), and thereafter, equating the coefficient of lower 

order of 𝜀 

𝑛𝑑
(1)

= − {
(1 − 𝜇)𝑛𝑒0

+ 𝛾𝑛𝑖0

𝑧𝑑𝜇
} 𝜙(1) 

𝑢𝑑
(1)

= −𝜆 {
(1 − 𝜇)𝑛𝑒0

+ 𝛾𝑛𝑖0

𝑧𝑑𝜇
} 𝜙(1) 

𝑝𝑑
(1)

= −3 {
(1 − 𝜇)𝑛𝑒0

+ 𝛾𝑛𝑖0

𝑧𝑑𝜇
} 𝜙(1) 

𝜆2 = 3𝜎𝑑 +
𝑧𝑑

𝑚𝑑
{

𝑧𝑑𝜇

(1−𝜇)𝑛𝑒0+𝛾𝑛𝑖0

}                                                                                 (13) 

For the next higher order of 𝜀,we get 

𝜕𝑛𝑑
(1)

𝜕𝜏
− 𝜆

𝜕𝑛𝑑
(2)

𝜕𝜉
+

𝜕𝑢𝑑
(2)

𝜕𝜉
+

𝜕(𝑛𝑑
(1)

𝑢𝑑
(1)

)

𝜕𝜉
= 0                                                                     (14) 

𝜕𝑛𝑑
(1)

𝜕𝜏
− 𝜆

𝜕𝑢𝑑
(2)

𝜕𝜉
+ 𝜎𝑑

𝜕𝑝𝑑
(2)

𝜕𝜉
=

𝑧𝑑

𝑚𝑑

𝜕𝜙(2)

𝜕𝜉
+

𝑧𝑑𝑛𝑑
(1)

𝑚𝑑

𝜕𝜙(1)

𝜕𝜉
+ 𝜂0

𝜕2𝑢𝑑
(1)

𝜕𝜉2                                   (15) 

𝜕𝑝𝑑
(1)

𝜕𝜏
− 𝜆

𝜕𝑝𝑑
(2)

𝜕𝜉
+ 𝑢𝑑

(1) 𝜕𝑝𝑑
(1)

𝜕𝜉
+ 3𝑝𝑑

(1) 𝜕𝑢𝑑
(1)

𝜕𝜉
+ 3

𝜕𝑢𝑑
(2)

𝜕𝜉
= 0                                              (16) 

𝜕2𝜙(1)

𝜕𝜉2
= 𝑛𝑒0

(1 − 𝜇)𝜙(2) + 𝑛𝑒0
(1 − 𝜇)

1

2
(𝜙(1))

2
+ 𝑧𝑑𝜇𝑛𝑑

(2)
+ 𝛾𝑛𝑖0

𝜙(2) −
𝛾

2
𝑛𝑖0

(𝜙(1))
2
       

(17) 

Eliminating 𝑛𝑑
(2)

,𝑢𝑑
(2)

,𝜙(2),𝑝𝑑
(2)

 from Eqs. (14) – (17) and using Eq. (13), the KdV Burgers’ equation is 

derived as 

𝜕𝜙(1)

𝜕𝜏
+ 𝐴𝜙(1) 𝜕𝜙(1)

𝜕𝜉
+ 𝐵

𝜕3𝜙(1)

𝜕𝜉3 = 𝐶
𝜕2𝜙(1)

𝜕𝜉2                                                          (18) 

Where   𝐴 =
𝑧𝑑𝜇{𝛾2𝑛𝑖0−(1−𝜇)𝑛𝑒0}(𝜆−3𝜎𝑑)−3(𝜆2+𝜎𝑑){(1−𝜇)𝑛𝑒0+𝛾𝑛𝑖0}

2

2𝜆𝑧𝑑𝜇{(1−𝜇)𝑛𝑒0+𝛾𝑛𝑖0}
 

𝐵 =
𝜆2 − 3𝜎𝑑

2𝜆{(1 − 𝜇)𝑛𝑒0
+ 𝛾𝑛𝑖0

}
 

and    𝐶 =
𝜂0

2𝜆
 

The KdVB equation (18) contains both dispersive as well as dissipative terms. A particular type of 

solution of the KdVB equation exhibits the monotonic shock structure. However, it produces a 

dispersive shock wave in plasma when wave breaking due to nonlinearity is balanced by the combined 

action of dispersion and dissipation. In the absence of dissipation, we recover the KdV equation which 

exhibits soliton structure. On the other hand, when dissipation dominates, the shock front exhibits a 
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monotonic transition of the plasma density, while the shock transition is of oscillatory nature when the 

dissipation is weak. 

The stationary shock wave solution of K-dV Burgers’ equation (18) is obtained by using the 

transformation 𝜒 = 𝜉 − 𝑈𝜏 where 𝑈 is the speed of the shock waves. 

The analytical solution of Eq (18) has been obtained using the well-known tanh-method and is given by 

𝜙1(𝜉, 𝜏) =
14𝐵

𝐴
−

12𝐶

5𝐴
𝑡𝑎𝑛ℎ(𝜉 − 𝑈𝜏) +

12𝐵

𝐴
𝑠𝑒𝑐ℎ2(𝜉 − 𝑈𝜏)                     (19) 

This analytical solution elucidates a combination of a soliton wave with a Burgers’ shock wave. 

 

3. Existence and uniqueness of a solution of the KdV Burgers’ equation 

Bouteraa [34] discussed the existence and uniqueness results of a general class of Zakharov– 

Kuznetsov–Burgers’ equation and he utilize the concept of the fixed-point theorem. In In this work, we 

discuss the existence and uniqueness results of the KdV Burgers’ equation. Kuznetsov–Burgers’ 

equation. 

For simplicity, we consider 𝜙1(𝜉, 𝜏) = 𝑢(𝑥, 𝑡) ≅ 𝑢(𝑖∆𝑥, 𝑗∆𝑡) ≅ 𝑢𝑖,𝑗 

The equation (18) can be expressed as 

𝜕𝑢

𝜕𝑡
+ 𝐴𝑢

𝜕𝑢

𝜕𝑥
+ 𝐵

𝜕3𝑢

𝜕𝑥3 = 𝐶
𝜕2𝑢

𝜕𝑥2                                                                                     (20) 

Equation (20) is considered as a combination of the Burgers’ equation and the KdV equation. 

The equation is the standard form of wave equation in which the term 𝐴𝑢
𝜕𝑢

𝜕𝑥
 represents nonlinearity, 

𝐵
𝜕3𝑢

𝜕𝑥3 represents dispersion and 𝐶
𝜕2𝑢

𝜕𝑥2 represents dissipation. 

The analytical solution (19) can be rewritten as 

𝑢(𝑥, 𝑡) =
14𝐵

𝐴
−

12𝐶

5𝐴
𝑡𝑎𝑛ℎ(𝑥 − 𝑈𝑡) +

12𝐵

𝐴
𝑠𝑒𝑐ℎ2(𝑥 − 𝑈𝑡)                                       (21) 

Let us take the initial condition as 

𝑢(𝑥, 0) =
14𝐵

𝐴
−

12𝐶

5𝐴
𝑡𝑎𝑛ℎ𝑥 +

12𝐵

𝐴
𝑠𝑒𝑐ℎ2𝑥                                                                (22) 

The KdV Burgers' equation is given by: 

𝜕𝑢

𝜕𝑡
+ 𝐴𝑢

𝜕𝑢

𝜕𝑥
+ 𝐵

𝜕3𝑢

𝜕𝑥3
− 𝐶

𝜕2𝑢

𝜕𝑥2
= 0,𝑡 ∈ 𝑅+,𝑥 ∈ 𝑅,𝑢(𝑥, 0) = 𝜙                                   (23) 

The integral formulation of the equation is used to prove existence and uniqueness of the KdV Burgers' 

equation and is expressed as: 

𝑢(𝑡) = 𝑊(𝑡)𝜙 −
1

2
∫ 𝑊(𝑡 − 𝑡/)𝜕𝑥 (𝑢2(𝑡/)) 𝑑𝑡/𝑡

0
,𝑡 ≥ 0                                        (24) 

where 𝑊(𝑡) is a solution operator and 𝜙 is the initial condition function. 

The existence and uniqueness are established using the approach introduced by Molinet and Ribaud 

[35]. They show that the equation has unique solutions in the Sobolev space 𝐻𝑠 for 𝑠 > −1. 

A mathematical technique called a fixed-point argument is used. This technique helps in proving that a 

function (in this case, the solution to the KdV Burgers’ equation) exists and is unique. 

Applying a fixed-point argument to the integral formulation: 

𝑢(𝑡) = 𝜓(𝑡) [𝑊(𝑡)𝜙 − 𝜒𝑅+(𝑡)
1

2
∫ 𝑊(𝑡 − 𝑡/)𝜕𝑥 (𝜓𝑇

2 (𝑡/)𝑢2(𝑡/)) 𝑑𝑡/𝑡

0
]                 (25) 

Where 𝜓(𝑡) is a time cut off function ensuring smoothness and 𝜒𝑅+(𝑡) is the characteristic function. 

Theorem 1: Let 𝜙 ∈  𝐻𝑠 , 𝑠 > −1.For any 𝑇 > 0,there exists a unique solution 𝑢 of (6.24) in 𝑍𝑇 =

𝐶([0, 𝑇], 𝐻𝑠)
𝑇

1

2
,𝑠

.The map 𝜙 is smooth from  𝐻𝑠(𝑅) to 𝑍𝑇 and 𝑢 belongs to 𝐶(]0, +∞[,  𝐻𝑠(𝑅)). 
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Proposition 1: Let 𝑠 ∈ 𝑅.There exists 𝐶 > 0 such that 

‖𝜓(𝑡)𝑊(𝑡)𝜙‖
𝑋

1
2,𝑠

≤ 𝐶‖𝜙‖𝐻𝑠  ∀𝜙 ∈ 𝐻𝑠(𝑅) 

Proposition 2: For 𝜔 ∈ 𝛿(𝑅2),we consider 𝑘𝜉  defined on 𝑅 by 

𝑘𝜉 = 𝜓(𝑡) ∫
𝑒𝑖𝑡𝜏 − 𝑒−𝜉2|𝑡|

𝑖𝜏 + 𝜉2
𝜔̂(𝜏)𝑑𝜏 

Then, it holds for all 𝜉 ∈ 𝑅 that 

‖〈𝑖𝜏 + 𝜉2〉
1

2 (𝑘𝜉(𝑡))‖
𝐿2(𝑅)

2

≤ 𝐶 [(∫
|𝜔̂(𝜏)|

〈𝑖𝜏 + 𝜉2〉
𝜔̂(𝜏)𝑑𝜏)

2

+ (∫
|𝜔̂(𝜏)|

〈𝑖𝜏 + 𝜉2〉
𝜔̂(𝜏)𝑑)] 

Proposition 3: Let 𝑠 ∈ 𝑅, 

(1) There exists 𝐶 > 0 such that for all 𝜈 ∈  𝛿(𝑅2), 

‖𝑋𝑅+(𝑡)𝜓(𝑡) ∫ 𝑊(𝑡 − 𝑡/)𝜈(𝑡/)𝑑𝑡/

𝑡

0

‖

𝑋
1
2

,𝑠

≤ 𝐶 [‖𝜈‖
𝑋

−
1
2

,𝑠
+ (∫〈𝜉〉2𝑠 (∫

|𝜈̂(𝜏)|

〈𝑖𝜏 + 𝜉2〉
𝑑𝜏)

2

𝑑𝜉)

1

2

] 

(2) For any 0 < 𝛿 < 1,there exists 𝐶𝛿 > 0 such that for all 𝜈 ∈ 𝑋−
1

2
+𝛿,𝑠

 

‖𝑋𝑅+(𝑡)𝜓(𝑡) ∫ 𝑊(𝑡 − 𝑡/)𝜈(𝑡/)𝑑𝑡/

𝑡

0

‖

𝑋
1
2,𝑠

≤ 𝐶𝛿‖𝜈‖
𝑋

−
1
2+𝛿,𝑠

 

Proposition 4: Let Let 𝑠 ∈ 𝑅 and 𝛿 > 0.For all 𝑓 ∈ 𝑋−
1

2
+𝛿,𝑠

, 

𝑡 → ∫ 𝑊(𝑡 − 𝑡/)𝑓(𝑡/)𝑑𝑡/

𝑡

0

∈ 𝐶(𝑅+, 𝐻𝑠+2𝛿) 

Moreover, if (𝑓𝑛) is a sequence with 𝑓𝑛 → 0 as 𝑛 → 0 in 𝑋−
1

2
+𝛿,𝑠

,then 

‖∫ 𝑊(𝑡 − 𝑡/)𝑓(𝑡/)𝑑𝑡/𝑡

0
‖

𝐿∞(𝑅+,𝐻𝑠+2𝛿)
→ 0 as 𝑛 → 0. 

We first prove the existence of a solution of the integral formulation of (24) of the KdVB equation on 

some interval [0, T] for 𝑇 < 1.Clearly, if 𝑢 is a solution of the integral equation 𝑢 = 𝐹(𝑢) with 

𝐹(𝑢) = 𝜓(𝑡) [𝑊(𝑡)𝑢0 − 𝜒𝑅+(𝑡)
1

2
∫ 𝑊(𝑡 − 𝑡/)𝜕𝑥 (𝜓𝑇

2 (𝑡/)𝑢2(𝑡/)) 𝑑𝑡/𝑡

0
]              (26) 

Then 𝑢 is a solution of (24) on [0, T], We need to run a fixed-point argument in the space 

𝑍 = {𝑢 ∈ 𝑋
1

2
,𝑠: ‖𝑢‖𝑧 = ‖𝑢‖

𝑋
1
2,𝑠𝑐

+ + 𝜈‖𝑢‖
𝑋

1
2,𝑠

< ∞}                                       (27) 

Where 𝑠𝐶
+ ∈ ]−1, 𝑚𝑖𝑛(0,1)[ is fixed and where the constant 𝜈 is defined for all nontrivial 𝜑 by 

𝜈 =
‖𝜑‖

𝐻𝑠𝐶
+

‖𝜑‖𝐻𝑠
 

There exists 𝛿, 𝜇 depending on 𝑠𝐶
+ such that 

‖𝐹(𝑢)‖
𝑋

1
2,𝑠𝑐

+ ≤ 𝐶‖𝜑‖
𝐻𝑠𝐶

+ + 𝐶𝑇𝜇‖𝑢‖
𝑋

1
2,𝑠𝑐

+
2  

‖𝐹(𝑢)‖
𝑋

1
2,𝑠

≤ 𝐶‖𝜑‖𝐻𝑠 + 𝐶𝑇𝜇‖𝑢‖
𝑋

1
2,𝑠𝑐

+‖𝑢‖
𝑋

1
2,𝑠

 

Combining the above two, it becomes that 

‖𝐹(𝑢)‖𝑍 ≤ 𝐶 (‖𝜑‖
𝐻𝑠𝐶

+ + 𝜈‖𝜑‖𝐻𝑠) + 𝐶𝑇𝜇‖𝑢‖𝑍
2                                                     (28) 

Next since 𝜕𝑥(𝑢2) − 𝜕𝑥(𝑣2) = 𝜕𝑥[(𝑢 − 𝑣)(𝑢 + 𝑣)],we get the same way that 
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‖𝐹(𝑢) − 𝐹(𝑣)‖
𝑋

1
2,𝑠𝑐

+ ≤ 𝐶𝑇𝜇‖𝑢 − 𝑣‖
𝑋

1
2,𝑠𝑐

+‖𝑢 + 𝑣‖
𝑋

1
2,𝑠𝑐

+  

‖𝐹(𝑢) − 𝐹(𝑣)‖
𝑋

1
2,𝑠

≤ 𝐶𝑇𝜇 (‖𝑢 − 𝑣‖
𝑋

1
2,𝑠𝑐

+‖𝑢 + 𝑣‖
𝑋

1
2,𝑠

‖𝑢 + 𝑣‖
𝑋

1
2,𝑠𝑐

+ ‖𝑢 − 𝑣‖
𝑋

1
2,𝑠

) 

Combining the above two, we conclude that 

‖𝐹(𝑢) − 𝐹(𝑣)‖𝑍 ≤ 𝐶𝑇𝜇‖𝑢 − 𝑣‖𝑍‖𝑢 + 𝑣‖𝑍                                                           (29) 

Considering 𝑇 = (4𝐶2 (‖𝜑‖
𝐻𝑠𝐶

+ + 𝜈‖𝜑‖𝐻𝑠))
−

1

𝜇
 which leads by definition of 𝜈 to 𝑇 =

(8𝐶2‖𝜑‖
𝐻𝑠𝐶

+)
−

1

𝜇
,we infer from (28) and (29) that 𝐹 is strictly contractive on the ball of radius 

4𝐶‖𝜑‖
𝐻𝑠𝐶

+  in 𝑍.This proves the existence of a solution 𝑢 ∈ 𝑋
1

2
,𝑠

 to KdV Burgers’ equation on the time 

interval [0, 𝑇] with 𝑇 = 𝑇 (‖𝜑‖
𝐻𝑠𝐶

+) > 0. 

Let 𝑢1, 𝑢2 ∈ 𝑋𝑇

1

2
,𝑠

be two solutions of the integral equation (24) on the time [0, 𝑇].Because of propositions 

3 and 4, 𝑢1, 𝑢2 ∈ 𝐶([0, 𝑇]; 𝐻𝑠(𝑅)).For 0 < 𝛿 <
𝑇

2
,we define 𝑢̃𝑖,𝑖 = 1,2 by 

𝑢̃𝑖(𝑡) = {

𝑢𝑖(𝑡)           𝑜𝑛 [0, 𝛿]

𝑢𝑖(2𝛿 − 𝑡)          𝑜𝑛  [𝛿, 2𝛿]       
𝜙                   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒          

 

Since 𝑡 → 𝑢̃𝑖(𝑡) is continuous at 𝑡 = 0, 𝑡 = 𝛿,and 𝑡 = 2𝛿 with value in 𝐻𝑠(𝑅),it is clear that 𝑢̃𝑖(𝑡) is 

locally in 𝑋
1

2
,𝑠

.Moreover,𝑢̃1 − 𝑢̃1 ≡ 0 on 𝑅/[0,2𝛿],therefore by propositions 2 and 4, 

‖𝑢1 − 𝑢2‖
𝑋

𝛿

1
2

,𝑠
≤ ‖𝑋𝑅+(𝑡)𝜓(𝑡) ∫ 𝑊(𝑡 − 𝑡/)𝜕𝑥 (𝜓𝛿( 𝑢̃1(𝑡/) − 𝑢̃2(𝑡/)) (𝑢̃1(𝑡/) − 𝑢̃2(𝑡/)) 𝜈(𝑡/)𝑑𝑡/

𝑡

0

‖

𝑋
𝛿

1
2

,𝑠

 

≤ 𝐶 ‖𝜕𝑥 (𝜓𝛿( 𝑢̃1(𝑡/) − 𝑢̃2(𝑡/)) (𝑢̃1(𝑡/) − 𝑢̃2(𝑡/))‖
𝑋

−
1
2+𝛿,𝑠

 

≤ 𝐶𝑇𝜇‖𝑢̃1 − 𝑢̃2‖
𝑋

1
2,𝑠

‖𝑢̃1 − 𝑢̃2‖
𝑋𝑇

1
2

,𝑠
 

For some 𝜇 > 0.But it is easy to check by construction 

‖𝑢̃1 − 𝑢̃2‖
𝑋

1
2,𝑠

≤ 2‖𝑢1 − 𝑢2‖
𝑋

𝛿

1
2

,𝑠
 

Hence, 

‖𝑢1 − 𝑢2‖
𝑋

𝛿

1
2

,𝑠
≤ 2𝐶𝑇𝜇 (‖𝑢1‖

𝑋𝑇

1
2

,𝑠
+ ‖𝑢2‖

𝑋𝑇

1
2

,𝑠
) ‖𝑢1 − 𝑢2‖

𝑋
𝛿

1
2

,𝑠
 

Taking 𝛿 ≤ [4𝐶 (‖𝑢1‖
𝑋𝑇

1
2

,𝑠
+ ‖𝑢2‖

𝑋𝑇

1
2

,𝑠
)]

−𝜇

,it forces 𝑢1 ≡ 𝑢2 on [0, 𝛿].Iterating this argument, we extend 

the uniqueness result on the whole interval [0, 𝑇]. 

 

4. Explicit finite difference method 

Finite differences for partial derivatives can be represented as 
𝜕𝑢

𝜕𝑥
=

𝑢𝑖+1,𝑗−𝑢𝑖−1,𝑗

2ℎ
+ 𝑂(ℎ2)                                                                                         (30) 

𝜕2𝑢

𝜕𝑥2 =
𝑢𝑖+1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖−1,𝑗

ℎ2 + 𝑂(ℎ2)                                                                               (31) 
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𝜕3𝑢

𝜕𝑥3
=

𝑢𝑖+2,𝑗−2𝑢𝑖+1,𝑗+2𝑢𝑖−1,𝑗−𝑢𝑖−2,𝑗

2ℎ3
+ 𝑂(ℎ4)                                                                 (32) 

𝜕𝑢

𝜕𝑡
=

𝑢𝑖,𝑗−𝑢𝑖,𝑗−1

𝑘
+ 𝑂(𝑘)                                                                                              (33) 

The non-linear term 𝑢
𝜕𝑢

𝜕𝑥
 is expressed in the form 

1

2

𝜕𝑢2

𝜕𝑥
 and using central difference 

𝑢
𝜕𝑢

𝜕𝑥
≈

1

4ℎ
((𝑢𝑖+1,𝑗)

2
− (𝑢𝑖−1,𝑗)

2
)                                         (34) 

Neglecting the terms 𝑂(𝑘), 𝑂(ℎ), 𝑂(ℎ2) and 𝑂(ℎ4) and substituting equations (6.30), (31), (32), (33) in 

(20), we get 

𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

𝑘
+ 𝐴

1

4ℎ
((𝑢𝑖+1,𝑗)

2
− (𝑢𝑖−1,𝑗)

2
) + 𝐵

𝑢𝑖+2,𝑗 − 2𝑢𝑖+1,𝑗 + 2𝑢𝑖−1,𝑗 − 𝑢𝑖−2,𝑗

2ℎ3

= 𝐶
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

ℎ2
 

which simplifies 

𝑢𝑖,𝑗 = 𝑢𝑖,𝑗−1 +
𝐴𝑘

4ℎ
((𝑢𝑖−1,𝑗)

2
− (𝑢𝑖+1,𝑗)

2
) −

𝐵𝑘

2ℎ3
(𝑢𝑖+2,𝑗 − 2𝑢𝑖+1,𝑗 + 2𝑢𝑖−1,𝑗 − 𝑢𝑖−2,𝑗) +

𝐶𝑘

ℎ2
(𝑢𝑖+1,𝑗 −

2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)                                                                                         (35) 

The KdVB equation is a nonlinear evolution equation that involves of nonlinearity, dissipation and 

dispersion. If 𝐶 tends to zero, we should get the KdVB equation tends to behave like the KdV equation. 

Whereas, if we let 𝐵 tends to zero, we should get the KdVB equation tends to behave like the Burgers’ 

equation. 

 

5. Stability analysis of the explicit finite difference method 

In this section, we will study the stability of explicit finite difference method using Von Neumann 

stability analysis. We investigate the stability of the numerical scheme (35) for the KdVB equation in the 

linearized form. 

We can rewrite the scheme (35) in the linearized form as 

𝑢𝑖,𝑗 = 𝑢𝑖,𝑗−1 +
𝐴𝑘

4ℎ
(𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗) −

𝐵𝑘

2ℎ3 (𝑢𝑖+2,𝑗 − 2𝑢𝑖+1,𝑗 + 2𝑢𝑖−1,𝑗 − 𝑢𝑖−2,𝑗) +
𝐶𝑘

ℎ2 (𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 +

𝑢𝑖−1,𝑗)                                                                                      (36) 

Which may be write in the form 

𝑢𝑖,𝑗 = 𝑢𝑖,𝑗−1 + 𝑝(𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗) − 𝑞(𝑢𝑖+2,𝑗 − 2𝑢𝑖+1,𝑗 + 2𝑢𝑖−1,𝑗 − 𝑢𝑖−2,𝑗) + 𝑟(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)                                                                                        

(37) 

Where  𝑝 =
𝐴𝑘

4ℎ
 ,𝑞 =

𝐵𝑘

2ℎ3 ,𝑟 =
𝐶𝑘

ℎ2. 

To study the stability of the equation (37), we apply the Von-Neumann analysis. Let 𝑢𝑖,𝑗 = 𝑒𝑎𝑡𝑒𝐼𝑘𝑚𝑥 to 

get 

𝑒𝑎𝑡𝑒𝐼𝑘𝑚𝑥 = 𝑒𝑎(𝑡−∆𝑡)𝑒𝐼𝑘𝑚𝑥 + 𝑝(𝑒𝑎𝑡𝑒𝐼𝑘𝑚(𝑥−∆𝑥) − 𝑒𝑎𝑡𝑒𝐼𝑘𝑚(𝑥+∆𝑥))

− 𝑞(𝑒𝑎𝑡𝑒𝐼𝑘𝑚(𝑥+2∆𝑥) − 2𝑒𝑎𝑡𝑒𝐼𝑘𝑚(𝑥+∆𝑥) + 2𝑒𝑎𝑡𝑒𝐼𝑘𝑚(𝑥−∆𝑥) − 𝑒𝑎𝑡𝑒𝐼𝑘𝑚(𝑥+2∆𝑥))

+ 𝑟(𝑒𝑎𝑡𝑒𝐼𝑘𝑚(𝑥+∆𝑥) − 2𝑒𝑎𝑡𝑒𝐼𝑘𝑚𝑥 + 𝑒𝑎𝑡𝑒𝐼𝑘𝑚(𝑥−∆𝑥)) 

Divide by 𝑒𝑎𝑡𝑒𝐼𝑘𝑚𝑥,we obtain 

1 = 𝑒−𝑎∆𝑡 + 𝑝(𝑒−𝐼𝑘𝑚∆𝑥 − 𝑒𝐼𝑘𝑚∆𝑥) − 𝑞(𝑒2𝐼𝑘𝑚∆𝑥 − 2𝑒𝐼𝑘𝑚∆𝑥 + 2𝑒−𝐼𝑘𝑚∆𝑥 − 𝑒−2𝐼𝑘𝑚∆𝑥)

+ 𝑟(𝑒𝐼𝑘𝑚∆𝑥 − 2 + 𝑒−𝐼𝑘𝑚∆𝑥) 

1 − 𝑒−𝑎∆𝑡 + 𝑝(𝑒𝐼𝑘𝑚∆𝑥 − 𝑒−𝐼𝑘𝑚∆𝑥) + 𝑞(𝑒2𝐼𝑘𝑚∆𝑥 − 2𝑒𝐼𝑘𝑚∆𝑥 + 2𝑒−𝐼𝑘𝑚∆𝑥 − 𝑒−2𝐼𝑘𝑚∆𝑥)

− 𝑟(𝑒𝐼𝑘𝑚∆𝑥 + 𝑒−𝐼𝑘𝑚∆𝑥) + 2𝑟 = 0 
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1 − 𝑒−𝑎∆𝑡 + 2𝐼𝑝𝑠𝑖𝑛(𝑘𝑚∆𝑥) + 2𝐼𝑞(𝑠𝑖𝑛(2𝑘𝑚∆𝑥) − 2𝑠𝑖𝑛(𝑘𝑚∆𝑥)) − 2𝑟𝑐𝑜𝑠(𝑘𝑚∆𝑥) + 2𝑟 = 0 

Now putting 𝛼 = 𝑘𝑚∆𝑥 and the amplification factor is denoted by 

𝜉 = 𝑒𝑎∆𝑡 =
1

1 + 2𝐼𝑝𝑠𝑖𝑛𝛼 + 2𝑟(1 − 𝑐𝑜𝑠𝛼) + 4𝐼𝑞𝑠𝑖𝑛𝛼(𝑐𝑜𝑠𝛼 − 1)
 

=
1

(1 + 4𝑟𝑠𝑖𝑛2 (
𝛼

2
)) + 2𝐼𝑠𝑖𝑛𝛼 (𝑝 − 4𝑞𝑠𝑖𝑛2 (

𝛼

2
))

 

When 𝛼 > 0 ⇒ |𝜉| < 1 

For any 𝑝, 𝑞, 𝑟, 𝛼 the amplification factor |𝜉| < 1,thus the present method is unconditionally stable. 

 

6. Numerical results and discussion 

A numerical approach is used for a comprehensive investigation of the dynamics and behaviours, 

including solitary waves, shock waves, and their interactions in dusty plasma governed by the KdV 

Burgers’ equation. We also compare the obtained numerical results with known analytical solutions of 

the KdV Burgers’ equation in specific cases to validate the accuracy of our numerical scheme. We also 

investigate the influence of various dust parameters on the wave dynamics of the KdV Burgers’ 

equation. The behaviour of solitary waves and shock waves in the travelling wave solution of the KdV 

Burgers’ equation is greatly influenced by the dissipation dispersion coefficient B and dissipation 

coefficient C. The dissipation coefficient introduces dissipative effects in the wave in the solution, 

whereas the dispersion coefficient enhances the wave’s dispersive qualities. In the KdV Burgers’ 

equation, the dispersion coefficient affects the behaviour of the solitary waves, and the dissipation 

coefficient affects the behaviour of the shock waves. 

We assess the precision and effectiveness of the current approach through the evaluation of absolute 

error, defined as follows: 

|𝑢𝑖
𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

− 𝑢𝑖
𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙| 
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Figure 1: Numerical solution of KdVB equation at (a) A = 2.0; B = 0.0001; C =0.1 (b) A = 4.0; B = 

0.00002; C = 0.2 (c) A = 6.0; B = 0.00003; C = 0.3(d)A =8.0; B = 0.00004; C = 0.4. 

The behaviour of plasma wave structures has been analysed in Figure 1 to determine the effect of the 

dominating dissipation term. In this case, when the dissipation coefficient dominates the coefficient of 

dispersion, the dominant dissipation effect leads to the damping and dissipation of plasma waves. The 

consequences of particle interactions and collisional processes inside the plasma are represented by the 

dissipation term in the equation. These processes cause the plasma waves to gradually lose their energy 

and dissipate. As a result of dominant dissipation, the wave profiles in plasma tend to flatten out and lose 

their sharpness over time. The amplitude of the waves decreases as energy is dissipated through 

collisions and other damping mechanisms. Furthermore, in plasma systems, the dominant dissipation can 

also lead to the generation of shock waves or discontinuities in the wave profiles. These shock waves 

can arise due to strong dissipative effects overwhelming the dispersive effects, causing localised 

disturbances and abrupt changes in the plasma wave amplitude. Since the dissipation coefficient relies 

on several plasma parameters, the behaviour of plasma waves in the presence of dominant dissipation 

also depends on different plasma parameters, such as electron and ion densities, temperatures, magnetic 

field strength, and collision frequencies. These parameters influence the strength and nature of the 

dissipation effects in the plasma, ultimately shaping the wave structures and their evolution. It has been 

noted that the wave profiles experience damping, flattening, and exhibit shock wave formations due to 

dominant dissipation effects in the plasma medium in the numerical solution of the KdV Burgers’ 

equation. As the coefficient of dissipation rises, the wave fronts transition from being smooth to sharp. 

The consequences of dissipation are more noticeable when the term” dissipation” predominates. As a 

result, the wave profile is dampened and loses energy. Therefore, as time passes, the wave amplitude 

diminishes, and the wave pattern begins to flatten. As seen in Figure 1, dispersive effects such as wave 

dispersion and wavefront steepening have minimal impact on the wave profiles. It is clear from Figure 1 

that shock waves emerge in wave profiles when the dissipation coefficient 𝐶 dominates the coefficient of 

dispersion 𝐵 and the dissipation effects are more prominent. In this case, the dominant dissipation effect 

leads to damping and smoothing of the wave profiles. The term” dissipation” acts to dissipate energy 

from the system, causing the waves to gradually lose their amplitude and become more diffused over 

time. As a result, the wave profiles tend to flatten out and lose their sharpness. In Figure 1, the 

dominance of dissipation over dispersion leads to the formation of shocks or discontinuities in the wave 

profiles. These shocks arise due to the dissipative effects overwhelming the dispersive effects, causing 

abrupt changes or steep gradients in the wave amplitude. Also, the simulations revealed that shock 

waves occurred due to the nonlinear convection term in the equation. Figure 1 shows that the nonlinear 

term in the equation is responsible for the steepening of the waves, leading to the formation of shocks. 
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Figure 2: Numerical solution of KdVB equation at (a) A = 2.0; B = 0.1; C =0.0001 (b) A = 4.0; B = 0.2; 

C = 0.00002 (c) A = 6.0; B = 0.3; C = 0.00003 (d) A =8.0; B = 0.4; C = 0.00004. 

Figure 2 depicts the progression of the amplitude of the nonlinear wave as a function of time and space. 

We observe the formation and propagation of soliton-like structures, indicating the presence of localised 

disturbances in the dusty plasma system. The amplitude profiles exhibit a distinct shape, characterised 

by a steep leading edge followed by a decaying tail. It can be seen from Figure 2 that the dominant 

dispersion effects lead to the formation of solitary wave profiles known as solitons. Because of 

dispersion effects, plasma waves retain their coherence and exhibit oscillatory behaviour for long 

periods of time. Also, the dominance of the dispersion term in the KdV Burgers’ equation causes the 

plasma waves to spread out and exhibit wave dispersion. As a result, the wave profiles become broader 

and more spread out over time. 
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Figure 3: Numerical solution of KdVB equation at (a) A = 0.8; B = 0.8; C = 0.9(b)A = 1.0; B = 0.08; C 

= 0.09 (c) A = 2.0; B = 0.008; C = 0.009 (d) A = 2.5; B =0.0008; C = 0.0009. 

Figure 3 shows that there is a delicate balance between shock waves and solitary waves when dissipation 

and dispersion coefficients are similar. When the dissipative and dispersive effects are of equivalent 

magnitude, dissipative-dispersive shock wave formations have been observed in Figure 3. Both damping 

and dispersion are visible in the wave profiles in this figure, and as the waves move through space, 

damping and spreading occur simultaneously. Wave breaking, soliton formation, shock formation, and 

other wave phenomena are all influenced by the interaction between dissipation and dispersion. The 

precise balance between these two coefficients, as well as the characteristics of the dusty plasma system, 

determines the specific nature of the wave profiles. As the wave travels, the damping effect 

progressively lowers the wave amplitude, causing the wave to decay. The waveforms spread out or 

disperse simultaneously as a result of the dispersion effect. As a result of the spreading effect, the 

waveforms show oscillating patterns or multiple peaks. 

 
Figure 4: Comparison between numerical and analytical solution of KdVB equation at (a) A = 1.0; B = 

0.00005; C = 10.0 (b) A = 2.0; B = 0.8; C = 0.0008 (c) A = 1.0; B = 0.01; C = 0.01 (d) A = 2.0; B = 

0.0001; C = 0.0001. 

Figure 4 illustrates the comparison between numerical and analytical solutions using a graphical 

representation at different values of A, B and C. The presented results exhibit good agreement between 

the numerical and analytical solutions. 

It appears from the comparison that waveforms and wave profiles are very similar between numerical 

and analytical results. It is evident from this figure that the current numerical technique effectively 

captures the effects of dissipation, dispersion, and nonlinearity. The agreement between the numerical 

and analytical solutions validated the accuracy and robustness of our numerical scheme in capturing the 

dynamics of the dusty plasma system. 
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Figure 5: The absolute error between the analytical solution and numerical solutions at (a) A = 1.0; B = 

0.1; C = 0.0001 (b) A = 2.0; B = 0.0001; C = 0.1 (c) A = 1.0; B = 0.01; C = 0.01 (d) A = 2.0; B = 

0.0001; C = 0.0001. 

 

Table 1: Absolute error between the numerical and analytical values at A = 1.0, 

B = 0.1, C = 0.0001 

𝑥 Numerical value Analytical value Absolute error 

-5 2.4005 2.4002 0.00021389 

-3.75 2.4029 2.4003 0.002603 

-2.5 2.4321 2.4008 0.031315 

-1.25 20.36 23.929 3.569 

-0.625 3.231 2.4252 0.80587 

0 3.6 2.485 1.115 

0.625 3.2308 2.6713 0.55947 

1.25 2.7363 3.1161 0.37976 

2.5 2.4317 3.3436 0.91195 

3.75 2.4024 2.5363 0.13394 

4.375 2.4005 2.4406 0.040062 

4.9805 2.4 2.4121 0.012083 

 

Table 2: Absolute error between the numerical and analytical values at A = 2.0, 

B = 0.0001, C = 0.1 

𝑥 Numerical value Analytical value Absolute error 

-5 0.48116 0.4812 4.2677e-05 
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-3.75 0.48067 0.48119 0.00051964 

-2.5 0.47479 0.48108 0.006291 

-1.25 0.40854 0.47976 0.71218 

-0.625 0.26782 0.4762 0.20838 

0 0.0018 0.46398 0.46218 

0.625 -0.26459 0.42365 0.68824 

1.25 -0.40581 0.30643 0.71224 

2.5 -0.47236 -0.22014 0.25221 

3.75 -0.47827 -0.45059 0.027676 

4.375 -0.47865 -0.47055 0.0081023 

4.9805 -0.47875 -0.47633 0.0024288 

 

Table 3: Absolute error between the numerical and analytical values at A = 1.0, 

B = 0.01, C = 0.01 

𝑥 Numerical value Analytical value Absolute error 

-5 0.26402 0.264 1.9252e-05 

-3.75 0.26424 0.264 0.00023428 

-2.5 0.26687 0.26405 0.0028165 

-1.25 0.29401 0.26465 0.029361 

-0.625 0.3364 0.26624 0.070159 

0 0.36 0.27161 0.088385 

0.625 0.30978 0.28822 0.021555 

1.25 0.25329 0.32683 0.073543 

2.5 0.21951 0.32328 0.10377 

3.75 0.21629 0.23106 0.014773 

4.375 0.21608 0.22049 0.00441 

4.9805 0.21602 0.21735 0.0013293 

 

Table 4: Absolute error between the numerical and analytical values at A = 2.0, 

B = 0.0001, C = 0.0001 

𝑥 Numerical value Analytical value Absolute error 

-5 0.0016801 0.00168 6.4171e-08 

-3.75 0.0016808 0.00168 7.8068e-07 

-2.5 0.0016895 0.0016802 9.3525e-06 

-1.25 0.0017754 0.0016822 9.3269e-05 

-0.625 0.0018817 0.0016875 0.00019421 

0 0.0018 0.0017051 9.4876e-05 

0.625 0.0013492 0.0017579 0.00040862 

1.25 0.00096107 0.0018628 0.00090175 

2.5 0.00074238 0.0014501 0.00070767 

3.75 0.0007286 0.00081643 9.457e-05 

4.375 0.00072053 0.00074864 2.8111e-05 
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4.9805 0.00072016 0.00072862 8.4636e-06 

 

Tables 1, 2, 3 and 4 present a comprehensive comparison between numerically approximated values and 

analytical values for varying coefficients of nonlinearity, dispersion, and dissipation and a good level of 

compatibility has been observed between the results. The tables indicate that the numerical results are 

accurate and precise for smaller values of the coefficients of dissipation and dispersion. As is shown in 

Table 4, the numerical and analytical results have good agreement with a minor error that tends to zero 

at smaller values of the coefficients of dissipation and dispersion. 

 

7. Conclusion 

In this paper, we have effectively introduced a numerical approach employing an explicit finite 

difference scheme to derive solutions for the KdVB equation. This method allows us to investigate the 

emergence of nonlinear structures within dusty plasmas when considering the influence of the 

Boltzmann distribution of electrons and ions, along with charged dust grains. It is found that the 

numerical solutions tend to behave like Burgers’ equation when the dissipation coefficient dominates 

over the coefficient of dispersion, whereas KdV-type behaviour has been obtained when dispersion 

dominates over the coefficient of dissipation. Then a comparison between the numerical results and the 

analytical solutions is discussed. Stability analysis has been investigated, and it has been proven that the 

presented scheme is unconditionally stable. As long as the dispersive term and the dissipative term, as 

well as the nonlinear term, are balanced, the shock wave structure forms; otherwise, the soliton forms 

due to the balance between the dispersive term and the nonlinear term. With strong dissipation and a 

weak dispersion coefficient, the shock wave structure becomes steeper. It has also been shown that the 

plasma parameters are very significant in determining the nature of solitary and shock waves. 
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