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Abstract 

Using the idea of intuitionistic b#-open sets and intuitionisticb#-closed sets, several characteristics 

of intuitionistic topological concepts of b#-Interior and b#-Closure have been shown. Moreover, 

the qualities of intuitionistic b# Frontier have been presented and examined, as well as the 

properties of intuitionistic b# Frontier. Many counter-examples for the relevant classifications 

have been provided. The relation between intuitionistic b#-Interior, b#-Closure and b#-Frontier 

have been studied. 
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1. INTRODUCTION 

Coker[2] developed the notion of intuitionistic fuzzy topological spaces by building on 

intuitionistic fuzzy sets [1]. Healso developed the concept of intuitionistic set in topological space. He 

examined some fundamental topological characteristics of intuitionistic sets. Sasikala[7][8][9] and 

Navaneetha Krishnan  studied semi open sets, preopen sets,  -open sets in intuitionistic topological 

spaces. Velraj[10] has deliberated  intuitionistic b#-open sets.The characteristics of intuitionistic b#-open 

sets are presented and described in this study.  

In this paper, we defined b#-Frontier and some of its properties in intuitionistic topological 

spaces. We list some concepts and results introduced in [1,2,3]. 

Definition1.1 [cited from 3]: A family of an intuitionistic subset (IS for short) 

in�̃�satisfyingthefollowingaxioms is called anintuitionistictopology (ITforshort)on �̃�: 

(T1) ̃, �̃�,  

(T2) 𝑃1�̃�2 for any 𝑃1, 𝑃2 and 

(T3) 𝑃i for any arbitrary family {𝑃i: iJ}. 

Definition 1.2[cited 4]:[4] Let (�̃�,) be an ITS and �̃� = <S, L1,L2> be an IS in �̃�. Then the interior 

and closure of �̃� are defined by 

cl(�̃�) = {𝑃: 𝑃 is an intuitionistic closed set in �̃� and �̃�𝑃} and 
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int(�̃�) = {𝑃: 𝑃 is an intuitionistic open set in �̃� and 𝑃�̃�}. 

Definition 1.3 [cited from 6,7,10]:A subset �̃�of an ITS(�̃�,)  is called 

 Intuitionistic b-open (IbO for short) if �̃�int(cl(�̃�))  cl(int(�̃�)) and intuitionistic b-closed 

(IbC for short) if int(cl(�̃�)) cl(int(�̃�)) �̃� 

  Intuitionistic regular open (IRO for short) if �̃� = 𝐿nt(cl(�̃�)) and intuitionistic regular 

closed (IRC for short) if  cl(int(�̃�)) = �̃� 

 Intuitionistic b#-open  (Ib#O for short) if �̃� = cl(int(�̃�)) int(cl(�̃�)) and intuitionisticb#-

closed (Ib#C) if int(cl(�̃�)) ∩cl(int(�̃�))= �̃�.  

Proposition 1.4[cited from 10]. An IS �̃� is an intuitionistic b#closed set if and only if �̃�c is 

Intuitionistic b# -open. 

Proposition 1.5[cited from 10]. Let (�̃�, ) be an ITS. For any intuitionistic subsets �̃� and �̃� of  �̃�, 

we have  

(i) Ib#int(�̃�) �̃� 

(ii) �̃� is the intuitionistic b#open set in �̃�Ib#int(�̃�) = �̃� 

(iii) Ib#int(Ib#int(�̃�)) = Ib#int(�̃�) 

(iv) If �̃��̃� then Ib#int(�̃�) Ib#int(�̃�) 

Remark 1.6[cited from 10].Since the intersection of intuitionistic b# -closed sets in �̃� is also 

intuitioistic b# -closed set in �̃�, Ib#𝑐𝑐(�̃�) is a intuitionistic b#closed set in �̃�. 

Preposition 1.7[cited from 10]. Let (�̃�, ) be an ITS and let �̃� and �̃� be the subsets of  �̃�. Then 

(i) (Ib#int(�̃�))c = Ib#cl(�̃�c) 

(ii) (Ib#cl(�̃�))c = Ib#int(�̃�c) 

(iii) �̃�Ib#cl(�̃�) 

(iv) �̃� is the intuitionistic b#-closed set in �̃�Ib#cl(�̃�) = �̃� 

(v) Ib#cl(Ib#cl(�̃�)) = Ib#cl(�̃�) 

Preposition 1.8[cited from 10]. Let (�̃�, ) be an ITS. For any intuitionistic subsets �̃� and �̃� of  �̃�,if 

𝐿 ̃�̃� then Ib#cl(�̃�) Ib#cl(�̃�). 

Proposition 1.9[cited from 10].Let �̃� be a subset of on ITS (�̃�,𝐿). Then Iint(�̃�) Ib#int(�̃�) 

𝐿 ̃Icl(�̃�) Ib#cl(�̃�). 

Theorem 1.10.[cited from 10] Let(�̃�, ) be an ITS and let �̃� be a subset of  �̃�. Then 

(i) Ib#int(�̃�) is an intuitionistic b#-open set. 

(ii) Ib#int(�̃�) is the largest open set contained in �̃� 

(iii) �̃� is Ib#open if and only if Ib#-int(�̃�)=�̃� 
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Proposition 1.11[cited from 10].Let (�̃�, ) be an ITS. For any intuitionistic subsets �̃� and �̃� of  �̃�, 

we have  

(i) Ib#cl(�̃��̃�) Ib#cl(�̃�)Ib#cl(�̃�).   

(ii) Ib#cl(�̃��̃�) Ib#cl(�̃�)Ib#cl(�̃�). 

Theorem 1.12. For a IS�̃� of (�̃�, ), Ib#𝑐𝑐𝑐(Ib#𝑐𝑐𝑐(�̃�)) = Ib#𝑐𝑐𝑐(Ib#𝑐𝑐(�̃�)) Ib#𝑐𝑐𝑐(�̃�).  

2. INTUITIONISTIC b#-FRONTIER 

We introducedintuitionistic b#-Frontierin intuitionistic topological spaces and go over  their 

properties in this section.  

Definition 2.1.Let �̃� be a subset of an ITS (�̃�, ).  Then the intuitionistic b#-Frontier of�̃�is the 

intersection of intuitionistic b#-closure of �̃� and intuitionistic b#-closure of �̃�candit is referred  by 

Ib#Fr(�̃�). That is Ib#Fr(�̃�) = Ib#cl(�̃�) Ib#cl(�̃�c). 

Example 2.2.Let �̃�= {1,2,3} and consider the family ={̃, �̃�,𝐿1̃,𝐿2̃ ,𝐿3̃}  where 𝐿1̃= <S, 

{3},{1,2}>,  𝐿2̃= <S,{1},{2,3}>,  𝐿3̃= <X, {1,3},{2}>.  Let  �̃� = <S, {1,2}, {3}> and �̃� = <S, 

{2,3}, {1}> be the intuitionistic subsets of (�̃�, τ). Then �̃�and �̃�are intuitionistic b#-open sets. Let 

�̃� =< 𝐿, {}, {1,2 } >. �̃�c =<S,{1,2},{}. Now Ib#cl(�̃�) = <S, {3},{1,2}>.Ib#cl(�̃�c) = �̃�. Then 

Ib#Fr(�̃�) = Ib#cl(�̃�)Ib#cl(�̃�c) = <S,{3}, {1,2}>. 

Theorem 2.3. For an IS �̃� in the ITS (�̃�, ), Ib#𝑐𝑐(�̃�) =Ib#𝑐𝑐(�̃�c).  

Proof. Let �̃� be an IS in the ITS(�̃�, ).  

Then by Definition 2.1, Ib#𝑐𝑐(�̃�) = Ib#𝑐𝑐(�̃�)Ib#𝑐𝑐(�̃�c) = Ib#𝑐𝑐(�̃�c)Ib#𝑐𝑐(�̃�)  

= Ib#𝑐𝑐(�̃�c)(Ib#𝑐𝑐(�̃�c)c)).  

Again by Definition 2.1, this is equal to Ib#𝑐𝑐(�̃�c).  

Hence Ib#𝑐𝑐(�̃�)=Ib#𝑐𝑐(�̃�c).   

Theorem 2.3. Let �̃� be an IS in the ITS  (�̃�, ). Then Ib#𝑐𝑐(�̃�) = Ib#𝑐𝑐(�̃�) – Ib#𝑐𝑐𝑐(�̃�).  

Proof.  Let �̃� be an IS in the ITS(�̃�, ). 

By Proposition 1.7 (ii), (Ib#𝑐𝑐(�̃�c))c = Ib#𝑐𝑐𝑐(�̃�) and by Definition 2.1, Ib#𝑐𝑐(�̃�) = Ib#𝑐𝑐(�̃�)  

(Ib#𝑐𝑐(�̃�c)) = Ib#𝑐𝑐(�̃�)  (Ib#𝑐𝑐𝑐(�̃�c))c.  

By using �̃� – �̃�=�̃��̃�c, Ib#𝑐𝑐(�̃�)= Ib#𝑐𝑐(�̃�) – Ib#𝑐𝑐𝑐(�̃�).  

Hence Ib#𝑐𝑐(�̃�)=Ib#𝑐𝑐(�̃�) – Ib#𝑐𝑐𝑐(�̃�).   

Theorem 2.4. An IS �̃� is intuitionistic b#closed set in (�̃�, )  iffIb#𝑐𝑐(�̃�) �̃�.  

Proof. Let �̃� be an intuitionistic b#-closed set in the ITS(�̃�, ).  

Then by Definition 2.1, Ib#𝑐𝑐(�̃�)=Ib#𝑐𝑐(�̃�)Ib#𝑐𝑐(�̃�c) Ib#𝑐𝑐(�̃�). By using Proposition 1.7 

(iv),Ib#𝑐𝑐(�̃�)= �̃�.  

Hence Ib#𝑐𝑐(�̃�) �̃�, if �̃� is intuitionistic b#-closed in �̃�.  

Conversely, Assume that, Ib#𝑐𝑐(�̃�) �̃�. Then Ib#𝑐𝑐(�̃�) − Ib#𝑐𝑐𝑐(�̃�)�̃�.  

Since Ib#𝑐𝑐𝑐(�̃�) �̃�, we conclude that Ib#𝑐𝑐(�̃�) = �̃�.  
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Hence �̃� is intuitionistic b#-closed.   

Theorem 2.5. If �̃� is an intuitionistic b#-open set in (�̃�, ), then Ib#𝑐𝑐(�̃�) �̃�c.  

Proof. Let �̃� be an intuitionistic b#-open set in the ITS(�̃�, ).  

By Proposition 1.4,�̃�𝑐 is intuitionistic b#-closed set in �̃�. By Theorem 2.3, Ib#𝑐𝑐(�̃�𝑐)�̃�𝑐and by 

Definition 2.1., we get Ib#𝑐𝑐(�̃�) �̃�c.   

Theorem 2.6. Let �̃��̃�and �̃� be any intuitionistic b#-closed set in (�̃�, ). Then Ib#𝑐𝑐(�̃�) �̃�.  

Proof. By Proposition 1.8 (i),�̃��̃�, Ib#𝑐𝑐(�̃�) Ib#𝑐𝑐(�̃�).  

By Definition 2.1, Ib#𝑐𝑐(�̃�)=Ib#𝑐𝑐(�̃�)Ib#𝑐𝑐(�̃�c) Ib#𝑐𝑐(�̃�)Ib#𝑐𝑐(�̃�c) Ib#𝑐𝑐(�̃�). 

Then by Remark 1.6, this is equal to �̃�. Hence Ib#𝑐𝑐(�̃�) �̃�.   

Theorem 2.7. Let �̃� be an IS in the ITS(�̃�, ). Then (Ib#𝑐𝑐(�̃�))𝑐= Ib#𝑐𝑐𝑐(�̃�)Ib#𝑐𝑐𝑐(�̃�c).  

Proof. Let �̃� be an IS in the ITS(�̃�, ).  

Then by Definition 2.1, (Ib#𝑐𝑐(�̃�))𝑐=(Ib#𝑐𝑐(�̃�)Ib#𝑐𝑐(�̃�𝑐))𝑐 = ((Ib#𝑐𝑐(�̃�))𝑐(Ib#𝑐𝑐(�̃�𝑐))𝑐.  

By Proposition 1.7 (ii), which is equal to Ib#𝑐𝑐𝑐(�̃�c) Ib#𝑐𝑐𝑐(�̃�).  

Hence (Ib#𝑐𝑐(�̃�))𝑐= Ib#𝑐𝑐𝑐(�̃�)Ib#𝑐𝑐𝑐(�̃�𝑐). 

Theorem 2.8. For an IS �̃� in the ITS(�̃�, ), Ib#𝑐𝑐(�̃�) IF𝑐(�̃�).  

Proof. Let �̃� be an IS in the ITS(�̃�, ). 

Then by Proposition 1.9, Ib#𝑐𝑐(�̃�) I𝑐𝑐(�̃�) and Ib#𝑐𝑐(�̃�c) I𝑐𝑐(�̃�c). 

By Definition 2.1, Ib#𝑐𝑐(�̃�)=Ib#𝑐𝑐(�̃�)Ib#𝑐𝑐(�̃�c) I𝑐𝑐(�̃�)I𝑐𝑐(�̃�c), = IF𝑐(�̃�).  

Hence Ib#𝑐𝑐(�̃�) IF𝑐(�̃�).  

The example that follows demonstrates that the preceding Theorem’s converse is not true.  

Example 2.9. Let �̃�= {1,2,3,4} and consider the family ={̃, �̃�,𝐿1̃ ,𝐿2̃,𝐿3̃  }  where 𝐿1̃= 

<S,{1,2},{3,4}>,  𝐿2̃= <S,{1,2,4},{3}>,  𝐿3̃= <S, {1,2,3},{4}>.  Let  �̃� = <S, {1,2,4}, {3}> and �̃� 

= <S, {3,4}, {1,2}> be the ISs of (�̃�, τ). Then �̃�and �̃�are intuitionistic b#-open sets. Let �̃� =<

𝐿, {1}, {2,3,4} >. �̃�c =<S,{2,3,4},{1}. Now Ib#cl(�̃�) = <S, {1,2},{3,4}>.Ib#cl(�̃�c) = �̃�. Then Ib#Fr(�̃�) 

= <S,{1,2}, {3,4}> Now Icl(�̃�) = <S, {1,2,4},{3}>.Icl(�̃�c) = �̃�. Then IFr(�̃�) = <S,{1,2,4}, {3}>. Hence 

Ib#𝑐𝑐(�̃�) IF𝑐(�̃�)  but I𝑐𝑐(�̃�) ⊈ Ib#F𝑐(�̃�). 

Theorem 2.10. For an IS �̃� in the ITS(�̃�, ), Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�)) Ib#𝑐𝑐(�̃�).  

Proof. Let �̃� be the IS in the ITS(�̃�, ).  

Then by Definition 2.1, Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�))  =Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�) (Ib#𝑐𝑐(�̃�c))) 

(Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�)))  (Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�c))).  

ByProposition 1.8 (iii),Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�)) =Ib#𝑐𝑐(�̃�)  (Ib#𝑐𝑐(�̃�c)). By Definition 2.1, this is equal 

to Ib#𝑐𝑐(�̃�) 

Theorem 2.11. For an IS �̃� in the ITS(�̃�, ), Ib#𝑐𝑐(Ib#𝑐𝑐𝑐(�̃�)) Ib#𝑐𝑐(�̃�).  

Proof. Let �̃� be the IS in the ITS(�̃�, ).  

Then by Definition 2.1, Ib#𝑐𝑐(Ib#𝑐𝑐𝑐(�̃�)) = Ib#𝑐𝑐(I𝑐𝑐𝑐(�̃�))  (Ib#𝑐𝑐(Ib#𝑐𝑐𝑐(�̃�))c).  
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By Proposition 1.7  (i),Ib#𝑐𝑐(Ib#𝑐𝑐𝑐(�̃�)) = Ib#𝑐𝑐(Ib#𝑐𝑐𝑐(�̃�))  (Ib#𝑐𝑐 (Ib#𝑐𝑐 (�̃�c))).    

= Ib#𝑐𝑐(Ib#𝑐𝑐𝑐(�̃�))(Ib#𝑐𝑐(�̃�c) .  (By Proposition 1.7 (v)) 

Ib#𝑐𝑐(�̃�)Ib#𝑐𝑐(�̃�c) (By Proposition 1.5 (i)) 

= Ib#𝑐𝑐(�̃�) (By Definition 2.1) 

Hence Ib#𝑐𝑐(Ib#𝑐𝑐𝑐(�̃�)) (Ib#𝑐𝑐(�̃�)) 

The example that follows demonstrates that the preceding Theorem’s converse is not true.  

Example 2.12. Consider the ITS in Example 2.2, Let�̃� =< 𝐿, {1}, {2,3} >. Ib#int(�̃�) = . 

Ib#Fr(Ib#int(�̃�)) = .  Now �̃�c =<S,{2,3},{1}.  Ib#cl(�̃�) = <S, {1},{2,3}>. Ib#cl(�̃�c) =�̃�. Hence 

Ib#Fr(�̃�) = <S,{1}, {2,3}>⊈  =  Ib#Fr(Ib#int(�̃�)). 

Theorem 2.13. For an IS �̃� in the ITS(�̃�, ), Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�)) Ib#𝑐𝑐(�̃�).  

Proof.  Let�̃�  be an IS in the ITS(�̃�, ).  

Then by Theroem2.4, Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�)) = Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�))  (Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�))c).   

       = Ib#𝑐𝑐(�̃�)  (Ib#𝑐𝑐(Ib#𝑐𝑐𝑐(�̃�c)) (By Proposition 1.7 (ii) & (v) and Proposition 1.8) 

Ib#𝑐𝑐(�̃�) Ib#𝑐𝑐(�̃�c) (By Proposition 1.5 (i)) 

= Ib#𝑐𝑐(�̃�) (By Definition 2.1) 

Hence Ib#𝑐𝑐(Ib#𝑐𝑐(�̃�)) Ib#𝑐𝑐(�̃�). 

The example that follows demonstrates that the preceding Theorem’s converse is not true.  

Example 2.14.Examine the ITS presented in Example 2.2, Let �̃� =< 𝐿, {1}, {2,3 } >. Ib#cl(�̃�) = <S, 

{1},{2,3}> and (Ib#cl(�̃�))c =<S,{2,3},{1}>.  Ib#cl(Ib#cl(�̃�)) = <S, {1},{2,3}>. Ib#cl((Ib#cl(�̃�))c) 

=<S,{3},{1,2}>Ib#Fr(Ib#cl(�̃�)) = .  Now �̃�c =<S,{2,3},{1}.  Ib#cl(�̃�) = <S, {1},{2,3}>. Ib#cl(�̃�c) = 

�̃�. Hence Ib#Fr(�̃�) = <S,{1}, {2,3}>⊈=  Ib#Fr(Ib#cl(�̃�)). 

Theorem 2.15. Let �̃� be an IS in the ITS(�̃�, ). Then Ib#𝑐𝑐𝑐(�̃�) �̃�– Ib#𝑐𝑐(�̃�).  

Proof.  Let �̃� be an IS in the ITS(�̃�, ).  

Now by Definition 2.1, �̃� – Ib#𝑐𝑐(�̃�) = 𝐿 ̃(Ib#𝑐𝑐(�̃�))𝑐 

=�̃�[Ib#𝑐𝑐(�̃�) Ib#𝑐𝑐(�̃�𝑐)]𝑐= �̃�[Ib#𝑐𝑐𝑐(�̃�𝑐) Ib#𝑐𝑐𝑐(�̃�)]  

= [�̃�Ib#𝑐𝑐𝑐(�̃�𝑐)]  [�̃�Ib#𝑐𝑐𝑐(�̃�)]  

= [�̃�Ib#𝑐𝑐𝑐(�̃�𝑐)] Ib#𝑐𝑐𝑐(�̃�) Ib#𝑐𝑐𝑐(�̃�)  

Hence Ib#𝑐𝑐𝑐(�̃�)  �̃� – Ib#𝑐𝑐(�̃�).  

The following Theorem shows the relation between intuitionistic b#-Interior, b#-Closure and b#-

Frontier. 

Theorem 2.16. Let �̃� be an IS in the ITS(�̃�, ).  Then Ib#int(�̃�) = (Ib#cl(�̃�c))c. 

Proof: By Theorem 1.12, Ib#Ext(�̃�) = (Ib#cl(�̃�))c 

Therefore Ib#int(�̃�) = Ib#Ext(�̃�c) = (Ib#cl(�̃�c))c. 

Theorem 2.17. Let �̃� be an IS in the ITS(�̃�, ).  Then the intuitionistic b#closure of the complement of 

�̃� is the complement of the intuitionistic b#interior of �̃�. That is Ib#cl(�̃�c) = (Ib#int(�̃�))c. 
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Proof. Taking complements in Theorem 2.16, (Ib#int(�̃�))c = ((Ib#cl(�̃�c))c)c = Ib#cl(�̃�c) 
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