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Abstract

Using the idea of intuitionistic b#-open sets and intuitionisticb#-closed sets, several characteristics
of intuitionistic topological concepts of b#-Interior and b#-Closure have been shown. Moreover,
the qualities of intuitionistic b# Frontier have been presented and examined, as well as the
properties of intuitionistic b# Frontier. Many counter-examples for the relevant classifications
have been provided. The relation between intuitionistic b#-Interior, b#-Closure and b#-Frontier
have been studied.
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1. INTRODUCTION

Coker[2] developed the notion of intuitionistic fuzzy topological spaces by building on
intuitionistic fuzzy sets [1]. Healso developed the concept of intuitionistic set in topological space. He
examined some fundamental topological characteristics of intuitionistic sets. Sasikala[7][8][9] and
Navaneetha Krishnan studied semi open sets, preopen sets, o -open sets in intuitionistic topological
spaces. Velraj[10] has deliberated intuitionistic b#-open sets.The characteristics of intuitionistic b#-open
sets are presented and described in this study.

In this paper, we defined b#-Frontier and some of its properties in intuitionistic topological
spaces. We list some concepts and results introduced in [1,2,3].

Definition1.1 [cited from 3]: A familyt of an intuitionistic subset (IS for short)
inSsatisfyingthefollowingaxioms is called anintuitionistictopology t(ITforshort)on S:

(T1) @, Ser,
(T2) PinP,ex for any P1, Pt and
(T3) UPier for any arbitrary family {Pi: ieJ}cr.

Definition 1.2[cited 4]:[4] Let (S,7) be an ITS and L = <S, LY,L?> be an IS in S. Then the interior
and closure of L are defined by

cl(L) = n{P: P is an intuitionistic closed set in S and LcP} and
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int(L) = U{P: P is an intuitionistic open set in S and PcL}.
Definition 1.3 [cited from 6,7,10]:A subset Lof an ITS(S,t) is called

e Intuitionistic b-open (IbO for short) if Lcint(cl(L)) w cl(int(L)) and intuitionistic b-closed
(IbC for short) if int(cl(T)) cl(int(T1)) <O

e Intuitionistic regular open (IRO for short) if T = Ont(cl(T7)) and intuitionistic regular
closed (IRC for short) if cl(int(7)) = {J

e Intuitionistic b#-open (Ib#O for short) if = = cl(int(T))Uint(cl(T7)) and intuitionisticb#-
closed (Ib#C) if int(cl()) Nel(int(7T))= .

Proposition 1.4[cited from 10]. An IS T is an intuitionistic b#closed set if and only if TI¢ is
Intuitionistic b# -open.

Proposition 1.5[cited from 10]. Let (77, t) be an ITS. For any intuitionistic subsets 7 and 7 of [,
we have

() Ib#int(T) <

(ii) {7 is the intuitionistic b#open set in T < Ib#int(7) = 0
(iii) Ib#int(Ib#int(7)) = Ib#int(7)

(iv) If TicT then Ib#int(TT) clb#int()

Remark 1.6[cited from 10].Since the intersection of intuitionistic b# -closed sets in T is also
intuitioistic b# -closed set in 7, Ib#171(7) is a intuitionistic b#closed set in .

Preposition 1.7[cited from 10]. Let (7, t) be an ITS and let 77 and I be the subsets of TI. Then

(i)  (Ib#int(T))° = Ib#cl(T°)

(i) (Ib#cl(T))° = Ib#tint(T°)

(i) Tclb#cl(T)

(iv) [ is the intuitionistic b#-closed set in T <> Ib#cl(T) = 0
(v)  Ib#cl(Ib#cl(T)) = Ib#cl(T)

Preposition 1.8[cited from 10]. Let (7], t) be an ITS. For any intuitionistic subsets 7 and = of [, if
T < then Ib#cl(TD) clb#cl(D).

Proposition 1.9[cited from 10].Let T be a subset of on ITS (7, 0). Then lint(ZJ) clb#int(K)
T clel(T) cb#cl(7).

Theorem 1.10.[cited from 10] Let(7, t) be an ITS and let = be a subset of 7. Then

() Ib#int(70) is an intuitionistic b#-open set.
(i)  Ib#int(T) is the largest open set contained in 7
(iii) [ is Ib#open if and only if 1b#-int(T)=
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Proposition 1.11[cited from 10].Let (T, t) be an ITS. For any intuitionistic subsets = and = of [,
we have

() Ibfcl(TTur) oibel(Tulbfel(T).
(i) Ib*cl(TTAT) cIbfel(T)Ib*el(7).

Theorem 1.12. For a IST of (1, 1), #0100 (Tb#0 0 0(T) = th# C O (Tb#0 L(T0)) olb#0 0 0(0).

2. INTUITIONISTIC b*-FRONTIER
We introducedintuitionistic b*-Frontierin intuitionistic topological spaces and go over their
properties in this section.

Definition 2.1.Let (1 be a subset of an ITS (77, t). Then the intuitionistic b#-Frontier ofJis the
intersection of intuitionistic b#-closure of T and intuitionistic b#-closure of Tiandit is referred by
Ib#Fr(77). That is Ib#Fr(T) = lb#cl(T) lb#cl(T°).

~ o~ —~— o~ —~—

{3}{1,2}>, T,=<S{1}{2,3}>, T;=<X, {1,3}{2}>. Let T =<S, {1,2}, {3}> and T = <§,
{2,3}, {1}> be the intuitionistic subsets of (77, t). Then Tland [Jare intuitionistic b#-open sets. Let
O =< ,{g},{1,2} >. 0° =<S,{1,2},{¢}. Now Ib#cl(T) = <S, {3}.{1,2}>.Ib#cl(T%) = T. Then
Ib#Fr(7T) = Ibtcl(T)Ib#cl(T7%) = <S,{3}, {1,2}>.

Theorem 2.3. For an IS 7 inthe ITS (7, 1), Ib#0 0 (7)) =Ib#00(T79).

Proof. Let (1 be an IS in the ITS(T, 7).

Then by Definition 2.1, 1b#00(0) = Ib#0 0(C)nIb# (T = Ib# 0 (TN Ib# (D)
= 1b#0 (T (1b# 0 0(T9)9).

Again by Definition 2.1, this is equal to 1b#1(7°).

Hence 1b# [ () =1b#00(77°).

Theorem 2.3. Let T be an IS inthe ITS (7, ). Then Ib#00(C0) = Ib#0 () — lb#1 I(0).

Proof. Let T be an IS in the ITS(, 1).

By Proposition 1.7 (i), (Ib#00(T%)¢ = Ib# 0 0(T) and by Definition 2.1, Ib#11(7) = Ib#1 () N
(Ib# 0 () = Ib#1(T) N (Ib#0 0 (T9)C.

By using T — T=0n0¢, 1b#0 0(0)= 1b# (D) — lb#0 0 0 (0).

Hence 1b# 0 0(C)=1b#00(T1) — Ib# 0 0 0(0).

Theorem 2.4. An IS [ is intuitionistic b#closed set in (77, ©) ifflb#0(7) <.

Proof. Let {7 be an intuitionistic b#-closed set in the ITS(T, 7).

Then by Definition 2.1, 1o#00(2)=1b#00(C)nIb#0 (T clb#0(T). By using Proposition 1.7
(iv), Ib# 01 0(TT)= 7.

Hence Ib#00(T7) <, if T is intuitionistic b#-closed in 7.

Conversely, Assume that, 1b#1 (7)) <. Then Ib#0 () — Ib# 0 0 0(D) <.

Since I1b#1010(T7) <7, we conclude that Ib#1 (7)) = 7.

IJFMR250346077 Volume 7, Issue 3, May-June 2025 3



https://www.ijfmr.com/

m International Journal for Multidisciplinary Research (IJFMR)
1JFMR E-ISSN: 2582-2160 e Website: www.iffmr.com e Email: editor@ijfmr.com

Hence 7 is intuitionistic b#-closed.

Theorem 2.5. If T is an intuitionistic b#-open set in (T, ), then 1b# (7)) <C°

Proof. Let {7 be an intuitionistic b#-open set in the ITS(7, 7).

By Proposition 1.4,07" is intuitionistic b#-closed set in TI. By Theorem 2.3, Ib#11(T0")cT " and by
Definition 2.1., we get Ib#101(C) <°.

Theorem 2.6. Let TicTand 7 be any intuitionistic b#-closed set in (7, t). Then lb#1 (7)) <.
Proof. By Proposition 1.8 (i), I<, 1b#01 0 (T) clb# (D).

By Definition 2.1, 1b#01 (1(T7)=1b#1 0 (T)Ib#0 (7€) clb# 0 (T)nIb#0 0(T€) clb#00(0).
Then by Remark 1.6, this is equal to T1. Hence Ib#1(T7) <.

Theorem 2.7. Let 7 be an IS in the ITS(T, 1). Then (Ib#1 (7)) = Ib# 0 0 (T Ulb#0 01 0(T°).
Proof. Let 7 be an IS in the ITS(T, 1).

Then by Definition 2.1, (Ib# (11 (T7)) " =(1b# (THAIb#D (T1) 7 = ((Ib#0 0 () O(Ib#0 0 (1))
By Proposition 1.7 (ii), which is equal to 1b#7 0 0(T5°) ulb#1010(0).

Hence (1b#01 (7)) = Ib#0 O (T)ulb# 0 0(TY).

Theorem 2.8. For an IS {7 inthe ITS(T, 1), Ib#11(T) cIFC (D).

Proof. Let (1 be an IS in the ITS(T, 7).

Then by Proposition 1.9, 1b#071(0) <10 0(T) and 1b#1 (7€) <l 0(T7).

By Definition 2.1, Ib#1 (7)) =1b#00(T)Ib#0 0(T°) <10 (O 0(T°), = IFC(0).
Hence 1b#00(77) cIFO (D).

The example that follows demonstrates that the preceding Theorem’s converse is not true.

<S{1,2}.{3,4}>, ;= <S{1,2.4}{3}>, T;=<S, {1,2,3}.{4}>. Let [ =<S, {1,2,4}, {3}> and
= <S, {3,4}, {1,2}> be the ISs of ({7, t). Then TJand Care intuitionistic b#-open sets. Let 0 =<
0,{13},{2,3,4} >. 7° =<S,{2,3,4},{1}. Now lb#cl(7) = <S, {1,2},{3,4}>.1b#cl(T¢) = T1. Then lb#Fr(7)
=<S,{1,2}, {3,4}> Now Icl(T) = <S, {1,2,4},{3}>.Icl(C°) = T. Then IFr(T) = <S,{1,2,4}, {3}>. Hence
Ib# 0 0(0) cIFC(T) but 100(C) & 1b#FO (D).

Theorem 2.10. For an IS [ in the ITS(T, ©), Ib#0 I (Ib#0 0(01)) clb#1 (D).

Proof. Let [ be the IS in the ITS(T, 7).

Then by Definition 2.1, Ib#00(Ib#00(0)) =lb#00(Ib#O(0)  n(Ib#(T9)))
c(Ib#0 0 (1b#0 (D)) N (Ib#0 D (1b# 0 T (T9)).

ByProposition 1.8 (iii), Ib#0 0 (Ib# 0 (D)) =lb#0 0(0) n (Ib# (7). By Definition 2.1, this is equal
to lb#0 0(00)

Theorem 2.11. For an IS T in the ITS(T, 1), lb#0 0 (lb#0 0 0(T)) clb#D (D).
Proof. Let [ be the IS in the ITS(T, 7).
Then by Definition 2.1, lb#0 0 (Ib# 0 0 0(01)) = #0100 0(5T)) » (o#0 0 (b (0))0).
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By Proposition 1.7 (i), lb#0 0 (1b#0 0 0(T)) = Ib#0 D (Ib# 0 00 (D)) m (lb#0 0 (lb#0 0 (T9)).
= Ib# 0 (Ib# 0 00 ()N (Ib#0 (T . (By Proposition 1.7 (v))

clIb# 0 0(D)Ib# 0 (%) (By Proposition 1.5 (i)

= Ib#101(T) (By Definition 2.1)

Hence Ib#[ 0 (1b#1 0 0(T7)) <(1b#0 (D))

The example that follows demonstrates that the preceding Theorem’s converse is not true.

Example 2.12. Consider the ITS in Example 2.2, LetT =< [1,{7},{2,3} >. Ib#int(T) = ¢.
Ib#Fr(Ib#int(7)) = ¢. Now ¢ =<S,{2,3}.{1}. Ib#cl(T) = <S, {1},{2,3}>. Ib#cl(T%) =77 Hence
Ib#Fr(77) = <S,{1}, {2,3}>Z ¢ = Ib#Fr(Ib#int(T)).

Theorem 2.13. For an IS T in the ITS(, ©), Ib# 0 (Ib# 0 (7)) clb# (D).
Proof. LetT bean IS inthe ITS(T, 7).
Then by Theroem2.4, 1b# 10 (Ib# 0 01(T)) = tb# 0 O (lb#0 0(T7)) » (Th#0 0 (Th# 0 0(T1))°).
= 1b# 010 (0) » (Ib#0 D (Ib#0 0 0(T9) (By Proposition 1.7 (ii) & (v) and Proposition 1.8)
clIb#00(T) nIb#0 (T (By Proposition 1.5 (i)
= Ib#11(77) (By Definition 2.1)
Hence 1b# 0 1 (1b#0 0(T1)) clb# 1 0(0).

The example that follows demonstrates that the preceding Theorem’s converse is not true.

Example 2.14.Examine the ITS presented in Example 2.2, Let T =< 1,{7},{2,3} >. Ib#cl(7T) = <S,
{1}{2,3}> and (lb#cl(T))® =<S,{2,3},{1}>. Ib#cl(lb#cl(T)) = <S, {1},{2,3}>. Ib#cl((Ib#cl(T))°)
=<S,{3},{1,2}>Ib#Fr(Ib#cl(T)) = ¢. Now ¢ =<S5,{2,3},{1}. Ib#cl(T) = <S, {1},{2,3}>. lb#cl(T°) =
7. Hence 1b#Fr(T1) = <S,{1}, {2,3}>% = Ib#Fr(lb#cl(T)).

Theorem 2.15. Let T be an IS in the ITS(T, 1). Then 1b#0 0 0(T) <0— lb#1 (D).
Proof. Let T be an IS in the ITS(T, 1).

Now by Definition 2.1, T — 1b#00(T) = T n(Ib# 0(5))"

=TA[Ib#0 0(0) nib# (T )] = On[lb#0 0 0(T7) ulb#D 0 0(D)]

=[DAIb#0 DT w [Onlb#0 0 0(5)]

= [Onlb#0 00 (T5)] wlb# 0 0(D) olb#0 0 0(5)

Hence I1b#0 0 0(T) o0 — Ib# (D).

The following Theorem shows the relation between intuitionistic b#-Interior, b#-Closure and b#-
Frontier.

Theorem 2.16. Let [ be an IS in the ITS(T, 1). Then lb#int(T) = (Ib#cl(T°))".
Proof: By Theorem 1.12, Ib#Ext(T7) = (Ib#cl(T))°
Therefore 1b#int(T)) = Ib#Ext(T°) = (Ib#cl(T°))°.

Theorem 2.17. Let 7 be an IS in the ITS(T, t). Then the intuitionistic b#closure of the complement of
T is the complement of the intuitionistic b#interior of TI. That is lb#cl(T°) = (Ib#int(7))®.
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Proof. Taking complements in Theorem 2.16, (1b#int(77))° = ((1b#cl(T%)))¢ = lb#cl(T°)
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