International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Some Properties of b#-Frontier in Intuitionistic Topological Spaces

¹Velraj C, ²Jamuna Rani R

¹Research Scholar, Reg. No. 20221172091005, Department of Mathematics, Rani Anna Government College for Women, Affiliated to MS University, Tirunelveli. India

²Asst. Professor and Head of the Dept. of Mathematics, Government Arts and Science College (Women), Sathankulam, India

Abstract

Using the idea of intuitionistic b#-open sets and intuitionisticb#-closed sets, several characteristics of intuitionistic topological concepts of b#-Interior and b#-Closure have been shown. Moreover, the qualities of intuitionistic b# Frontier have been presented and examined, as well as the properties of intuitionistic b# Frontier. Many counter-examples for the relevant classifications have been provided. The relation between intuitionistic b#-Interior, b#-Closure and b#-Frontier have been studied.

Keywords: Intuitionistic b[#]-Interior, Intuitionistic b[#]-Closure and Intuitionistic b[#]-Frontier

1. INTRODUCTION

Coker[2] developed the notion of intuitionistic fuzzy topological spaces by building on intuitionistic fuzzy sets [1]. Healso developed the concept of intuitionistic set in topological space. He examined some fundamental topological characteristics of intuitionistic sets. Sasikala[7][8][9] and Navaneetha Krishnan studied semi open sets, preopen sets, α -open sets in intuitionistic topological spaces. Velraj[10] has deliberated intuitionistic b#-open sets. The characteristics of intuitionistic b#-open sets are presented and described in this study.

In this paper, we defined b#-Frontier and some of its properties in intuitionistic topological spaces. We list some concepts and results introduced in [1,2,3].

Definition1.1 [cited from 3]: A family τ of an intuitionistic subset (IS for short) in \tilde{S} satisfying the following axioms is called an intuitionistic topology τ (IT for short) on \tilde{S} :

(T₁) $\widetilde{\phi}, \widetilde{S} \in \tau$, (T₂) $\widetilde{P}_1 \cap \widetilde{P}_2 \in \tau$ for any $\widetilde{P}_1, \widetilde{P}_2 \in \tau$ and (T₃) $\cup \widetilde{P}_i \in \tau$ for any arbitrary family { $\widetilde{P}_i: i \in J$ } $\subseteq \tau$.

Definition 1.2[cited 4]:[4] Let (\tilde{S},τ) be an ITS and $\tilde{L} = \langle S, L^1, L^2 \rangle$ be an IS in \tilde{S} . Then the interior and closure of \tilde{L} are defined by

 $cl(\tilde{L}) = \bigcap \{ \widetilde{P} : \widetilde{P} \text{ is an intuitionistic closed set in } \widetilde{S} \text{ and } \widetilde{L} \subseteq \widetilde{P} \}$ and

 $int(\tilde{L}) = \bigcup \{ \widetilde{P} : \widetilde{P} \text{ is an intuitionistic open set in } \widetilde{S} \text{ and } \widetilde{P} \subseteq \widetilde{L} \}.$

Definition 1.3 [cited from 6,7,10]: A subset \tilde{L} of an ITS(\tilde{S} , τ) is called

- Intuitionistic b-open (IbO for short) if L̃⊆int(cl(L̃)) ∪ cl(int(L̃)) and intuitionistic b-closed (IbC for short) if int(cl(□̃)) ∩ cl(int(□̃)) ⊆□
- Intuitionistic regular open (IRO for short) if □ = □nt(cl(□)) and intuitionistic regular closed (IRC for short) if cl(int(□)) = □
- Intuitionistic b#-open (Ib#O for short) if □ = cl(int(□)) ∪ int(cl(□)) and intuitionisticb#-closed (Ib#C) if int(cl(□)) ∩ cl(int(□)) = □.

Proposition 1.4[cited from 10]. An IS \square is an intuitionistic b#closed set if and only if \square^c is Intuitionistic b# -open.

Proposition 1.5[cited from 10]. Let $(\overline{\square}, \tau)$ be an ITS. For any intuitionistic subsets $\overline{\square}$ and $\overline{\square}$ of $\overline{\square}$, we have

- (i) $Ib\#int(\widetilde{\Box}) \subseteq \widetilde{\Box}$
- (ii) $\widetilde{\Box}$ is the intuitionistic b#open set in $\widetilde{\Box} \Leftrightarrow Ib\#int(\widetilde{\Box}) = \widetilde{\Box}$
- (iii) $Ib\#int(Ib\#int(\widetilde{\Box})) = Ib\#int(\widetilde{\Box})$
- (iv) If $\widetilde{\Box} \subseteq \widetilde{\Box}$ then $Ib\#int(\widetilde{\Box}) \subseteq Ib\#int(\widetilde{\Box})$

Remark 1.6[cited from 10]. Since the intersection of intuitionistic b# -closed sets in \square is also intuitioistic b# -closed set in \square , Ib# $\square \square (\square)$ is a intuitionistic b#closed set in \square .

Preposition 1.7[cited from 10]. Let $(\widetilde{\Box}, \tau)$ be an ITS and let $\widetilde{\Box}$ and $\widetilde{\Box}$ be the subsets of $\widetilde{\Box}$. Then

- (i) $(Ib\#int(\widetilde{\Box}))^c = Ib\#cl(\widetilde{\Box}^c)$
- (ii) $(Ib\#cl(\widetilde{\Box}))^c = Ib\#int(\widetilde{\Box}^c)$
- (iii) □̃⊆Ib#cl(□̃)
- (iv) $\widetilde{\Box}$ is the intuitionistic b#-closed set in $\widetilde{\Box} \Leftrightarrow Ib\#cl(\widetilde{\Box}) = \widetilde{\Box}$
- (v) $Ib\#cl(Ib\#cl(\widetilde{\Box})) = Ib\#cl(\widetilde{\Box})$

Preposition 1.8[cited from 10]. Let $(\overline{\square}, \tau)$ be an ITS. For any intuitionistic subsets $\overline{\square}$ and $\overline{\square}$ of $\overline{\square}$, if $\overline{\square} \subseteq \overline{\square}$ then Ib#cl $(\overline{\square}) \subseteq$ Ib#cl $(\overline{\square})$.

Proposition 1.9[cited from 10].Let $\widetilde{\Box}$ be a subset of on ITS $(\widetilde{\Box}, \Box)$. Then $lint(\widetilde{\Box}) \subseteq Ib\#int(\widetilde{\Box})$ $\subseteq \widetilde{\Box} \subseteq Icl(\widetilde{\Box}) \subseteq Ib\#cl(\widetilde{\Box}).$

Theorem 1.10.[cited from 10] Let($\widetilde{\Box}, \tau$) be an ITS and let $\widetilde{\Box}$ be a subset of $\widetilde{\Box}$. Then

- (i) Ib#int($\tilde{\Box}$) is an intuitionistic b#-open set.
- (ii) Ib#int($\widetilde{\Box}$) is the largest open set contained in $\widetilde{\Box}$
- (iii) $\widetilde{\Box}$ is Ib#open if and only if Ib#-int($\widetilde{\Box}$)= $\widetilde{\Box}$

Proposition 1.11[cited from 10].Let $(\overline{\square}, \tau)$ be an ITS. For any intuitionistic subsets $\overline{\square}$ and $\overline{\square}$ of $\overline{\square}$, we have

- (i) $Ib^{\#}cl(\widetilde{\Box}\cup\widetilde{\Box})\supseteq Ib^{\#}cl(\widetilde{\Box})\cup Ib^{\#}cl(\widetilde{\Box}).$
- (ii) $Ib^{\#}cl(\widetilde{\Box} \cap \widetilde{\Box}) \subseteq Ib^{\#}cl(\widetilde{\Box}) \cap Ib^{\#}cl(\widetilde{\Box}).$

Theorem 1.12. For a IS $\widetilde{\Box}$ of $(\widetilde{\Box}, \tau)$, Ib# $\Box \Box \Box (Ib#\Box \Box \Box (\widetilde{\Box})) = Ib#\Box \Box \Box (Ib#\Box \Box (\widetilde{\Box})) \supseteq Ib#\Box \Box \Box (\widetilde{\Box})$.

2. INTUITIONISTIC b[#]-FRONTIER

We introduced intuitionistic $b^{\#}$ -Frontierin intuitionistic topological spaces and go over their properties in this section.

Definition 2.1.Let \square be a subset of an ITS (\square, τ) . Then the intuitionistic b#-Frontier of \square is the intersection of intuitionistic b#-closure of \square and intuitionistic b#-closure of \square and intuitionistic b#-closure of \square and it is referred by Ib#Fr(\square). That is Ib#Fr(\square) = Ib#cl(\square) \cap Ib#cl(\square ^c).

*Example 2.2.*Let $\widetilde{\Box} = \{1,2,3\}$ and consider the family $\tau = \{\widetilde{\phi}, \widetilde{\Box}, \widetilde{\Box}_1, \widetilde{\Box}_2, \widetilde{\Box}_3\}$ where $\widetilde{\Box}_1 = \langle S, \{3\}, \{1,2\}\rangle$, $\widetilde{\Box}_2 = \langle S, \{1\}, \{2,3\}\rangle$, $\widetilde{\Box}_3 = \langle X, \{1,3\}, \{2\}\rangle$. Let $\widetilde{\Box} = \langle S, \{1,2\}, \{3\}\rangle$ and $\widetilde{\Box} = \langle S, \{2,3\}, \{1\}\rangle$ be the intuitionistic subsets of $(\widetilde{\Box}, \tau)$. Then $\widetilde{\Box}$ and $\widetilde{\Box}$ are intuitionistic b#-open sets. Let $\widetilde{\Box} = \langle \Box, \{\phi\}, \{1,2\}\rangle >$. $\widetilde{\Box}^c = \langle S, \{1,2\}, \{\phi\}$. Now Ib#cl $(\widetilde{\Box}) = \langle S, \{3\}, \{1,2\}\rangle$.Ib#cl $(\widetilde{\Box}^c) = \widetilde{\Box}$. Then Ib#Fr $(\widetilde{\Box}) =$ Ib#cl $(\widetilde{\Box}) \cap$ Ib#cl $(\widetilde{\Box}^c) = \langle S, \{3\}, \{1,2\}\rangle$.

Theorem 2.3. For an IS \square in the ITS (\square, τ) , Ib# $\square(\square) =$ Ib# $\square(\square^c)$. **Proof.** Let \square be an IS in the ITS (\square, τ) . Then by Definition 2.1, Ib# $\square(\square) =$ Ib# $\square(\square) \cap$ Ib# $\square(\square^c) =$ Ib# $\square(\square^c) \cap$ Ib# $\square(\square) =$ Ib# $\square(\square^c) \cap (Ib# \square \square (\square^c)^c)$). Again by Definition 2.1, this is equal to Ib# $\square(\square^c)$. Hence Ib# $\square(\square^c) =$ Ib# $\square(\square^c)$.

Hence $Ib\#\Box\Box(\widetilde{\Box})=Ib\#\Box\Box(\widetilde{\Box}^c)$.

Theorem 2.3. Let $\tilde{\Box}$ be an IS in the ITS $(\tilde{\Box}, \tau)$. Then Ib# $\Box(\tilde{\Box}) = Ib#\Box(\tilde{\Box}) - Ib#\Box\Box(\tilde{\Box})$. **Proof.** Let $\tilde{\Box}$ be an IS in the ITS($\tilde{\Box}, \tau$). By Proposition 1.7 (ii), (Ib# $\Box(\tilde{\Box}^c)$)^c = Ib# $\Box\Box(\tilde{\Box})$ and by Definition 2.1, Ib# $\Box\Box(\tilde{\Box}) = Ib#\Box\Box(\tilde{\Box}) \cap (Ib#\Box\Box(\tilde{\Box}^c))^c$. By using $\tilde{\Box} - \tilde{\Box} = \tilde{\Box} \cap \tilde{\Box}^c$, Ib# $\Box\Box(\tilde{\Box}) = Ib#\Box\Box(\tilde{\Box}) - Ib#\Box\Box(\tilde{\Box})$. Hence Ib# $\Box\Box(\tilde{\Box}) = Ib#\Box\Box(\tilde{\Box}) - Ib#\Box\Box(\tilde{\Box})$.

Theorem 2.4. An IS \square is intuitionistic b#closed set in (\square, τ) iffIb# $\square(\square) \subseteq \square$. **Proof.** Let \square be an intuitionistic b#-closed set in the ITS (\square, τ) . Then by Definition 2.1, Ib# $\square(\square)=Ib#\square(\square)\cap Ib#\square(\square^c) \subseteq Ib#\square(\square)$. By using Proposition 1.7 (iv),Ib# $\square(\square)=\square$. Hence Ib# $\square(\square)\subseteq\square$, if \square is intuitionistic b#-closed in \square . Conversely, Assume that, Ib# $\square(\square)\subseteq\square$. Then Ib# $\square(\square)=Ib#\square(\square)\subseteq\square$. Since Ib# $\square(\square)\subset\square$, we conclude that Ib# $\square(\square)=\square$.

Hence $\widetilde{\Box}$ is intuitionistic b#-closed.

Theorem 2.5. If \Box is an intuitionistic b#-open set in (\Box, τ) , then Ib# $\Box(\Box) \subseteq \Box^c$. **Proof.** Let \Box be an intuitionistic b#-open set in the ITS (\Box, τ) . By Proposition 1.4, \Box^{\Box} is intuitionistic b#-closed set in \Box . By Theorem 2.3, Ib# $\Box(\Box^{\Box})\subseteq \Box^{\Box}$ and by Definition 2.1., we get Ib# $\Box(\Box)\subseteq \Box^c$.

Theorem 2.6. Let $\Box \subseteq \Box$ and \Box be any intuitionistic b#-closed set in (\Box, τ) . Then Ib# $\Box (\Box) \subseteq \Box$. **Proof.** By Proposition 1.8 (i), $\Box \subseteq \Box$, Ib# $\Box (\Box) \subseteq$ Ib# $\Box (\Box)$. By Definition 2.1, Ib# $\Box (\Box) =$ Ib# $\Box (\Box) \cap$ Ib# $\Box (\Box^{\circ}) \subseteq$ Ib# $\Box (\Box) \cap$ Ib# $\Box (\Box^{\circ}) \subseteq$ Ib# $\Box (\Box)$. Then by Remark 1.6, this is equal to \Box . Hence Ib# $\Box (\Box) \subseteq \Box$.

Theorem 2.7. Let $\widetilde{\Box}$ be an IS in the ITS($\widetilde{\Box}$, τ). Then (Ib# \Box ($\widetilde{\Box}$))^{\Box} = Ib# \Box ($\widetilde{\Box}$) \cup Ib# \Box ($\widetilde{\Box}$)^{\Box}. **Proof.** Let $\widetilde{\Box}$ be an IS in the ITS($\widetilde{\Box}$, τ). Then by Definition 2.1, (Ib# \Box ($\widetilde{\Box}$))^{\Box} =(Ib# \Box ($\widetilde{\Box}$)) \Box =((Ib# \Box ($\widetilde{\Box}$))^{\Box} \cup (Ib# \Box ($\widetilde{\Box}$))^{\Box}. By Proposition 1.7 (ii), which is equal to Ib# \Box ($\widetilde{\Box}$) \cup Ib# \Box ($\widetilde{\Box}$). Hence (Ib# \Box ($\widetilde{\Box}$))^{\Box} = Ib# \Box ($\widetilde{\Box}$) \cup Ib# \Box ($\widetilde{\Box}$).

Theorem 2.8. For an IS \square in the ITS(\square , τ), Ib# \square (\square) \subseteq IF \square (\square). **Proof.** Let \square be an IS in the ITS(\square , τ). Then by Proposition 1.9, Ib# \square (\square) \subseteq I \square (\square) and Ib# \square (\square^c) \subseteq I \square (\square^c). By Definition 2.1, Ib# \square (\square)=Ib# \square (\square) \cap Ib# \square (\square^c) \subseteq I \square (\square^c), = IF \square (\square). Hence Ib# \square (\square) \subseteq IF \square (\square).

The example that follows demonstrates that the preceding Theorem's converse is not true.

Example 2.9. Let $\widetilde{\Box} = \{1,2,3,4\}$ and consider the family $\tau = \{\widetilde{\phi}, \widetilde{\Box}, \widetilde{\Box}_1, \widetilde{\Box}_2, \widetilde{\Box}_3\}$ where $\widetilde{\Box}_1 = \langle S, \{1,2\}, \{3,4\} \rangle$, $\widetilde{\Box}_2 = \langle S, \{1,2,4\}, \{3\} \rangle$, $\widetilde{\Box}_3 = \langle S, \{1,2,3\}, \{4\} \rangle$. Let $\widetilde{\Box} = \langle S, \{1,2,4\}, \{3\} \rangle$ and $\widetilde{\Box} = \langle S, \{3,4\}, \{1,2\} \rangle$ be the ISs of $(\widetilde{\Box}, \tau)$. Then $\widetilde{\Box}$ and $\widetilde{\Box}$ are intuitionistic b#-open sets. Let $\widetilde{\Box} = \langle I\}, \{2,3,4\} \rangle$. $\widetilde{\Box}^c = \langle S, \{2,3,4\}, \{1\}$. Now Ib#cl $(\widetilde{\Box}) = \langle S, \{1,2\}, \{3,4\} \rangle$.Ib#cl $(\widetilde{\Box}^c) = \widetilde{\Box}$. Then Ib#Fr $(\widetilde{\Box}) = \langle S, \{1,2\}, \{3,4\} \rangle$ Now Icl $(\widetilde{\Box}) = \langle S, \{1,2,4\}, \{3\} \rangle$.Icl $(\widetilde{\Box}^c) = \widetilde{\Box}$. Then IFr $(\widetilde{\Box}) = \langle S, \{1,2,4\}, \{3\} \rangle$. Hence Ib# $\Box = \langle \widetilde{\Box} \rangle \subseteq$ IF $\Box \subset \widetilde{\Box}$ but I $\Box = (\widetilde{\Box}) \notin$ Ib#F $\Box \subset \widetilde{\Box}$).

Theorem 2.10. For an IS $\widetilde{\Box}$ in the ITS($\widetilde{\Box}$, τ), Ib# $\Box \Box$ (Ib# $\Box \Box$ ($\widetilde{\Box}$)) \subseteq Ib# $\Box \Box$ ($\widetilde{\Box}$).

Proof. Let $\widetilde{\Box}$ be the IS in the ITS($\widetilde{\Box}$, τ).

Then by Definition 2.1, $Ib\#\Box(Ib\#\Box(\widetilde{\Box})) = Ib\#\Box(Ib\#\Box(\widetilde{\Box}) \cap (Ib\#\Box(\widetilde{\Box}^{c})))$ $\subseteq (Ib\#\Box(Ib\#\Box(\widetilde{\Box}))) \cap (Ib\#\Box(Ib\#\Box(\widetilde{\Box}^{c}))).$

ByProposition 1.8 (iii), Ib# \Box (Ib# \Box ($\widetilde{\Box}$)) =Ib# \Box ($\widetilde{\Box}$) \cap (Ib# \Box ($\widetilde{\Box}^{c}$)). By Definition 2.1, this is equal to Ib# \Box ($\widetilde{\Box}$)

Theorem 2.11. For an IS $\widetilde{\Box}$ in the ITS($\widetilde{\Box}$, τ), Ib# \Box (Ib# \Box \Box ($\widetilde{\Box}$)) \subseteq Ib# \Box ($\widetilde{\Box}$). **Proof.** Let $\widetilde{\Box}$ be the IS in the ITS($\widetilde{\Box}$, τ). Then by Definition 2.1, Ib# \Box (Ib# \Box \Box ($\widetilde{\Box}$)) = Ib# \Box (I \Box \Box ($\widetilde{\Box}$)) \cap (Ib# \Box (Ib# \Box \Box ($\widetilde{\Box}$))^c).

By Proposition 1.7 (i),Ib# \square (Ib# \square \square (\square)) = Ib# \square (Ib# \square \square (\square)) \cap (Ib# \square (Ib# \square \square (\square))) = Ib# \square (Ib# \square \square (\square)) \cap (Ib# \square (\square)) \cap (Ib# \square (\square)) \subseteq Ib# \square (\square)) \cap (Ib# \square (\square)) (By Proposition 1.7 (v)) = Ib# \square (\square) (By Definition 2.1) Hence Ib# \square (Ib# \square (\square)) \subset (Ib# \square (\square))

The example that follows demonstrates that the preceding Theorem's converse is not true.

Example 2.12. Consider the ITS in Example 2.2, Let $\widetilde{\Box} = \langle \Box, \{I\}, \{2,3\} \rangle$. Ib#int($\widetilde{\Box}$) = ϕ . Ib#Fr(Ib#int($\widetilde{\Box}$)) = ϕ . Now $\widetilde{\Box}^c = \langle S, \{2,3\}, \{1\}$. Ib#cl($\widetilde{\Box}$) = $\langle S, \{1\}, \{2,3\} \rangle$. Ib#cl($\widetilde{\Box}^c$) = $\widetilde{\Box}$. Hence Ib#Fr($\widetilde{\Box}$) = $\langle S, \{1\}, \{2,3\} \rangle \not\subseteq \phi$ = Ib#Fr(Ib#int($\widetilde{\Box}$)).

Theorem 2.13. For an IS \square in the ITS(\square , τ), Ib# \square (Ib# \square (\square)) \subseteq Ib# \square (\square). **Proof.** Let \square be an IS in the ITS(\square , τ). Then by Theroem2.4, Ib# \square (Ib# \square (\square)) = Ib# \square (Ib# \square (\square)) \cap (Ib# \square (Ib# \square (\square))^c). = Ib# \square (\square) \cap (Ib# \square (Ib# \square (\square)) (By Proposition 1.7 (ii) & (v) and Proposition 1.8) \subseteq Ib# \square (\square) \cap Ib# \square (\square ^c) (By Proposition 1.5 (i))

= Ib# $\Box \Box (\widetilde{\Box})$ (By Definition 2.1)

Hence $Ib\#\Box \Box (Ib\#\Box \Box (\widetilde{\Box})) \subseteq Ib\#\Box \Box (\widetilde{\Box})$.

The example that follows demonstrates that the preceding Theorem's converse is not true.

*Example 2.14.*Examine the ITS presented in Example 2.2, Let $\Box = \langle \Box, \{1\}, \{2,3\} \rangle$. Ib#cl(\Box) = \langle S, $\{1\}, \{2,3\} \rangle$ and (Ib#cl(\Box))^c = \langle S, $\{2,3\}, \{1\} \rangle$. Ib#cl(Ib#cl(\Box)) = \langle S, $\{1\}, \{2,3\} \rangle$. Ib#cl((Ib#cl(\Box))^c) = \langle S, $\{3\}, \{1,2\} \rangle$ Ib#Fr(Ib#cl(\Box)) = ϕ . Now $\Box^c = \langle$ S, $\{2,3\}, \{1\}$. Ib#cl(\Box) = \langle S, $\{1\}, \{2,3\} \rangle$. Ib#cl(\Box^c) = \Box . Hence Ib#Fr(\Box) = \langle S, $\{1\}, \{2,3\} \rangle \not\subseteq \phi$ = Ib#Fr(Ib#cl(\Box)).

Theorem 2.15. Let \Box be an IS in the ITS(\Box , τ). Then Ib# $\Box \Box (\Box) \subseteq \Box - Ib#\Box \Box (\overline{\Box})$. **Proof.** Let \Box be an IS in the ITS(\Box , τ). Now by Definition 2.1, $\Box - Ib#\Box \Box (\overline{\Box}) = \Box \cap (Ib#\Box \Box (\overline{\Box}))^{\Box}$ $=\Box \cap [Ib#\Box \Box (\overline{\Box}) \cap Ib#\Box \Box (\overline{\Box}^{\Box})]^{\Box} = \Box \cap [Ib#\Box \Box (\overline{\Box}^{\Box}) \cup Ib#\Box \Box (\overline{\Box})]$ $= [\Box \cap Ib#\Box \Box (\overline{\Box}^{\Box})] \cup [\Box \cap Ib#\Box \Box (\overline{\Box})]$ $= [\Box \cap Ib#\Box \Box (\overline{\Box}^{\Box})] \cup Ib#\Box \Box (\overline{\Box}) \supseteq Ib#\Box \Box (\overline{\Box})$ Hence Ib# $\Box \Box (\overline{\Box}) \supseteq \Box - Ib#\Box \Box (\overline{\Box})$.

The following Theorem shows the relation between intuitionistic b#-Interior, b#-Closure and b#-Frontier.

Theorem 2.16. Let \Box be an IS in the ITS(\Box , τ). Then Ib#int(\Box) = (Ib#cl(\Box ^c))^c. **Proof:** By Theorem 1.12, Ib#Ext(\Box) = (Ib#cl($\overline{\Box}$))^c Therefore Ib#int($\overline{\Box}$) = Ib#Ext($\overline{\Box}$ ^c) = (Ib#cl($\overline{\Box}$ ^c))^c.

Theorem 2.17. Let $\widehat{\Box}$ be an IS in the ITS($\widehat{\Box}$, τ). Then the intuitionistic b#closure of the complement of $\widehat{\Box}$ is the complement of the intuitionistic b#interior of $\widehat{\Box}$. That is Ib#cl($\widehat{\Box}^c$) = (Ib#int($\widehat{\Box}$))^c.

Proof. Taking complements in Theorem 2.16, $(Ib\#int(\widetilde{\Box}))^c = ((Ib\#cl(\widetilde{\Box}^c))^c)^c = Ib\#cl(\widetilde{\Box}^c)$

REFERENCES

- [1] Zadeh L.A, Fuzzy Sets, Inform and Control,8,(1965),338-353.
- [2] D.Coker, "Anoteonintuitionisticsetsandintuitionisticpoints", TU.J.Math. 20-3(1996)343-351
- [3] D.Andrijević, Onb-opensets, Mat. Vesnik 48(1996), no. 1–2, 59–64.
- [4] D.Coker, (2000) "An introduction to intuitionistic topological spaces", Akdeniz Univ, Mathematics Dept. pp. 51 – 56.
- [5] R. Usha Parameswari and P. Thangavelu, "On b # -open sets", International Journal of Mathematics Trends and Technology, 5(3) 2014, 202-218.
- [6] Gnanambal Ilango and T. A. Albinaa, "Properties of α-interior and α-closure in intuitionistic topological spaces", IOSR Journal of Mathematics. e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 6 Ver. V (Nov. Dec.2016), PP 91-95.
- [7] G. Sasikala and M. Navaneetha Krishnan, "Study on Intuitionistic α -open sets and α -closed Sets" International Journal of Mathematical Archive (2017), 26-30.
- [8] G. Sasikala and M. Navaneetha Krishnan, "On Intuitionistic Preopen Sets", International Journal of Pure and Applied Mathematics, Vol.116, No. 24, 2017, 281-292.
- [9] G. Sasikala and M. Navaneetha Krishnan, "Study on Intuitionistic Semiopen Sets", IOSR Journal of Mathematics, Vol.12, No. 6, 2017, pp 79-84
- [10] C. Velraj and R. Jamuna Rani, "b# Open Sets and b# Closed Sets in Intuitionistic Topological Spaces" ISBN:978-93-91563-72-1. Pages 168-173.