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Abstract 

The rapid advancement in autonomous driving technology necessitates the development of highly efficient 

systems that ensure accurate object detection, precise localization, and reliable navigation. This project 

presents an integrated engine combining YOLO (You Only Look Once) for real-time object detection and 

SLAM (Simultaneous Localization and Mapping) for accurate localization and mapping, enhancing the 

decision-making and obstacle avoidance capabilities of autonomous vehicles. YOLO’s deep learning 

framework allows for the fast detection of various objects in the vehicle’s environment, while SLAM 

builds a dynamic, real-time map that ensures the vehicle maintains awareness of its surroundings. The 

integration of these technologies provides a robust solution for navigating complex and dynamic 

environments, overcoming challenges such as dynamic obstacle avoidance, lane tracking, and real-time 

path planning. This project aims to contribute to the development of safer and more efficient autonomous 

vehicles, focusing on real-time performance and the seamless interaction between detection and 

localization systems. 

 

Keywords: YOLO (You Only Look Once), SLAM (Simultaneous Localization and Mapping), Object 
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1. Introduction 

The evolution of autonomous driving technology hinges on the synergy between perception and 

localization systems that enable vehicles to navigate safely and efficiently in real-world environments. As 

self-driving systems become more complex, the need for accurate, real-time understanding of the vehicle’s 

surroundings has become paramount. Two leading technologies at the forefront of this evolution are 

YOLO (You Only Look Once) and SLAM (Simultaneous Localization and Mapping). YOLO is a high-

performance, deep learning-based object detection algorithm renowned for its ability to detect multiple 

objects within a scene in a single, swift pass. Its speed and precision make it highly suitable for the fast-

paced decision-making demands of autonomous vehicles. 

SLAM, on the other hand, offers the crucial ability to build a dynamic map of the environment while 

simultaneously tracking the vehicle’s location within that map. By continuously updating spatial 

information from sensor data such as LiDAR, radar, and cameras, SLAM enables autonomous systems to 

navigate in both known and unfamiliar environments without the need for pre-constructed maps. 

This research proposes an integrated engine that combines the rapid object detection capabilities of 

YOLOv8 with the spatial mapping strength of SLAM. The integration facilitates a unified environmental 

model where both static infrastructure and dynamic obstacles are mapped and identified in real time. This 
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fusion enhances the system’s situational awareness, allowing it to make informed decisions about 

navigation, obstacle avoidance, and path planning. YOLOv8’s improvements, such as anchor-free 

detection and scalable architecture, further support deployment across a range of hardware platforms, from 

resource-constrained systems to high-performance setups. Moreover, this integrated approach supports 

advanced decision-making through comprehensive data synthesis. The system not only detects and 

classifies objects but also accurately maps their positions relative to the vehicle. Such capabilities are 

essential for managing complex urban scenarios, reacting to unexpected changes, and ensuring passenger 

safety. In addition, robust preprocessing techniques enhance the reliability of sensor inputs, leading to 

improved performance in varied and challenging environments. 

By merging state-of-the-art object detection and real-time localization, this paper presents a cohesive 

framework for autonomous driving that addresses the dual challenges of perception and navigation, laying 

the groundwork for safer and smarter autonomous systems. 

 

2. Related Work 

Autonomous driving has rapidly evolved due to significant advancements in artificial intelligence, sensor 

technology, and computational hardware. This evolution has driven extensive research in perception, 

localization, real-time decision-making, and infrastructure integration. This section discusses key research 

contributions relevant to autonomous driving, with a focus on deep learning for perception, SLAM for 

localization, lane and pothole detection, edge computing, and 3D mapping systems. 

● Deep Learning for Perception and Pothole Detection: Deep learning models have become 

fundamental to perception in autonomous vehicles. CNN-based models like YOLO (You Only Look 

Once) are particularly effective due to their real-time object detection capabilities. Khan et al. (2024) 

propose a YOLOv8-based pothole detection system that demonstrates superior performance in terms 

of speed and accuracy compared to earlier models like YOLOv5. Their work emphasizes the 

importance of real-time hazard identification to enhance vehicle safety, and explores data 

augmentation methods to improve detection robustness across diverse road conditions. Similarly, Raja 

et al. (2022) introduce SPAS, a Smart Pothole-Avoidance Strategy using the Deep Deterministic 

Policy Gradient (DDPG) algorithm. This system uniquely incorporates real-time user feedback 

through speech and gesture recognition to fine-tune decision-making, achieving significant 

improvements in comfort and obstacle avoidance in VANET environments. 

● SLAM and Localization: Simultaneous Localization and Mapping (SLAM) is crucial for 

autonomous navigation, enabling vehicles to localize themselves while constructing environmental 

maps. Frese et al. (2010) provide a user-centric overview of SLAM, categorizing its application into 

three levels: pre-mapping, black-box localization, and dynamic online mapping. They explore various 

SLAM architectures including 2D/3D pose graphs and feature-based methods, emphasizing their 

suitability for different application contexts. ORB-SLAM3 and other modern visual SLAM techniques 

now integrate multiple sensor inputs (e.g., stereo, monocular cameras) and advanced loop closure 

strategies to improve localization accuracy in real-world environments. 

● Lane Detection using Image Processing: Lane detection remains a foundational task for path 

planning in autonomous vehicles. Suresh et al. (2022) address the limitations of existing systems under 

noisy conditions (e.g., fog, shadows, oil stains) and propose an Entropy-Based Fusion Model (EBFM) 

to improve detection under adverse visual conditions. They use clustering and heuristic line fitting 

methods for lane identification. Complementing this, Abdul Razak et al. (2022) employ a pipeline 
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using OpenCV, Gaussian blur, Canny edge detection, and the Hough Transform for robust two-lane 

detection. Their study shows that time-of-day impacts performance, with optimal detection results 

recorded in mid-afternoon lighting conditions. 

● Edge Computing and Real-Time Processing: Real-time processing is essential for safe autonomous 

operation, especially when relying on computationally intensive deep learning models. The adoption 

of edge computing enables processing directly on the vehicle, thereby reducing latency and reliance 

on cloud infrastructure. Lightweight models like YOLOv8 are specifically optimized for edge 

deployment, ensuring fast and efficient decision-making. These edge systems also support V2X 

(Vehicle-to-Everything) communication, improving situational awareness through collaborative 

sensing and shared environmental data. 

● 3D Mapping and Infrastructure Support: The use of high-definition 3D maps further enhances 

vehicle localization and environment perception. Mizutani et al. (2020) propose a method for 

distributing Point Cloud Data (PCD) maps via roadside edge servers using the Autoware platform. 

Their system enables autonomous vehicles to dynamically download high-resolution maps in real-

time, achieving accurate self-localization with minimal delay, particularly in urban environments. This 

infrastructure-based support helps vehicles remain updated with real-world changes such as 

construction zones or dynamic obstacles. 

 

3. Methodology: 

 
Fig 1. System Architecture 

 

-3.1 Data Acquisition 

The system captures real-time video from on-board cameras (for example, a forward-facing dashcam or a 

mounted smartphone). These cameras are synchronized and calibrated so that each frame can be accurately 

related to the world. Video is streamed at sufficient frame rate (e.g. 30–60 FPS) and resolution to allow 

reliable perception. In parallel, static vehicle parameters (wheelbase, turning radius, height/width) and 

dynamic sensor data (e.g. IMU or wheel-encoder readings) are recorded. These parameters are stored for 

use by the planning and control algorithms to enforce vehicle kinematics constraints. Collectively, this 
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module ensures that high-fidelity visual feeds and precise vehicle dimensions are available for the rest of 

the pipeline. 

● Cameras: High-resolution forward-facing cameras record continuous video. Intrinsic parameters 

(focal length, distortion) and extrinsics (mounting position) are calibrated beforehand. 

● Vehicle parameters: The car’s turning radius, length, width, and other dimensions are measured or 

obtained from the vehicle model. This information is logged for use in collision-checking and path 

planning. 

● Additional sensors: Any additional sensors (e.g. IMU, GPS, wheel encoders) are activated to provide 

pose priors or motion cues. Their raw outputs are time stamped and bundled with the video data. 

3.2 Preprocessing 

Raw inputs are preprocessed to produce clean, consistent data. Image frames are first converted to a 

standard color space and normalized (e.g. pixel intensities scaled to [0,1]). The images are then resized or 

cropped to match the input requirements of the perception networks (for example, YOLOv8 models often 

use square inputs such as 640×640 pixels. If multiple cameras are used, images are rectified to compensate 

for lens distortion or alignment differences. Noise-reduction filters (e.g. Gaussian blur or median filtering) 

may be applied to smooth out visual noise. Similarly, any time-series sensor data (IMU, wheel speed) is 

low-pass filtered or smoothed to remove jitter. These preprocessing steps ensure that every input frame 

and sensor reading fed to later modules is uniformly formatted and denoised. 

● Image normalization: Scale and center pixel values so that network inputs have zero mean and unit 

variance. 

● Resizing and cropping: Resize frames to the neural network input size (e.g. 640×640) and optionally 

crop to region of interest (e.g. remove sky or hood). 

● Noise filtering: Apply spatial filters (Gaussian blur, bilateral filter) to suppress camera noise. For 

other sensors, use Kalman or simple low-pass filters. 

● Rectification: If using stereo or fisheye cameras, rectify images to obtain undistorted views. 

3.3 Feature Extraction 

The core perception uses two parallel pipelines. The first is a YOLOv8-based object detector. YOLOv8 

processes each preprocessed image in real time, outputting bounding boxes, class labels, and confidence 

scores for detected objects. YOLO accomplishes this in a single forward pass of a convolutional neural 

network: it directly regresses bounding box coordinates and class probabilities from the full image. In 

other words, one CNN predicts all object locations and classes at once, enabling high speed. YOLOv8 

incorporates modern improvements (an anchor-free detection head and a state-of-the-art backbone) to 

balance accuracy and inference speed For example, the smallest YOLOv8 model (YOLOv8n) achieves 

around 37.3% mAP on the COCO benchmark with inference times on the order of 1 ms on a high-end 

GPU Each detection is output as a 2D bounding box (x,y coordinates in the image) plus a confidence 

score. 

The second pipeline is a visual SLAM algorithm. SLAM takes the same camera frames and performs 

feature matching across consecutive frames. It extracts interest points (e.g. ORB features) and tracks them 

to triangulate a sparse 3D point cloud of the scene. Simultaneously, SLAM computes the vehicle’s camera 

pose (position and orientation) for each frame by aligning the current image features with the map. In 

effect, SLAM produces a dynamic map of the environment and a live pose estimate for the vehicle. The 

SLAM module thus converts raw video into a structured world representation and continuous localization 

output. In addition, a lane-detection sub-module operates on the video to find painted road lanes (using 
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techniques such as edge detection plus Hough transforms or a learned segmentation network). These 

detected lanes inform the drivable corridor and can be incorporated into the map as geometric constraints. 

The output of this stage is: (1) a set of labeled bounding boxes from YOLO with confidence scores, (2) a 

3D map and vehicle pose from SLAM, and (3) lane geometry from the lane detector. 

● YOLOv8 object detection: Each incoming frame is passed through the YOLOv8 network, yielding 

bounding boxes with associated object classes and confidence scores YOLOv8’s architecture (anchor-

free head, optimized backbone) is designed for real-time performance. 

● SLAM mapping and pose estimation: A visual SLAM system (e.g. ORB-SLAM) processes image 

features across frames. It estimates the camera pose and builds a sparse 3D point cloud map of static 

landmarks. This provides continuous vehicle localization and a global map. 

● Lane detection: An image processing or deep-learning module identifies road lane lines in each frame. 

These lanes constrain the drivable space and are incorporated into the map. 

● Pose tracking: The SLAM-derived pose (x, y, heading) of the vehicle is updated in real time. This 

pose aligns with the camera frame to place objects and paths relative to the car’s position. 

3.4 Integration 

To fuse semantics with geometry, the detected objects are mapped into the SLAM-generated world frame. 

Each YOLO bounding box (given in image coordinates) is projected into 3D space using the known 

camera intrinsics and SLAM’s depth information (or assuming the object lies on the road plane). Using 

the current camera pose from SLAM, the 3D position of the object is computed in the global coordinate 

frame. Next, the SLAM point cloud is filtered: points that lie under a detected box in the image are 

extracted. These points are clustered spatially to determine the extent of each object in 3D. For example, 

clusters of SLAM points corresponding to the same YOLO detection are found, and a bounding volume 

(via PCA or clustering) is computed for each object. The result is an annotated map: the SLAM point 

cloud now has semantic labels (e.g. “car”, “pedestrian”) at the locations of the detected objects. This 

overlay of YOLO detections onto the SLAM map greatly enhances spatial awareness. The system now 

knows not only where physical features are (from SLAM) but also what they are (from YOLO). The fused 

map allows downstream modules to reason about moving objects in context. 

● Coordinate transformation: Use camera calibration and SLAM depth to transform each 2D detection 

into a 3D location in the map frame. 

● Point cloud filtering: Identify SLAM map points that project into each YOLO box. Cluster these 

points to localize the object in 3D. 

● Bounding volume estimation: Compute an oriented 3D bounding box around each cluster (e.g. via 

PCA), effectively locating the object’s position and size in the worldmdpi.commdpi.com. 

● Map annotation: Overlay labels and boxes for detected objects onto the SLAM map. The map now 

contains both geometry (from SLAM) and object semantics (from YOLO). 

● Enhanced spatial awareness: This integration allows the planning module to treat detected objects 

as obstacles in known locations, rather than just as image features. 

3.5 Decision-Making 

With a semantically annotated map and real-time pose, the engine can plan and control the vehicle. First, 

a path planner computes a navigable route to the destination. Typically, the SLAM map is discretized into 

a grid or graph. Graph-based search algorithms are applied: for example, the A* algorithm (with 

appropriate heuristic) or Dijkstra’s algorithm finds an optimal path through the free space, taking into 

account vehicle dimensions and turning radius. We prefer A* for its efficiency on large grids (it often 

https://www.ijfmr.com/
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expands fewer nodes than Dijkstra in practice), although Dijkstra’s algorithm is more straightforward 

when dynamic obstacles require replanning. The planner outputs a sequence of waypoints or a continuous 

trajectory that avoids static obstacles and stays within lanes. 

Next, a speed-planning module assigns velocities along the path. It slows the vehicle when approaching 

tight curves or detected obstacles (from YOLO) and accelerates when the road is clear. This can be done 

with a simple rule-based scheme or a model predictive controller that minimizes jerk while following 

speed limits. For obstacle avoidance, the module continuously checks the fused map for any newly 

detected object intruding on the planned path. If an obstacle is within a safety threshold, the planner 

generates avoidance maneuvers: for instance, it may create a detour path around the obstacle or apply 

emergency braking. Common avoidance techniques include potential-field repulsion (treat the obstacle as 

a repulsive force) or sampling-based replanning (using RRT or PRM to find an alternate route). The final 

decision commands are the trajectory (path + speed profile) that the vehicle should follow, respecting 

collision avoidance and traffic rules. 

● Global path planning: Formulate a graph/grid of the environment and run A* or Dijkstra’s algorithm 

to find a collision-free route to the goal. The planner accounts for the vehicle’s turning radius and 

clearance. 

● Speed and acceleration planning: Generate a velocity profile that obeys speed limits and maintains 

safe following distances. For example, when an obstacle is near, reduce speed; on open road, accelerate 

up to the limit. A longitudinal controller (PID or MPC) will execute this speed plan. 

● Obstacle avoidance: Continuously monitor detected objects. If an object blocks the current path, 

replan around it. Techniques like repulsive potential fields or RRT-based re-routing can be used. 

● Collision checks: Use the vehicle’s own geometry (length, width) in the map to ensure planned paths 

maintain safe margins from static obstacles and detected objects. 

● Decision logic: Incorporate rule-based constraints (e.g. stopping at crosswalks or traffic lights) to 

modify the plan when required. 

3.6 Output Generation 

The final outputs of the engine are visualization overlays and control commands. For visualization, the 

system can render the results for a human driver or operator. The live camera feed is overlaid with 

graphics: bounding boxes for all detected objects, lines for lanes and the planned path, and indicators for 

vehicle state (e.g. speed). This can be shown on a dashboard or logging interface to monitor the system’s 

perception and planned trajectory. On the control side, the planner’s trajectory and speed commands are 

converted into actuator signals. A lateral controller (such as a Stanley or pure-pursuit controller) computes 

the steering angle required to follow the path, while a longitudinal controller computes throttle or brake 

effort to achieve the target speed. These commands (steering, throttle, brake) are sent to the vehicle’s 

drive-by-wire interface at each control cycle. In summary, the visual display communicates system 

decisions to an operator, while the low-level controllers generate the actual motion commands to drive the 

vehicle along the chosen route. 

● Visualization: Overlay detections and plans on the camera/video feed. For example, draw boxes 

around cars/pedestrians and a colored line for the path. Indicate current vehicle pose and lane 

boundaries. 

● Control commands: Lateral control computes a steering command to track the path, and longitudinal 

control computes throttle/brake for speed tracking. These commands are output continuously (e.g. at 

10–50 Hz) to the vehicle actuators. 

https://www.ijfmr.com/
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● Data output: Log key data (poses, detections, control signals) for offline analysis and debugging. 

 

4. Results 

The integrated system combining YOLO object detection, a custom lane detection algorithm, and pothole 

detection logic was successfully implemented and tested on a sample road scene video. The system 

processed each frame in real-time, overlaying actionable insights on the visual feed. The final output video 

reflects the combination of various intelligent features working together to simulate a smart driving 

assistance system. 

Lane Detection and Steering Angle Estimation 

the system effectively identifies lane boundaries using Canny edge detection followed by the Hough Line 

Transform. The detected lane lines are drawn in blue, with separate identification for the left and right 

lanes. By calculating the average slope of these lines, the system determines the required steering angle to 

stay centered within the lane. The estimated angle is visualized using a red steering line projected from 

the vehicle's front — simulating the direction in which the vehicle should turn. 

YOLO-Based Object Detection 

Figure 2 displays the YOLO detection results overlaid on the video frame. Objects such as vehicles, 

pedestrians, and traffic signs are accurately detected and labeled with bounding boxes and confidence 

scores. These detections are critical for real-time situational awareness and safe navigation. 

 

 
Fig 2: YOLO detection of multiple objects in the driving environment. 

 

Pothole Detection and Speed Adjustment 

A unique feature of this system is its ability to identify potholes within the lane using a combination of  
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morphological image processing and contour analysis. When a pothole is detected, the system calculates 

its distance from the vehicle and overlays the estimated deceleration required to safely slow down to 30 

km/h before reaching it. As seen in Figure 3, the pothole is clearly highlighted, and deceleration 

information is shown prominently for driver assistance. 

 

 
Figure 3: Pothole detected within the lane with calculated deceleration value. 

 

Integrated Frame-by-Frame Visualization 

The final output video offers a comprehensive visualization of all functionalities integrated into a single 

pipeline. Each frame includes: 

● Highlighted lane boundaries and steering vector. 

● Real-time object detection with bounding boxes and labels. 

● Pothole location with estimated distance and deceleration metrics. 

This multi-layered visual feedback makes the system suitable for deployment in autonomous driving 

simulations and advanced driver-assistance systems (ADAS). 

 

5. Performance Evaluation : 

During the evaluation phase of our system, we performed rigorous testing using both synthetic and real-

world video inputs. The objective was to benchmark each module’s effectiveness and robustness against 

standard performance metrics, namely accuracy, recall, precision, and F1-score. These tests were 

conducted at multiple stages of model training (from 50% to 90%) to assess learning stability and 

generalization capacity. 

YOLO-Based Object Detection: 

The YOLO model showed consistently high performance across various object categories such as trucks, 

pedestrians, and aircraft, maintaining confidence levels even in dynamically changing environments. 

However, object detection performance degraded slightly for distant or partially occluded entities due to 

reduced pixel detail. This aligns with known limitations in feature abstraction for small or obstructed 

objects. 
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Lane Detection: 

Since YOLO is not natively suited for lane detection, we designed a separate preprocessing module to 

detect road lines. The lane detection pipeline used Canny edge detection and Hough Line Transform, along 

with angular computation for estimating the steering angle. This enhancement enabled accurate vehicle 

alignment and direction planning based on road geometry. 

Simulated SLAM: 

A Python-based simulated SLAM environment was integrated to provide a rudimentary sense of 

localization and mapping. While it allowed basic scene mapping, its lower spatial resolution and slower 

update rate limited its utility in high-speed or obstacle-dense environments. Integrating a full-scale SLAM 

framework in future work would vastly improve responsiveness and spatial fidelity. 

Pothole Detection: 

Our contrast-based image processing technique for pothole detection produced unreliable results. The 

algorithm struggled in distinguishing real potholes from shadows or natural discoloration due to varying 

lighting conditions and low texture resolution. This led to numerous false positives and negatives, 

highlighting the need for a more sophisticated, possibly 3D or depth-sensing-based, detection model. 

Quantitative Evaluation: 

To objectively compare performance, we evaluated two configurations: 

● Basic Model: Baseline implementation without SLAM or enhancements. 

● YOLO + Virtualised SLAM: Enhanced model integrating SLAM simulation and tuned YOLO. 

Each model was tested at increasing levels of training data (from 50% to 90%). The results are summarized 

in the following charts:  
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6. Conclusion 

This project successfully demonstrated an integrated system for autonomous driving using YOLO-based 

object detection, custom lane tracking, and simulated SLAM. The system showed strong performance in 

real-time object and lane detection, enabling accurate steering angle estimation for navigation. While 

SLAM was limited by simulation constraints and pothole detection suffered from false positives due to 

lighting and surface variations, the overall framework proved effective and modular. The modular design 

allows for future integration of improved algorithms and hardware components. With enhancements such 

as real-time SLAM and depth-aware pothole detection, the system has strong potential for safe, intelligent 

autonomous driving in real-world environments. 
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