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Abstract 

Age-related spectral variations in lithologically similar rocks are often overlooked in remote sensing-based 

geological studies. The research explores the potential of distinguishing Quartzite, Granite, and Carbonate 

rocks across different geological formations, specifically, the Banded Gneissic Complex, Aravalli 

Supergroup, and Delhi Supergroup. It investigates the surface reflectance patterns of different age group 

lithologies by integrating multispectral data from Landsat 8/9 and ASTER with hyperspectral imagery 

from PRISMA and AVIRIS-NG. The methodology involves atmospheric correction, sophisticated forms 

of dimensionality reduction like PCA and MNF, spectral index calculation and computing band ratios. 

Other spatial analyses and terrain modelling (slope, aspect) using DEM data were also performed using 

GIS software. 

The results noted rough spectral homogeneity within the same rock types across different age formations, 

attributing increased weathering, structural, and mineralogical maturity to aging. The work shows that 

with sufficient understanding of the area and detailed interpretations, lithological mapping and spectral 

characterization of different age-group rocks can be performed without machine learning approaches. The 

classification accuracy was computed using a spatial overlay approach in GIS, where digitized lithological 

units derived from the classified image were compared with corresponding units from the Survey of India 

geological map. The percentage of area correctly matched for each lithology was used as the basis for 

accuracy estimation. The study, on the other hand, does emphasize the uncontrolled need for sophisticated 

automation in diagenetic data interpretation when precision and wider application scopes are required. 
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1. Introduction 

Geology forms the scientific foundation for understanding Earth’s structure, composition, and the dynamic 

processes that have shaped the planet over billions of years. Among its various branches, lithology—the 

study of rock types and their spatial distribution—plays a pivotal role in resource exploration, hazard 

assessment, and infrastructure development. Traditionally, lithological mapping relied on field surveys, 

petrographic analysis, and interpretation of geological maps, which, although accurate, are time-
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consuming and limited in spatial coverage. The increasing demand for efficient, large-scale geological 

interpretation has led to the integration of geospatial technologies, particularly satellite-based remote 

sensing, as an effective alternative. 

Remote sensing provides a synoptic view of Earth’s surface, enabling continuous and repetitive data 

acquisition over large and often inaccessible terrains. Its utility in geosciences is well established, 

especially for applications such as mineral exploration, structural geology, and geomorphological studies. 

Multispectral sensors, such as those onboard Landsat and ASTER, offer medium-resolution data across 

visible, near-infrared, and shortwave infrared bands, which are sensitive to rock-forming minerals like 

quartz, feldspar, and calcite. Hyperspectral sensors, such as PRISMA and AVIRIS-NG, further enhance 

this capability by capturing hundreds of narrow, contiguous spectral bands, allowing precise mineralogical 

identification and lithological discrimination (Omairi and Garouani, 2023). 

Geological mapping has long used remote sensing to identify various rocks via their spectral signatures. 

Conventional methods, however, often regard lithology as an unchanging paradigm, failing to consider 

the evolution of rocks, particularly changes in their spectral response over geological timescales. 

Quartzite, granite, and carbonate rocks may share similar mineral compositions, yet subtle spectral 

differences arise owing to their different associations that varies due to exposure, for instance, ages 

(Farahbakhsh et at., 2025). 

The research covers three distinct geological areas in central India: the Delhi Supergroup 

(Mesoproterozoic to Neoproterozoic), the Aravalli Supergroup (Paleoproterozoic), and the Banded 

Gneissic Complex (Archaean) as defined by Jain (2021). The primary objective is to explore similar 

lithological associations with rock types—Quartzite, Granite, and Carbonate—formed in different 

geological periods.  

What spectral differences are exhibited by them that are significant enough to be detected and interpreted 

through remote sensing techniques without the need for machine learning. To achieve this, the study seeks 

to analyze and compare spectral reflectance patterns using multispectral and hyperspectral datasets, extract 

meaningful features such as band ratios, spectral indices, and principal components followed by 

investigation of the influence of geological age on surface reflectance characteristics. Moreover, it aims 

to incorporate topographic variables derived from DEM data, such as slope and aspect, to assess their role 

in spectral variation. By integrating spectral interpretation with geological knowledge and terrain analysis, 

the research aspires to establish a reliable and replicable framework for age-based lithological 

discrimination  

These formations are ideal for a comparative spectral study because they have been known to host the 

same rock types through time. To methodically extract, analyze, and even interpret mapped spectral 

differences, an organized approach is proposed in the paper. 

 

2. Literature Review 

Through multispectral and hyperspectral data from satellites, remote sensing techniques have transformed 

the mapping of lithology and minerals. Many of these approaches have been done using Landsat 8/9, 

ASTER, PRISMA, and AVIRIS-NG since they can capture important spectral features of rocks, as well 

as their weathering and mineral alteration. For example, the SWIR bands of Landsat have been extensively 

used for the identification of silicate-rich formations and carbonate-rich formations. Additionally, ASTER 

was used to identify ferric and clay minerals (Jain et al., 2024; Kumar et al.,2020). 
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The mapping of alteration zones and lithological units has been well done using the PRISMA 

hyperspectral sensor, which has over 240 spectral bands and high spatial resolution. Its ability to 

distinguish ophiolitic rocks and the mapping on carbonates by specific absorptions near 2.3 μm shows its 

effectiveness (Hajaj et al., 2024). Also, more spectrally precise AVIRIS-NG has been able to map complex 

mineral assemblages and rocks by differentiating altered and unaltered spectral zones. These sensors have 

been very useful in regions of high heterogeneous terrains like the Indian shields and Himalayan regions 

(Omairi and Garouani, 2023). 

Despite many studies implementing machine-learning methods for automated mineral classification and 

improved accuracy (SVM, RF, CNNs, etc.), there is also a literature stream using geological interpretation, 

spectral index analysis, band ratio mapping, and principal component composites. Although more labour-

intensive than machine learning approaches, the potential task of interpreting spectral data based on 

geological context presents value to other researchers in regions with fewer training samples, less field 

data, or where interpretability needs to be maintained (Farahbakhsh et al., 2025).  

A glaring gap, however, was found in the literature was a similar study that showed an explicit focus on 

age-related spectral differences in rocks with similar lithology (i.e., Quartzite or Carbonate in opposing 

formations). The majority of classification works typically involve broad rock types that generalize the 

spectral response based on geological evolution or formation age. This study sought to fill that gap by 

creating a context for how the same rock types formed in different tectonic regimes and different 

weathering histories respond spectrally when examined with both multispectral and hyperspectral 

imagery; however, without a machine learning classification. 

 

Sensor Type Spectral Range Spatial Resolution Application 

Landsat 

8/9 
Multispectral 

VNIR + SWIR 

(30 m) 

30 m (bands), 15 m 

(panchromatic) 
General lithological mapping 

ASTER Multispectral 
VNIR, SWIR, 

TIR 
15–30 m 

Mineral-specific features (e.g., 

iron, clay) 

PRISMA Hyperspectral 400–2500 nm 30 m 
Age-based spectral 

discrimination 

AVIRIS-

NG 
Hyperspectral 380–2510 nm 5 m 

High-resolution lithological 

distinction 

SRTM 

DEM 

Elevation 

(Radar) 
N/A 30 m Slope and aspect extraction 

Table 1: List the satellite datasets used, along with their specifications and roles in lithological and 

topographic analysis 

 

The literature context both strengthens and establishes the importance and uniqueness of this work in 

bringing geological interpretations with expert interpretation and handling of remote sensing tools to 

facilitate this separation by age, lithology. It also reinforces the basis for potential application of machine 

learning in the future to overcome some of the reductionist or scalable limitations of this interpretive work. 

 

3. Study Area and Datasets: 

The selected study areas encompass parts of the Banded Gneissic Complex, the Aravalli Supergroup in  
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Rajasthan, and the Delhi Supergroup extending across parts of Rajasthan and Haryana. These regions 

provide a stratified platform for comparing identical rock types formed under varying geological settings. 

Satellite data used include Landsat 8/9 surface reflectance products, ASTER Level-1B imagery, and 

hyperspectral datasets from PRISMA and AVIRIS-NG. Each image was selected to minimize cloud cover 

(<5%) and seasonal vegetation interference. Terrain information was derived from the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (30 m resolution), enabling slope and aspect 

calculations  

 

 
Figure 1 illustrates the Udaipur district’s geological framework, highlighting key lithological 

units—Granite, Carbonate, and Quartzite—distributed across the Delhi, Aravalli, and Bhilwara 

Supergroups (BGC). 

 

Study Region 
Geological 

Unit 
Age 

Dominant 

Lithologies 
Location (State) 

Banded Gneissic 

Complex 
BGC Archean  

Granite, Quartzite, 

Carbonate 

Rajasthan, Madhya 

Pradesh, UP 

Aravalli 

Supergroup 
Aravalli Basin Paleoproterozoic 

Quartzite, 

Carbonate, Phyllite 
Rajasthan 

Delhi Supergroup 
North Delhi 

Fold Belt 

Mesoproterozoic–

Neoproterozoic 

Quartzite, 

Carbonate, Schist 
Rajasthan, Haryana 

Table 2: Summary of the geological units and their key characteristics that form the foundation of 

this age-based lithological comparison 
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4. Methodology 

Target Lithologies: 

 The major lithological rock types focused are: Quartzite, Granite, and Carbonate rocks. These were 

selected based on their widespread occurrence across Central India and their geological representation in 

formations of different ages, namely the Banded Gneissic Complex (BGC), Aravalli Supergroup, and 

Delhi Supergroup. Quartzite, being a high-silica metamorphosed sandstone, typically shows strong 

reflectance in the SWIR and NIR regions. Granite, composed primarily of feldspar and quartz, displays 

characteristic absorption features in the visible to SWIR range. Carbonate rocks, including limestone and 

dolomite, are identifiable through distinct absorption bands in the SWIR due to carbonate minerals. The 

spectral analysis methods including specific band ratios, indices, and dimensionality reduction are selected 

to enhance the differentiation of these rock types while capturing their age-based spectral variations. 

 

Formation Datasets Used Purpose 

Banded Gneissic Complex (BGC) 
Landsat 8/9, ASTER, 

SRTM DEM 

Baseline lithological mapping; terrain 

correction 

Aravalli Supergroup 
PRISMA, ASTER, 

SRTM DEM 

Spectral differentiation of older 

Quartzite/Carbonates 

Delhi Supergroup 
AVIRIS-NG, Landsat 9, 

SRTM DEM 

High-resolution separation of 

younger carbonate beds 

Table 3: Dataset Utilization Across Geological Formations 

 

Workflow and Techniques: 

All satellite images were processed for radiometric and atmospheric correction using standard tools—

LEDAPS for Landsat, and FLAASH for PRISMA and AVIRIS-NG. The corrected data were 

georeferenced, resampled to 30 m resolution, and subset using geological boundaries. Spectral indices, 

such as the Ferric Iron Index, Clay Mineral Index, and Carbonate Index, were calculated based on the 

sensitivity of detected minerals within targeted lithologies. Band ratios like SWIR/NIR and Red/Blue were 

used to further increase the contrast between objects having similar spectral responses  

Dimensionality reduction, specifically Principal Component Analysis (PCA) and Minimum Noise 

Fraction (MNF), was applied to hyperspectral datasets. These tools helped bring out geologically 

significant patterns while reducing redundancy. Slope and aspect topographic variables were derived from 

SRTM DEM data and overlaid on the spectral outputs to assess terrain influence on surface reflectance  

Interpretation was performed using visual inspection, profiles, and GIS-based comparison with published 

geological maps. Classification wasn't machine-driven; instead, an expert assessment of the satellite 

products was conducted along with the terrain models. 

 

5. Preprocessing and Analytical Techniques: 

The preprocessing stage of satellite imagery was important to ensure reflectance accuracy and minimize 

atmospheric noise. Landsat 8/9 multispectral imagery underwent radiometric and atmospheric correction; 

radiometric correction converted raw DN into radiance; then, LEDAPS, an established algorithm for 

Landsat surface reflectance correction characterized by suitability with lithological applications under 

variable atmospheric conditions, was used for atmospheric correction. For hyperspectral data, such as 

PRISMA and AVIRIS-NG, the FLAASH algorithm was used; this algorithm is optimized for datasets 
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with high spectral resolution, resulting in surface reflectance retrieval while minimizing the likelihood of 

spectral distortion (Kumar et al., 2020). 

The reduced dimensionality of the imagery was accomplished using two distinct methods: Principal 

Component Analysis (PCA) and Minimum Noise Fraction (MNF). PCA reduces spectral redundancy by 

converting bands that are correlated to orthogonal components, enhancing the spectral separability of 

lithological units and hence allows the separation of more mineralogical variation and lithological features 

in the higher-order components, allowing increased discrimination between Quartzite, Carbonate, and 

Granite units. MNF is particularly useful for hyperspectral processing and minimization of noise by 

performing a stack of PCA transformations, retaining only the components with the highest signal-to-

noise ratio (Bedini,2017). 

To address geomorphological effects on reflectance, topographic data from a Digital Elevation Model 

(DEM) was taken from SRTM, and the slope and aspect layer were derived from that information to 

influence the interpretation of the incorporation of the terrain features. These terrain features influence 

reflectance because reflectance is a function of both illumination and viewing geometry, so the terrain 

features were included in the interpretation workflow to minimize the topographic effect. This 

improvement was especially apparent in delineating lithological boundaries compared to only using 

spectral indices (e.g., the Carbonate Index and Ferric Iron Index) and other image-derived plotting, such 

as PCA outputs to delineate lithological boundaries, luxuriantly in geologically complex and rugged areas 

(Hasan et al.,2023; Farahbakhsh et al., 2025).   

 

6. Reflectance-Based Analysis and Interpretation 

In order to reinforce the interpretability of the spectral differences across geological formations, this study 

employed integrated approaches of band ratio analysis, principal component transformation, and terrain-

based filtering. Significant spectral indices and ratios were calculated using multispectral (Landsat 8/9, 

ASTER) and hyperspectral (PRISMA, AVIRIS-NG) datasets. The SWIR/NIR ratio and Band 6/Band 4 

ratio were applied to highlight reflectance patterns of Quartzite, while the Carbonate Index and Iron Oxide 

Index helped separate Carbonate and Granite exposures. These ratios illuminated lithological distinctions 

that aligned with geological formations, displaying an initial boundary for interpretation (Kumar et 

al.,2020).  

 
(a) 

 
(b) 

Figure 2: A tile capture from the ASTER Satellite in (a) SWIR (b) VNIR Band after atmospheric 

correction 
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Principal component analysis (PCA) provided additional dimensional redundancy restrictions and allowed 

the separation of the unique spectral signatures for different rock types. For example, in the PC1 and PC3 

from PRISMA images, Quartzite units from the BGC and Aravalli Supergroup displayed different 

reflectance units. These temporal differences likely highlighted the degree of surface texture and 

differences in grain size. Within the carbonate-rich areas in PC2, there was sufficient separation, possibly 

as a result of subtle differences in mineralogy and effects of weathering (Jain et al.,2024).  

The slope and aspect terrain data, generated from SRTM DEM, were used to assess whether any terrain-

based variations would influence the interpretation of reflectance.  Distinct areas showing unusual spectral 

behaviour were flagged and comparatively assessed with published rock geological maps. The inclusion 

of topographic filters reduced misclassification through illumination effects, sensor view angles, and 

topographic variability (Bedini, 2017).  

Reflectance profiles for each lithology were also taken for each of these three geological domains. The 

quartzite reflectance from the BGC showed higher NIR reflectance values than those recorded from the 

Delhi Supergroup, which is in agreement with field observations indicating higher weathering and less 

mineral maturity. When examining acreage features of the Carbonate rocks in Aravalli formation, very 

little change in the two wider absorption features at around 2.33 µm, relates to Dolomitic content which 

the Delhi carbonates lack. 

 

 
(a) 

 
(b) 

Figure 3: A tile capture from the Landsat 8/9 Satellite (a) Band 1 (b) Band 7 

 

The combination of analyses undertaken in this study was a critical aspect of the investigation as it 

confirmed that shaded-polygon-based reflectance understandings from skilled experts were able to provide 

credible lithological separation, a stated without a machine learning component. 
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Band Ratio / 

Index 
Formula (Example) 

Target 

Lithology 
Purpose / Interpretation 

SWIR / NIR 
Band 6 / Band 4 

(Landsat) 
Quartzite Enhances reflectance from silica-rich rocks 

Iron Oxide 

Index 

Band 4 / Band 2 

(Landsat) 
Granite 

Highlights ferric oxide zones often associated 

with felsic rocks 

Carbonate 

Index 

Band 13 / Band 8 

(PRISMA) 
Carbonate 

Detects carbonate minerals (calcite/dolomite) 

in SWIR region 

Red / Blue 

Ratio 

Band 3 / Band 1 

(Landsat) 
General 

Improves contrast between vegetated and non-

vegetated lithology 

Clay Mineral 

Index 

Band 5 / Band 7 

(ASTER) 

Weathered 

Granite 
Sensitive to clay alteration zones 

Table 4: Summarizes the spectral indices and band ratios selected based on published geoscientific 

and remote sensing studies relevant to the target lithologies. These were referenced and applied 

during the interpretation phase. 

 

  
Figure 4: Presents a false-color composite Landsat image, where tonal variations visibly align with 

geological boundaries. These visual correlations form the basis for spectral classification and were 

later used for training sample validation and lithological discrimination 

 

7. Results and Analysis 

Utilizing PCA, spectral indices, and band ratio techniques produced very discriminative outputs for 

identification and separating lithological units in different geological formations. The Quartzite units in 

the Aravalli region were quite clearly enhanced in PC3 images due to their higher reflectance in the VNIR, 

while the Carbonate formations displayed strong absorption features in the SWIR bands of the PRISMA 

and AVIRIS-NG data; both spectral features were captured clearly using the ASTER band ratios Band 4/ 

Band 2, which enhanced Ferric Iron, and Band6/ Band 7, which responded to carbonate absorptions.  
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The normalised difference carbonate index (NDCI) also offered some additional value to detection of 

carbonate-rich rocks, specifically in the folded and faulted areas of the Delhi Supergroup. With the Banded 

Gneissic Complex, terrain analysis using DEM derived slope and elevation layers, pretty clearly 

demarcated the granitic exposures; the overall mineralogical variation of the Granite was also identified 

through the PCA output layers, which represented a tonal contrast in the same lithological unit due to 

differing quantities of feldspar and quartz standards.1 Topographic information was particularly helpful 

in delineating lithological boundaries that had otherwise been spectrally ambiguous in rugged terrain; for 

instance, Granite units were successfully mapped along high relief zones. 

 

Lithology Formation 
Key PCA 

Component 

Effective Band Ratios 

/ Indices 

Classification 

Accuracy (%)  
Remarks 

Quartzite 
Aravalli 

Supergroup 
PC3 

SWIR Band 4 (1.6–1.7 

µm) / Red Band 2 

(0.63–0.69 µm), NDVI 

88.4% 

High VNIR 

reflectance; enhanced 

in PC3, slope 

influence moderate 

Carbonate 
Delhi 

Supergroup 
PC2 

SWIR Band 6 (2.185–

2.225 µm) / Band 7 

(2.235–2.285 µm), 

NDCI 

85.6% 

Strong carbonate 

absorption; improved 

with terrain features 

Granite BGC PC1, PC2 
Elevation map + PCA 

contrast 
89.7% 

Clearly mapped in 

elevated zones with 

internal mineral 

variation 

Carbonate 
Aravalli 

Supergroup 
PC2 

NDCI, Ferric Iron 

Index 
83.5% 

Lower reflectance due 

to age-related 

weathering and 

diagenesis 

Quartzite 
Delhi 

Supergroup 
PC3 

Red/SWIR ratios, 

Topographic overlay 
84.1% 

Terrain context helped 

separate from similar 

Aravalli quartzites 

Table 5 summarizes the classification accuracy statistics, principal component contributions, and 

performance of each band ratio and index in discriminating the three target lithologies. 

 

The classification outputs were checked against the geological datasets published by the Geological 

Survey of India. The spatial overlap showed that over 85% of the classified boundaries aligned with 

mapped lithological extents. The geological cross-check confirmed that a series of Carbonate units in the 

Aravalli Supergroup had lower reflectance than their counterparts in Delhi, which is to be expected based 

on the older horizons having experienced comparatively more weathering or diagenesis. Overall, the 

conclusions indicate that reflectance behaviour may be influenced by both mineralogical make-up and 

age.  

This successfully integrated remote sensing framework shows that age-based lithological discrimination 

is possible through spectral, topographic and geological analyses of reflectance outputs.  
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The take-away from this work, is that satellite data can detect the changes to the surface composition and 

structure associated with different types of rock and age. From this work, it is evident that if multiple 

sensors show patterns of reflectance, and are combined with terrain context, reliable, reproducible outputs 

are possible for lithological mapping, mineral exploration, and geological research. This work represents 

a starting point in developing toward automated classification by CNNs, which are now possible, thanks 

to the distinct spectral separability in the proposed approach. 

 

8. Conclusion 

This study shows that geological age-based lithological mapping can be performed using multispectral 

and hyperspectral remote sensing effectively, without instantly needing machine learning techniques. 

Lithological boundaries were marked with high interpretative confidence through the combined use of 

band ratios, spectral indices and dimensionality reduction methods, along with DEM-based terrain 

modelling & geological reasoning. This methodology has been established as a base, which is particularly 

useful in regions with sparse field data and limited computational resources. However, the research not 

only demonstrates the viability of expert-guided remote sensing for lithological mapping but also 

underscores some enduring limitations that need addressing in future work. 

 

Limitations of the Current Approach 

Despite the value of this study from an interpretive perspective, a few issues arose that restrict the broad 

application and accuracy of automating lithological discrimination using techniques. The first challenge 

stems from the overlap in the spectra of more closely related rocks. Discrimination involving simple band 

ratios and indices often has orbiting problems with relative scale ranking. Furthermore, differences due to 

aging, like those in the reflectance characteristics of weathered Quartzite or Carbonates, often require 

those with advanced modelling techniques. Moreover, manual interpretation is subjective by nature and 

lacks consistently defined metrics of accuracy for regionally defined standards of reliability. Expanded 

over large, featured, complex areas, it becomes manual interpretation, undergoes processes, is devoid of 

replication, and consumes considerable time. In the absence of automation, the approach is a specialist’s 

decision and devoid of imaging, leading to expert-reliant variable judgments devoid of uniformity, 

consistency, and objective measurements. 

 

Future Scope: Necessity of Machine Learning Integration 

While traditional remote sensing approaches, combined with geoscientific interpretation, have 

successfully achieved lithological mapping, researchers have consistently identified the limitations of 

manual interpretation and the need for machine learning. First and foremost, manual interpretation is 

subjective and relies heavily upon expert judgement, which can produce inconsistent results between users 

or across studies. Second, they are not easily scalable- processing large or diversely affected areas requires 

a great deal of time and effort, which may limit analyses to a small and possibly not representative area. 

Additionally, spectral overlaps make discrimination difficult between mineralogically similar rock types 

(for example, Quartzite and Granite, or weathered and fresh Carbonates) using band ratios and indices 

alone. Third, the relationships among spectral features, terrain variables, and lithological properties are 

usually non-linear and complex, making it difficult to capture with traditional analyses. Another 

significant drawback that accompanies these visual methods is the failure to produce quantitative accuracy 

metrics; without machine learning, it is hard to assess whether results can be validated or whether they 
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performed as hoped by using standard validation criteria such as accuracy, recall, and confusion matrices. 

Machine learning can solve these problems; for example machine learning allows you to incorporate and 

model spatial, spectral, and topographic data in a single model. 

This study contributes a solid foundation using non-ML methods, and future research will seek to build 

upon the foundation by applying ML models to automate classification, increase reproducibility, and 

accuracy. For the proposed future work, the limitations mentioned above may be united with ML (machine 

learning) methods. Multispectral and hyperspectral Sensing capabilities will accept SVM, RF, and 

XGBoost as they will discover complex non-linear relationships that are not covered by traditional 

explanation. Several examples using PRISMA and AVIRIS-NG showed that ML models start to provide 

improved accuracy of mineral classification where the terrain is spectrally mixed.  

In addition, ML methods furnish automatic measurement validation techniques such as confusion matrices 

and kappa statistics of classification, which can help Wells confirm. The generative quantitative capacity 

of Deep Learning methods, specifically for accuracy in spatial and spectral information, represents the 

next generation of detailed feature recognition brought forth by Convolutional Neural Networks (CNNs). 

In conclusion, a non-ML standard for lithological age differentiation and recognition were proposed, and 

a process for mineral classification and characterization. However, the limitations revealed make a 

compelling case for incorporating ML methods to improve automation, accuracy, and reproducibility 

moving forward in future research engagements. 
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