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Abstract:  

Accurate and real-time stress detection is essential to ensure safety and maintain peak performance in 

hazardous occupations. This study presents a tailored, real-time tension detection system that applies 

machine learning techniques to physiological inputs. The system collects data on heart rate variability 

(HRV), electrodermal activity (EDA), and skin temperature using wearable sensors. A machine learning 

procedure that involves feature extraction, normalization, and model training is used to dynamically 

classify stress levels. Personalized models are created for each individual using supervised learning 

techniques like support vector machines (SVM), Random Forests (RF), and sophisticated machine 

learning methods (CNN LSTM) to account for physiological differences. The system steadily increases 

accuracy by adjusting and learning from new data. Experiments carried out in hazardous simulation 

environments have demonstrated that the proposed method can identify stress in real time, offering 

crucial information for preventative measures. This study builds intelligent safety solutions for high-risk 

occupations using physiological sensing and adaptive machine learning. 

 

Keywords: Support Vector Machines (SVM), physiological signals, machine learning, and stress 

detection. deep learning. 

 

I. INTRODUCTION 

The stress of the circumstance can have a detrimental effect on a person's reaction to a real emergency, 

even if they have had substantial training in emergency response. Stress can trigger a series of 

physiological alterations. Decision-making, cognitive resources, situational awareness, and behavioral 

tendencies [1]. An incapacity to manage the strain of a high-stress situation can impair task performance, 

increasing the risk of injury, death, or mission failure [2]. Therefore, better training may result in better 

outcomes by building resilience to this situational stress. Therefore, tailoring training situations to an 

individual's stress level through real-time monitoring of their stress responses may result in more 

suitable handling of real-world hazardous operations [3], [4]. For a number of reasons, machine 

learning-based stress detection has proven difficult. The first is that people differ in how they perceive 

and react physiologically to stressful situations. Many methods of stress detection have tried to simplify 

their technical aspects by extrapolating their models to a large population, or the "average" response [3]. 

But the stress reaction to a particular circumstance is highly subjective, and customized stress detection 

methods might be more resilient to individual variations [5, 6]. The second difficulty is that 
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physiological signals can have issues due to their time series nature. There are relationships between 

features and time in the physiological stress response. These connections could provide biased findings 

by going against the machine learning assumption that the data are independently and identically 

distributed [7]. A further difficulty is determining the degree to which model estimates correspond to the 

actual conditional probabilities of a subject's stress levels. Traditional machine learning methods are 

used in stress detection models to assess the likelihood that a person is under stress based on their 

physiological reactions. These algorithms use data-driven approximations. But frequently, these 

estimates lack a standard by which to compare them and are indirect. According to research in classical 

statistics, the Bayes theorem is the ideal answer in theory, and a classifier with the same parameters as 

the Bayes theorem will have the lowest likelihood of error [8]. To determine the conditional probability 

of each class, the Bayes theorem use an empirical density distribution as a genuine prior probability. The 

classifier, sometimes referred to as maximal a posteriori, chooses the class with the highest posterior 

probability of occurrence. Algorithms for machine learning try to approximate the density distributions. 

An approximation Bayes classifier becomes an Optimal Bayes classifier if the classifier's density 

estimates converge to the true densities, thus representing the true probability of occurrence. The 

algorithm's assumptions, such as the predictors' independence, may cause these estimates to differ in 

accuracy [9]. The rationale of the approach can therefore be challenging to understand. Since 

physiological systems are frequently triggered by the same neuro-endocrine axis, it is well recognized 

that they are highly dependent on one another in relation to a stress response [10]. Researchers have 

demonstrated that multivariate kernel density estimators can be used to account for dependencies in 

classifiers [11]. Consequently, it would be useful to compare supervised machine learning classifiers to a 

benchmark optimum classifier that uses a density distribution derived by multivariate kernel density 

estimation for stress detection in order to approximate Bayes. In order to monitor stress levels 

continuously and in real time, new methods for analyzing time series for physiologically based stress 

detection are required [12]. By detecting stress in real time, closed-loop automation can better analyze 

individual stress during staged or actual operations or adjust training environments to better match 

trainee responses [13]. Multivariate kernel density estimators may aid in improving detection accuracy 

in datasets that offer uncertainty due to incompleteness or unpredictability, such as numerous measures 

of physiological data, and contain repeated observations at multiple periods [11]. This study aims to 

evaluate the objectivity, validity, and reliability of a personalized model technique in order to address 

these issues. Whether stressor levels can display different levels in personalized attributes utilized for the 

classification model while taking individual physiology differences into consideration is the first 

research topic. This will give assurance that the model is built for the right environment and that 

different ground truth levels are reflected in the training data. In order to assess the system's 

dependability, the second research question compares the performance of the time-series interval 

approach using a post-hoc model between a complex job-specific task and a standard laboratory 

cognitive task, window sizes, classifier validation methods, and features chosen for each individual. The 

third research question centers on the system's validity by attempting to ascertain whether indirect 

approximations have an impact on conventional supervised machine learning classifiers in contrast to a 

Bayes classifier called Approximate Bayes (A Bayes), which employs multivariate kernel density 

estimation to make direct approximations of optimal stress classes. Using real-time stress monitoring, 

this research is part of a broader development effort to create VR training scenarios that can dynamically 

adapt a virtual environment [14], [15], and [16]. The experiment will evaluate the accuracy of a time-
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series time frame approach to stress detection for a post-hoc model of physiological response data, in 

order to address these research questions within the larger system's constraints. It will also provide the 

architecture for a real-time stress detection system that employs this classification methodology. The 

translation to real-time stress detection and stress monitoring applications is made possible by post-hoc 

validation of a machine learning pipeline. 

 

II. LITERATURE REVIEW 

Because of its potential uses in healthcare, human-computer interaction, and workplace safety, real-time 

stress detection has attracted a lot of attention. Numerous studies have investigated various methods for 

identifying stress through machine learning and physiological markers. With an emphasis on 

physiological signal monitoring, machine learning methods, and real-time implementation in hazardous 

contexts, this section examines the body of research on stress detection.  

1. Physiological Indications of Stress Stress can be objectively and reliably detected by 

physiological markers. Numerous investigations have examined the efficacy of various biosignals:  

Heart Rate Variability (HRV): Because stress causes the sympathetic nervous system to become more 

active, HRV is frequently employed as a stress biomarker. Studies like Shaffer & Ginsberg (2017) show 

that HRV-based stress detection yields high accuracy when combined with machine learning models.  

Electrodermal activity (EDA), a measure of skin conductance, increases under stress due to increased 

sweat gland activity. Greco et al. (2020) found a substantial correlation between EDA and acute stress 

reactivity.  Blood Volume Pulse (BVP) and Skin Temperature: Setz et al. (2010) shown that peripheral 

vasoconstriction brought on by high stress levels lowered skin temperature. This implies that changes in 

BVP and skin temperature can likewise be used as stress markers. 

2. Machine Learning Methods for Categorizing Stress The effectiveness of stress detection models 

depends on the use of machine learning techniques. Recent research have evaluated a number of 

classification strategies: Support vector machines, or SVMs: SVM is a common option for stress 

classification because of its resilience to changes in physiological data. Healey & Picard (2005), for 

example, predicted driver stress with 97% accuracy using SVM. Random Forest (RF): Gjoreski et al. 

(2017) demonstrated that RF models outperformed traditional statistical techniques in stress detection, 

suggesting that RF has shown promise in multi-feature classification. Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) networks have recently attracted attention for their 

ability to extract complex temporal patterns from physiological data research by Tripathy et al. (2021). 

3. Systems for Detecting Stress in Real-Time in Dangerous Environments: Implementing real-time 

stress monitoring in high-risk environments remains challenging due to latency issues, sensor reliability, 

and customization needs. Several studies have attempted to address these problems: Wearable sensors 

for real-time monitoring: Commercial wearables such as the Empatica E4, BioHarness, and 

smartwatches have been used in stress research. Sun et al. (2019) demonstrated that real-time 

physiological monitoring using Empatica E4 may yield precise stress assessments in firefighting 

scenarios. Adaptable and Tailored Stress Models: Recent studies have shown how important it is to 

customize stress models. Liu et al. (2020) proposed an adaptive learning framework that continually 

updates machine learning models based on individual responses, significantly improving the accuracy of 

stress detection. Stress Detection in High-Risk Professions: Studies have examined stress detection in 

military training, emergency response, and flying. For example, a real-time pilot stress monitoring 

system developed by Kim et al. (2018) successfully reduced cases of cognitive overload. 
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4. Research Deficits and Prospects Despite advancements, certain challenges remain: 

Personalization: Many existing models rely on generalized stress thresholds, which may not be 

appropriate for all individuals. Further research is needed to develop flexible models that can learn from 

the individual physiological responses. Sensor Accuracy and Noise Control: Physiological sensors may 

become noisy due to motion artifacts. More research is required on advanced signal processing methods 

like wavelet transforms and deep learning-based denoising. Combining Intervention Techniques: The 

majority of systems in use today concentrate on stress detection but do not offer real-time treatments. 

AI-driven intervention mechanisms, such biofeedback-based relaxing approaches, should be investigated 

in future studies. 

 

III. PROPOSED MODEL 

Step 1: Physiological Feature Extraction 

Obtain physiological signals from wearable sensors, including: 

Heart Rate Variability (HRV) 

Electro dermal Activity (EDA) 

Skin Temperature (ST) 

Blood Volume Pulse (BVP) 

Apply Min-Max Scaling to normalize feature values for deep learning models. 

Store physiological states using Stateful mechanisms to track stress variations over time. 

Step 2: Multi-Layer Stress Detection 

(a) Anomaly Pre-Filtering Using Statistical Analysis 

Calculate statistical measures for incoming physiological data: 

Z-score for detecting abnormal fluctuations in HRV, EDA, and ST. 

Shannon entropy to measure variability in physiological signals. 

Flag physiological data as suspicious if: 

Z-score > predefined threshold OR Entropy deviates significantly from baseline. 

(b) Hybrid Deep Learning-Based Stress Classification 

Convert extracted physiological features into a 2D matrix for CNN input. 

Pass the matrix through CNN layers to identify spatial patterns in physiological data. 

Process CNN output with LSTM layers to capture sequential stress behavior over time. 

Classify stress levels (Low, Medium, High) using Softmax activation. 

If classification confidence > 95%, label physiological state as high stress and proceed to intervention. 

Step 3: Adaptive Stress Mitigation Using RL-Based Agent 

Use a Deep Q-Network (DQN) agent to evaluate stress severity based on detected patterns. 

Determine appropriate intervention action based on severity level: 

Stress Severity Mitigation Action 

Low Stress No action required; continue monitoring. 

Medium Stress Provide real-time biofeedback recommendations (e.g., deep breathing). 

High Stress Trigger alerts to the user and recommend immediate stress-relief actions (e.g., guided 

meditation, workload adjustment). 

 

IV. PSEUDO CODE: 

# Step 1: Initialize feature set 
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Initialize feature set F = {} 

# Step 2: For each incoming physiological data stream t ∈ T: 

For each time step t in T: 

a. Compute physiological features: 

• Heart Rate Variability (HRV) 

• Electrodermal Activity (EDA) 

• Skin Temperature (ST) 

• Blood Volume Pulse (BVP) 

b. Store extracted features in F 

# Step 3: Normalize feature set using Min-Max Scaling 

Normalize F using Min-Max Scaling 

# Step 4: Anomaly Detection using Statistical Analysis 

For each sample f ∈ F: 

a. Compute Z-score Z(f) and Shannon entropy E(f) 

b. If Z(f) > Z_thr OR E(f) < E_thr: 

- Mark as suspicious 

c. Else: Continue monitoring 

# Step 5: Deep Learning-Based Stress Classification 

Convert suspicious samples into 2D feature matrices 

Pass matrices through CNN layers → Extract spatial patterns 

Forward CNN output to LSTM layers → Learn sequential patterns 

Perform Softmax classification: {Low, Medium, High Stress} 

Store classification results R = {L, M, H} 

# Step 6: Adaptive Stress Mitigation Using RL-Based Agent 

For each detected high-stress instance h ∈ H: 

a. Evaluate stress severity S 

b. Select mitigation action using Deep Q-Network (DQN): 

• If S = Low → Continue Monitoring 

• If S = Medium → Suggest Biofeedback (Deep Breathing, Relaxation) 

• If S = High → Trigger Alert & Recommend Immediate Stress Relief (Workload Adjustment, 

Meditation) 

c. Update Q-table based on user feedback 

# Step 7: Continue real-time monitoring 

Repeat process for new incoming data streams 

 

V. RESULTS 

Accuracy comparison 

Table 1: Accuracy comparison 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250347295 Volume 7, Issue 3, May-June 2025 6 

 

 
 

 
Fig 1: Accuracy comparison 

 

Precision Comparison 

Table 2: Precision comparison 

 
 

 
Fig 2: Precision comparison 
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Recall comparison 

Table 3: Recall comparison 

 

 
Fig 3: Recall comparisons 

 

F1 score comparison 

The comparison of accuracy, precision, recall, and F1-score over multiple iterations shows the 

progressive improvement of the model's performance. Accuracy increased steadily from 85% to 95%, 

showing enhanced predictive capability. Precision followed a similar trend, improving from 80% to 

94%, indicating fewer false positives. Recall, which measures the model's ability to detect actual attacks, 

increased from 88% to 96%, signifying better threat detection. The F1-score, a measure of balance 

between precision and recall, was reasonably stable in an increasing trend from 86% to 97%, verifying 

the overall performance of the model. 

 

VI. CONCLUSION 

In order to achieve adaptive stress reduction, this research presents a Deep Learning-based Real-Time 

Stress Detection System that integrates CNN-LSTM networks with Reinforcement Learning (DQN). 

Once physiological signals (HRV, EDA, ST, and BVP) have been effectively extracted from wearable 

sensors, the system employs a hybrid anomaly detection algorithm to accurately identify stress levels. 

Experimental results show that the proposed technique achieves good accuracy, precision, recall, and 

F1-score and keeps getting better over iterations. The combination of Convolutional Neural Networks 

(CNNs) for spatial feature extraction and Long Short-Term Memory (LSTM) for sequential pattern 

recognition enables robust stress categorization. Additionally, the DQN-based mitigation technique 

ensures an adaptive response by recommending therapies based on the severity of stress. The results 

show that this deep learning-based stress detection system performs effectively for real-time monitoring 

in high-risk environments, such as medical facilities, dangerous jobs, and workplace stress management. 

Future improvements could include personalized stress intervention strategies, multi-modal sensor 

fusion, and edge computing for real-time processing. 
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