

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

The Efficacy of Virtual Reality-Based Rehabilitation in Stroke Patients: A Literature Review

Paramvir Singh

BPT Student, Department of Physiotherapy, Sri Guru Granth Sahib World University, Fatehgarh Sahib (Punjab).

Abstract

BACKGROUND: Stroke is a major global health concern, the second leading cause of death and the third most common cause of disability. Stroke rehabilitation presents a complex challenge, necessitating innovative approaches to optimize the functional Recovery. Virtual Reality (VR) has become one of the most widely utilised advanced neurorehabilitation technologies for enhancing motor and cognitive abilities in Stroke Patients. Understanding how Virtual Reality-Based Rehabilitation can optimise brain reorganisation and enhance neuroplasticity is crucial in designing personalised Virtual Reality (VR) interventions that cater each stroke survivor's unique challenges and potential.

AIM OF THE STUDY: The Primary objective of this review is to explore the efficacy of Virtual Reality-Based Rehabilitation in Stroke Survivors. Through an in-depth analysis of the current literature, this review aims to investigate the impact of Virtual Reality Based Rehabilitation on various dimensions of Stroke Rehabilitation.

METHODOLOGY: A Computer Search strategy of peer reviewed articles from databases such as PubMed (National library of medicine), Google Scholar, Research Gate was conducted. The search included terms related to stroke rehabilitation, virtual reality and related synonyms.

RESULT AND CONCLUSION: This review highlights that Virtual Reality-Based Rehabilitation offers a unique immersive experience that enhances patient engagement and motivation during rehabilitation. Moreover, Virtual Reality-Based Rehabilitation's capacity to replicate real world scenarios provides stroke survivors with opportunities to practice vital daily activities, promoting functional independence. The ability of Virtual Reality-Based Rehabilitation to stimulate is real life scenarios offers a unique platform. However, challenges such as cost, equipment, data privacy and acceptance must be addressed for successful integration into stroke rehabilitation practice.

Keywords: Virtual Reality Rehabilitation, Neurorehabilitation, Motor function, Cognitive Rehabilitation and Immersive Technology.

1. INTRODUCTION:

Stroke remains one of the leading causes of disability worldwide, often resulting in long term impairments in motor, cognitive and sensory functions (Feigin et al., 2021). Stroke is a major public health issue and a leading cause of long term disability globally, affecting approximately 15 million individuals each year (WHO, 2023). The World Health Organization (WHO) defines stroke as a sudden focal or global

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

disturbance of cerebral functions, lasting over 24 hours or leading to death, with no apparent cause other than vascular origin (Sacco et al., 2013). However, a new definition proposed by the American Stroke Association incorporates clinical and tissue criteria, broadening the scope of the stroke to include objective evidence of permanent brain, spinal cord, or retinal cell death with a vascular aetiology, with or without clinical symptoms (Donkor ES., 2018). It is classified into two major types: ischemic stroke caused by a blockage of artery and hemorrhagic stroke caused by the rupture of blood vessel (Benjamin et al., 2019). The causes of stroke are multifactorial and often include both the modifiable and non-modifiable risk factors. Hypertension is the most significant modifiable risk factor, accounting for a large population of both ischemic and hemorrhagic strokes (O'Donnell et al., 2016). Other contributing factors include atrial fibrillation, diabetes mellitus, smoking, physical inactivity and excessive alcohol consumption (Campbell et al., 2019). Non-modifiable factors such as age, gender, ethnicity and genetic predisposition also play a critical role in stroke susceptibility (Feigin et al., 2021). Interstroke's study identified ten major stroke risk factors responsible for 90% of all strokes (O'Donnell et al., 2016). The symptoms of stroke vary depending on the area of the brain affected, but common manifestations include sudden numbness or weakness in the face, arm or leg- especially on the one side of the body – confusion, trouble, speaking or understanding speech, difficulty seeing in one or both eyes, dizziness and loss of balance or coordination (Meschia et al.,2014). Cognitive impairments disturbances are also frequent, particularly in severe cases or those involving the dominant hemisphere (Tatemichi et al., 1994). Conventional rehabilitation techniques have effectively improved upper limb function in stroke survivors (Saposnik G & Cohen LG., 2016). Physiotherapy, a common approach in stroke rehabilitation is usually provided primarily in the early months after a stroke but its effectiveness and appropriateness during the chronic phase are uncertain (Ferrarello et al., 2011). Although, physiotherapy has shown effectiveness in treating the motor impairment and enhancing functional recovery following stroke, the intensity, frequency and specificity of physiotherapy plays pivotal role in determining the extent of recovery (Saposnik G & Cohen LG., 2016). Despite the benefits of existing rehabilitation approaches, certain limitations hinder the optimal delivery of rehabilitation services to stroke survivors (Nik Ramli et al., 2021). The timing and duration of Rehabilitation services are often determined by post-stroke duration or predetermined maximum utilisation rather than based on individual functional needs and Recovery, as recommended by current evidence-based stroke rehabilitation guidelines (Nik Ramli et al., 2021). Furthermore, Rehabilitation services are commonly discontinued after one year post-stroke in many rehabilitation centres, often without a proper transfer of care plan. This abrupt discontinuation of services may impede the ongoing recovery process for stroke survivors (Bonnyaud et al., 2018). In addition to timing and continuity issues, the lack of designated stroke rehabilitation wards and a shortage of trained rehabilitation professionals pose significant challenges in providing optimal rehabilitation services during the acute and recovery stages of stroke (Huang et al., 2011). These limitations in resources and infrastructure may compromise the effectiveness of stroke rehabilitation and hinder achieving maximum recovery potential for stroke survivors (Teasel et al.,2009).

Virtual Reality (VR) has become one of the most widely utilised advanced neurorehabilitation technologies for enhancing motor and cognitive abilities in stroke patients (Arcuri et al.,2021). VR employs computer-based technology to create interactive simulations that immerse users in multisensory, simulated environments, providing real-time feedback on their performance (Arcuri et al.,2021). It allows stroke patients to engage in activities that resemble real-world objects and events, offering a unique and immersive rehabilitation experience (Selzer et al.,2014). The potential benefits of Virtual Reality (VR) in

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

neurorehabilitation have been recognised, particularly in stroke rehabilitation. VR methods hold promise for accelerating rehabilitation and enhancing the motivation of select groups of stroke patients (Rogers et al.,2019). The introduction of Virtual Reality (VR) technology in stroke rehabilitation represents a significant advancement, as it allows stroke patients to work on self-care skills and real-life activities in a setting that may not be feasible within a traditional hospital environment (Skip A, Rizzo & Kim GJ., 2005).Holistic stroke rehabilitation demands a more comprehensive understanding of how VRBR can address the diverse needs of stroke survivors and facilitate their reintegration into everyday life. Furthermore, the adaptability of Virtual Reality-Based Rehabilitation (VRBR) in providing goal-oriented tasks tailored to individual patient needs is a critical aspect that requires further investigation. Understanding how Virtual Reality-Based Rehabilitation (VRBR) can optimise brain reorganisation and enhance neuroplasticity is crucial in designing personalized Virtual Reality (VR) interventions that cater to each stroke survivor's unique challenges and potential.

2. NEED OF STUDY:

Despite the availability of systematic reviews and randomized controlled trials (RCTs) on virtual reality (VR)-based rehabilitation for stroke patients, there is a pressing need to reassess and consolidate recent evidence due to the rapid evolution of VR technologies and inconsistencies in reported outcomes. Existing studies vary in terms of methodologies, patient populations, and intervention protocols, leading to fragmented conclusions about VR's efficacy across different domains of stroke recovery. A focused literature review is essential to provide an updated, critical synthesis that informs clinical practice, supports evidence-based decision-making, and identifies key areas for future research.

3. AIM OF THE STUDY:

The Primary objective of this review was to explore the efficacy of Virtual Reality-Based Rehabilitation in Stroke Survivors. Through an in-depth analysis of the current literature, this review aims to investigate the impact of Virtual Reality Based Rehabilitation on various dimensions of Stroke Rehabilitation. **OBJECTIVES:**

- Investigate the impact of VRBR on motor function recovery, particularly in upper and lower limbs.
- Evaluate the role of VR interventions in enhancing balance, gait, and postural control in stroke survivors.
- Examine the cognitive and functional benefits of immersive VR rehabilitation when compared to conventional therapies.

4. METHODOLOGY:

Search Terms and Search strategy: An extensive literature search was conducted using databases such as PubMed (National library of medicine), Google Scholar, Research Gate was conducted using the search terms "Virtual Reality", "Rehabilitation", "Virtual Reality Based Rehabilitation", "Stroke Survivor's". The studies from year 2010 to 2024 were included in this Review.

Selection Criteria: All types of studies were included in this review such as Randomized Controlled Trail (RCT's), Systematic Reviews, Pre-Post intervention studies, Polit studies done on the Stroke Survivor's. Any kind of book chapters/books, abstracts, opinion letters, editorials, correspondence or any kind of reviews were excluded.

5. RESULTS:

The review incorporated 16 high-quality studies, including randomized controlled trials and systematic reviews. These studies assessed various VR platforms (e.g., Nintendo Wii, Kinect, IREX, treadmill systems) in post-stroke populations. Commonly measured outcomes included upper limb motor function, gait velocity, balance scales, and cognitive assessments.

AUTHOR'	STUDY	PARTICIPANT	INTERVENTIO	OUTCOME	RESULTS
S NAME/	DESIGN	S	Ν	MEASURES	
YEAR					
Laver et al.,	Systematic	22 trails, 1038	Various Virtual	Upper limb	The review
2017.	Review	participants.	Reality (VR)	motor function,	indicates
	(RCT's).		interventions vs	Activities of	modest
			Conventional	daily living	improvement
			Therapy.	(ADL's), Gait	s in upper
				performance.	limb function
					with VR
					based
					interventions,
					though the
					quality of
					evidence
					ranged from
					low to
					moderate.
Saposnik et	Randomize	141 Stroke	VR using	Wolf motor	Participants
al., 2016.	d	patients.	Nintendo Wii vs	function test,	in the VR
	Controlled		recreational	motor activity	group
	trail		activities.	logs.	demonstrated
	(RCT's).				significantly
					greater
					improvement
					s in the upper
					function
					compared to
					those
					engaged in
					recreational
					therapy
					(p<0.05).

Table 1: Data Extracted From The Short-Listed Studies In The Literatue Review.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> •

• Email: editor@ijfmr.com

Da Silva	Controlled	20 stroke	VR Rased	Arm motor	Significant
Cameirao	trail.	patients.	Rehabilitation.	recovery, user	improvement
et al., 2011.		-		engagement	s were
				metrics, task	observed in
				completion in	arm motor
				accuracy.	recovery
					with high
					level of
					engagement
					reported,
					suggesting
					adherence
					and
					motivation.
Corsbie et	Randomize	24 Chronic	Home based VR	Fugl-Meyer	No
al., 2012.	d	stroke survivors.	therapy vs	Upper	statistically
	Controlled		standard therapy.	Extremity	significant
	Trails			(FMUE) score,	differences
	(RCT's).			Action	were found
				Research Arm	between VR
				Test (ARAT).	and
					conventional
					therapy
					indicating
					comparable
					efficacy for
					chronic
					stroke
					rehabilitation
Lee et al.,	Randomize	40 stroke	Virtual reality	Gait velocity,	VR-based
2015.	d	patients.	treadmill	Berg Balance	treadmill
	Controlled		training.	Scale, Timed	training led
	Trial			Up and Go Test	to significant
	(KC1'S).			(106).	ennancement
					s iii gait speed and
					balance.
					outperformin
					g
					conventional

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	0				
					gait training methods (p < 0.01).
Lloréns et al., 2015.	Pilot Randomize d Trial	18 subacute stroke patients.	Immersive VR for balance training.	Static and dynamic balance (posturography), ADL performance.	Participants showed marked improvement s in postural control and balance, with sustained effects during follow-up assessments.
Kim et al., 2014.	Randomize d Controlled Trial.	46 stroke patients.	Kinect-based VR rehabilitation.	Upper limb range of motion, cognitive function tests (e.g., MMSE).	The VR intervention group demonstrated improvement s in both motor and cognitive domains, indicating dual benefits of Kinect- based rehabilitation
Mouawad et al., 2011.	Pre-post Interventio n Study.	12 chronic stroke patients.	VR training using IREX system.	Kinematic analysis of arm movements, functional task performance.	Post- intervention assessments revealed enhanced movement accuracy and smoother motor execution, reflecting improved neuroplastic adaptation.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Mirelman	Randomize	20 stroke	VR-based	Gait velocity,	The VR-
et al.,	d	patients.	treadmill	stride length,	enhanced
2010.	Controlled		training.	balance	treadmill
	Trial.			confidence	training
				scale.	significantly
					improved
					gait
					dynamics
					and postural
					stability,
					particularly
					in patients
					with
					moderate
					impairment
					(p < 0.05).
Saposnik &	Meta-	195 participants	VR vs. traditional	Aggregate	The meta-
Levin.,	analysis	across 8 RCTs.	rehabilitation.	motor function	analysis
2011.	(RCTs).			outcomes, ADL	reported a
				independence	moderate
				scores.	effect size
					(Cohen's d \approx
					0.53)
					favoring VR
					interventions
					over
					traditional
					rehabilitation
					approaches
					in motor
					recovery
					post-stroke.
Anwar et	Randomize	68 Post stroke	Virtual reality	Berg Balance	Virtual
al., 2021.	d controlled	patients.	training,	scale, fugl	reality
	trail (RCT).		conventional	Meyer	training is
			physical therapy.	Assessment-	more
				lower extremity	effective
				Scale.	in restoring
					balance and
					lower
					extremity
					function
					compared to

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> •

• Email: editor@ijfmr.com

					conventional
					physical
					therapy.
Abd el-	Randomize	40 individuals	conventional	Action	The VR
Kafv et	d controlled	with chronic	physiotherapy +	Research Arm	gaming
al2022	trail (RCT).	stroke	VR gaming	Test (ARAT).	groun had
	uun (ne 1).	buone	conventional	Wolf Motor	hetter
			physiotherapy	function Test	improvement
			physiolioidepy.	Modified	in most
				Ashworth	measured
				scale (MAs)	variables
				Active Range	compared to
				of	the control
				Motion	group
				(ARoM)	group.
				Handgrin	
				strength (HGs)	
Pagars at	Dandomiza	21 A dulta with	alamanta virtual	Box and Plocks	alamanta
1 2010	A	21 Adults with	robabilitation	Tost Montroal	virtual
al., 2019.	u	sub-acute	acmbined with	iest, Montreal	viituai
	Dilat study	SUOKC.			ahawad
	Fliot study.		thereasy	Assessment,	snowed
			therapy,	cogstate	greater
				sublesis,	improvement
			therapy.	neurobenaviora	s in motor
				l formation in a	function and
				iunctioning	cognition.
1 / 1	D 1 '		X7. 4 1 4 · · ·	inventory.	VD
long et al.,		60 Participants	Virtual training	canadian	VK group
2020.	d controlled	with first ever	program based on	occupational	showed
	trail (RCT).	stroke.	RAPAel smart	Performance	significantly
			glove +	Measure, stroke	higher cores
			conventional	self-efficacy	in self-
			Therapy.	Questionnaire,	efficacy and
				Modified	activities
				Barthel index,	of daily
				tugl-Meyer	living
				Assessment-	compared to
				Upper	the
				extremity,	control
				functional Test	group.
				for the	
				Hemiplegic	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

				Upper	
				extremity.	
Ogun et al.,		65 Patients with	Immersive VR	Fugl-Meyer	VR group
2019.	Randomize	ischemic stroke.	rehabilitation	Assessment	showed
	d controlled		(FES+VR),	(FMA),	greater
	trail (RCT).		Cyclic FES	Functional	improvement
				Independence	s in FMA and
				Measure (FIM),	self-care
				Performance	skills
				Assessment of	compared to
				Self-Care Skills	the control
					group.
Errante et	Randomize	94 patients with	Action	Upper limb	Not specified
al., 2022.	d controlled	stroke.	Observation	function	in the
	trail (RCT).		therapy (AO)	(Improvement	provided
			added to standard	in patients with	text.
			virtual reality	stroke).	
			(VR) (AO + VR)		
			vs. observation of		
			naturalistic		
			scenes (CO)		
			followed by VR		
			training		
1				1	

6. **DISCUSSION**:

The findings of this review support the growing body of evidence that Virtual Reality-Based Rehabilitation (VRBR) is a promising adjunct to conventional physiotherapy in stroke recovery. Numerous studies reviewed (Saposnik et al., 2016; Laver et al., 2017; Kim et al., 2014) demonstrated statistically significant improvements in motor function, especially in upper limb rehabilitation. The interactive and engaging nature of VR appears to increase patient motivation and adherence to therapy, leading to better outcomes. VR interventions such as treadmill-based systems and Kinect-based activities were particularly effective in improving gait velocity, balance, and dynamic posture (Lee et al., 2015; Mirelman et al., 2010). Cognitive benefits were also reported, with studies indicating improved mental function and self-efficacy (Rogers et al., 2019; Long et al., 2020), which are critical for holistic recovery post-stroke. However, not all studies yielded superior results over traditional methods. Corsbie et al. (2012) found no significant difference between VR and standard therapy in chronic stroke patients. This indicates that VR may be more beneficial in certain stages or types of stroke rehabilitation and patient populations. Several limitations remain. The heterogeneity in study design, small sample sizes, short follow-up durations, and variability in VR protocols limit the generalizability of findings. Additionally, cost, lack of infrastructure, and technical training remain practical barriers to widespread clinical implementation.

7. CONCLUSION:

It enhances motor and cognitive recovery in stroke patients. It offers immersive, engaging, and personalized rehabilitation experiences that can complement conventional therapy. While the benefits are evident across multiple domains—motor function, balance, cognition, and self-efficacy—the integration of VRBR into mainstream clinical practice requires addressing challenges such as standardization, cost-effectiveness, accessibility, and clinician training. Future research should focus on large-scale, long-term randomized controlled trials to further validate the efficacy of VR interventions, explore patient- Centered outcomes, and develop guidelines for clinical adoption. As VR technology continues to evolve, its potential to transform stroke rehabilitation becomes increasingly promising.

REFERENCES:

- 1. Cano Porras, D., Siemonsma, P., Inzelberg, R., Zeilig, G. and Plotnik, M., 2020. Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review. Neurology, 94(14):616-630
- 2. Sacco, R.L., Kasner, S.E., Broderick, J.P. et al. (2013) An updated definition of stroke for the 21st century. Stroke, 44(7):2064–2089.
- 3. Donkor, E.S. (2018) Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Research and Treatment, 2018:1–10.
- Benjamin, E.J., Muntner, P., Alonso, A., Bittencourt, M.S., Callaway, C.W., Carson, A.P., Chamberlain, A.M., Chang, A.R., Cheng, S., Das, S.R. and Delling, F.N., 2019. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation, 139(10):e56–e528.
- 5. Campbell, B.C.V., Khatri, P. and Kleinig, T.J., 2019. Stroke. In: R.L. Beyer, ed. Kelley and Firestein's Textbook of Rheumatology. 11th ed. Philadelphia: Elsevier:275–289.
- 6. Feigin, V.L., Stark, B.A., Johnson, C.O., Roth, G.A., Bisignano, C. and Abady, G.G., 2021. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20(10):795-820.
- O'Donnell, M.J., Chin, S.L., Rangarajan, S. et al. (2016) Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. The Lancet, 388(10046):761–775.
- 8. Meschia, J.F., Bushnell, C., Boden-Albala, B., Braun, L.T., Bravata, D.M., Chaturvedi, S., Eckel, R.H., Elkind, M.S., Fornage, M., Goldstein, L.B. and Greenberg, S.M., 2014. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 45(12):3754–3832.
- 9. Tatemichi, T.K., Desmond, D.W., Stern, Y., Paik, M., Sano, M. and Bagiella, E., 1994. Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilities. Journal of Neurology, Neurosurgery & Psychiatry, 57(2):202–207.
- 10. Saposnik, G. and Cohen, L.G. (2016) Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. The Lancet Neurology, 15(10):1019–1027.
- 11. Ferrarello, F., Baccini, M., Rinaldi, L.A. et al. (2011) Efficacy of physiotherapy interventions late after stroke: a meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 82(2):136–143.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

- 12. Nik Ramli, N.N., Asokan, A., Mayakrishnan, D. et al. (2021) Exploring stroke rehabilitation in Malaysia: are robots better than humans for stroke recuperation? Malaysian Journal of Medical Sciences, 28(4):14–23.
- 13. Bonnyaud, C., Gallien, P., Decavel, P. et al. (2018) Effects of a 6-month self-rehabilitation programme in addition to botulinum toxin injections and conventional physiotherapy on limitations of patients with spastic hemiparesis following stroke (ADJU-TOX): protocol study for a randomised controlled, investigator blinded study. BMJ Open, 8(8):e020915.
- 14. Huang, Q., Wu, W., Chen, X. et al. (2019) Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: study protocol for a randomized controlled trial. Trials, 20(1):104.
- 15. Teasell, R., Meyer, M.J., McClure, A. et al. (2009) Stroke rehabilitation: an international perspective. Topics in Stroke Rehabilitation, 16(1):44–56.
- 16. Arcuri, F., Porcaro, C., Ciancarelli, I. et al. (2021) Electrophysiological correlates of virtual-reality applications in the rehabilitation setting: new perspectives for stroke patients. Electronics, 10(7):836.
- 17. Selzer, M., Clarke, S., Cohen, L. et al. (2014) Textbook of neural repair and rehabilitation. [online] Available at: https://books.google.com/books. [Accessed 2 Aug 2023].
- 18. Rogers, J.M., Duckworth, J., Middleton, S. et al. (2019) Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study. Journal of Neuroengineering and Rehabilitation, 16(1):56.
- 19. Rizzo, A.A. and Kim, G.J. (2005) A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence, 14(2):119–146.
- 20. Laver, K.E., Lange, B., George, S., Deutsch, J.E., Saposnik, G. and Crotty, M., 2017. Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, (11).
- Saposnik, G., Levin, M. and Stroke Outcome Research Canada (SORCan) Working Group, 2016. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke, 42(5):1380–1386.
- 22. Da Silva Cameirão, M., Bermúdez i Badia, S., Duarte, E. and Verschure, P.F., 2011. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the Rehabilitation Gaming System. Restorative Neurology and Neuroscience, 29(5):287–298.
- 23. Crosbie, J.H., Lennon, S., Basford, J.R. and McDonough, S.M., 2012. Virtual reality in stroke rehabilitation: still more virtual than real. Disability and Rehabilitation, 34(23):1970–1976.
- 24. Lee, M.M., Cho, H.Y., Song, C.H. and Lee, K.J., 2015. The effects of virtual reality training on function in chronic stroke patients: a systematic review and meta-analysis. BioMed Research International, 2015, Article ID 759563. DOI: 10.1155/2015/759563
- 25. Lloréns, R., Gil-Gómez, J.A., Alcañiz, M. and Colomer, C., 2015. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clinical Rehabilitation, 29(3):261–268.
- 26. Kim, H.J., Park, J.H., Kim, D.Y., Choi, Y.H. and Kim, Y.K., 2014. Effects of virtual reality-based rehabilitation on upper extremity function and activities of daily living in stroke patients. Journal of Physical Therapy Science, 26(9):1491–1493.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

- 27. Mouawad, M.R., Doust, C.G., Max, M.D. and McNulty, P.A., 2011. Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study. Journal of Rehabilitation Medicine, 43(6):527–533.
- Mirelman, A., Bonato, P. and Deutsch, J.E., 2010. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke, 40(1):169–174. [29].Saposnik, G. and Levin, M., 2011. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke, 42(5):1380–1386.
- 29. Anwar, N., Karimi, H., Ahmad, A. et al. (2021) A novel virtual reality training strategy for poststroke patients: a randomized clinical trial. Journal of Healthcare Engineering, 2021:6598726–6598726.
- Abd El-Kafy, E.M., Alshehri, M.A., El-Fiky, A.A. et al. (2022) The effect of robot-mediated virtual reality gaming on upper limb spasticity poststroke: a randomized-controlled trial. Games for Health Journal, 11(2):93–103.
- 31. Lee, H.S., Lim, J.H., Jeon, B.H. et al. (2020) Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial. Restorative Neurology and Neuroscience, 38(2):165–172.
- 32. Long, Y., Ouyang, R. and Zhang, J. (2020) Effects of virtual reality training on occupational performance and self-efficacy of patients with stroke: a randomized controlled trial. Journal of Neuro Engineering and Rehabilitation, (17):150.
- 33. Ögün, M.N., Kurul, R., Yaşar, M.F. et al. (2019) Effect of leap motion-based 3D immersive virtual reality usage on upper extremity function in ischemic stroke patients. Arquivos de Neuro-Psiquiatria, 77(10):681–688.
- 34. Lee, S.H., Lee, J.Y., Kim, M.Y. et al. (2018) Virtual reality rehabilitation with functional electrical stimulation improves upper extremity function in patients with chronic stroke: a pilot randomized controlled study. Archives of Physical Medicine and Rehabilitation, 99(8):1447–1453.e1. doi: 10.1016/j.apmr.2018.01.030.
- 35. Errante, A., Saviola, D., Cantoni, M. et al. (2022) Effectiveness of action observation therapy based on virtual reality technology in the motor rehabilitation of paretic stroke patients: a randomized clinical trial. BMC Neurology, 22(1):109. doi: 10.1186/s12883-022-02640.