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Abstract 

The merging of machine learning (ML) into robotics has significantly enhanced the management of drift 

in industrial applications. Robotic arms often experience drift over time due to various factors such as 

temperature fluctuations, gearbox backlash, wear and tear, sensor inaccuracies, and changes in load. This 

drift poses challenges to maintaining accuracy and precision in industrial robotics. While model-based 

methods have addressed drift compensation, they come with considerable limitations compared to data-

driven approaches. This paper will review the PID, Computed Torque Control and Adaptive Computed 

Torque Control based on Reinforcement Learning, soft actor critic (SAC) model, examining their 

strengths, weaknesses, and potential areas for improvement to enhance the accuracy and precision of 

robotic systems in industrial settings. 

 

Keywords: Computed Torque Control (CTC), Machine Learning (ML), Proportional Integral Derivative 

(PID), Reinforcement Learning (RL), Soft Actor Critic (SAC). 

 

1. Introduction 

Model-based control systems for robotic arms are prone to drift over time and lack the ability to adapt to 

new operating conditions, primarily due to discrepancies between kinematic and nominal values stemming 

from manufacturing and assembly tolerances, known as kinematic errors [1]. Traditional drift 

compensation methods often fail to adjust Denavit-Hartenberg (DH) parameters as these kinematic errors 

accumulate, necessitating periodic manual calibration to mitigate drift. However, the introduction of 

neural networks enhances adaptability by enabling these models to learn complex operational dynamics 

from real-time data, making them effective for drift compensation. Advances in artificial intelligence, 

particularly through ML and deep learning algorithms, offer improved performance in addressing the 

complexities and nonlinearities of robotic operations compared to classical models [2]. Drift can also 

impact sensor readings, which in turn affects the accuracy, precision, and reliability of robotic force control 

systems. To ensure effective force control, it is critical to develop methods for real-time drift prediction 

and compensation [3].  In complex robotic operations, hard coding and modeling safe trajectories can be 

cumbersome and time-consuming. Machine learning models, particularly through imitation learning, can 

quickly adapt and learn dynamics based on expert demonstrations, allowing them to generalize to new 

operating environments [4] Overall, AI has emerged as a valuable tool for addressing drift in robotic arms, 
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outperforming traditional models and presenting promising solutions for various challenges in industrial 

robotics. 

PID along with fuzzy logic controllers, represent traditional control models grounded in mathematical 

concepts and logical analysis. They work well in applications involving a single input and output. While 

they are relatively easy to implement, they can become unstable when managing complex and nonlinear 

systems [5]. 

 

2. Methodology 

This study will focus on a 2DOF robotic arm dynamics. Matlab SimScape model will be developed and a 

trapezoidal trajectory profile will be used to analyse the control system response to path dynamics. 

Random number generator will be used during the training of the RL agent. This will model the random 

nature of drift generators in real world applications. 

DRL algorithms were selected for their capability to learn from experience and engage with the 

environment in a step-by-step manner. These algorithms can also develop dynamic policies that adjust to 

environmental changes and effectively manage continuous action spaces [6]. 

 

3. Robotic Arm System Dynamics 

Robotic arm system dynamics refers to the study of motion and forces of a robotic arm, comprising of 

joints, links and end effector. It is crucial in studying the dynamics in order to understand how the arm 

moves, interacts with the environment and performs tasks. 

3.1 Mathematical modelling of robotic system 

The dynamics of a robotic arm can be modelled using various mathematics models such as Newton-Euler 

equations, Lagrange’s equations and Hamilton’s equations. In this paper, The Newton-Euler equations 

will be examined for a 2 DOF robotic arm manipulator and its controller design. Forward dynamics fo-

cuses on determining the motion of the robotic arm based on the applied forces and torques. Conversely, 

inverse dynamics is concerned with calculating the forces and torques needed to produce a desired motion 

of the robotic arm. 

Neuton’s second law of motion 

𝑎 ̈ = 𝐹/𝑚                                                                                                                          (1) 

Where, 

𝑎 ̈  is the acceleration 

𝐹 is the force 

𝑚 is the mass 

Equation of a motion of a robotic arm, 

Ʈ = 𝑀(𝑞) 𝑞 ̈ + 𝐶(𝑞, 𝑞 ̇ ) 𝑞 ̇ + 𝑔(𝑞)                                                                                    (2) 

Where, 

Ʈ is the total torque required to drive the manipulator 

𝑀(𝑞) 𝑞  ̈is the amount of torque required to move a mass of the arm body. 

𝐶(𝑞, 𝑞 ̇ ) 𝑞  ̇is the torque required to overcome Coriolis’s and centrifugal forces. 

𝑔(𝑞) is the torque required to overcome the gravitational pull 
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Figure 1: Forward and Reverse dynamics of a robotic arm. 

 
 

4. Physical Modelling of Robotic Arm Using SimScape Model 

The 2DOF robotic arm with the dimensions shown in figure 1 was modelled in SimScape with material 

density of 1000kg/m3. Position and velocity sensors are used to provide measured data from the 2 joints. 

 

Figure 2: SimScape model of a 2 joint robotic arm. 

 
 

4.1.  The experiment Setup 

Robotic arm drift of the SimScape model will be measured against the modelled forward dynamics for 

each joint. 

Figure 3: Set up to determine drift. 
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Figure 4: Set up to determine drift in Matlab Simulink. 

 
 

5. Robotic Arm Basic Controller Design 

5.1. Independent Joint Control 

PID controller is one of the classical models used in the design of many control systems because of a 

number of reasons. Settling time of a controlled process is reduced significantly. Controllers can be used 

in a wide range of application. Response time is shorter allowing faster correction of error. The PID con-

troller can be modelled using the following equation 

 

𝐶 =  𝐾𝑃𝑒 + 𝐾𝐼 ∫ 𝑒 + 𝐾𝐷�̇�                                                                                 (3) 

 

Where, 

𝐶 is the controller gain 

𝐾𝑃 is the proportional gain coefficient 

𝐾𝐼 is the integral gain coefficient 

𝐾𝐷 is the derivative gain coefficient. 

 

Figure 5: PID controller design for single joint control. 

 
5.2 . Feed Forward Compensator 

It will predict the disturbance that is to come and generate a suitable signal to minimize its effect. Propor-

tional feed forward compensator multiplies reference signal with a constant. PID is good at setpoint track-

ing but fails to track the constantly changing reference perfectly. 

5.3.  General Computed Torque Control  Scheme. 

The computed torque control (CTC) strategy applies the equations of robotic dynamics to anticipate dis 
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turbances. This method relies on the controller's commands, which utilize prior knowledge encapsulated 

in a dynamic model of the system. With the aim of tracking trajectories in joint space, the target trajectories 

consist of joint angles, velocities, and accelerations. By using feedback linearisation, it effectively miti-

gates the manipulator's nonlinearities, as illustrated in Figure 6. 

 

Figure 6: General CTC Scheme. 

 
CTC scheme accepts joint position, velocity and acceleration as inputs. Figure 7 below shows the scheme 

with a linearised controller. Position and velocity error are multiplied with 𝐾_𝑝 and 𝐾_𝐷 coefficients re-

spectively. The results are added to the acceleration and a mass matrix is produced. The mass matrix is 

added to the Coriolis and gravitational force models. The controller output is then fed to the robot and the 

input torque required. 

The outer loop controller is most suitable and PD controller have been proposed as outer loop controller 

[7]. It is important to highlight that the use of the feedback linearizing transformation results in the tracking 

error dynamics being described by a linear state equation with constant coefficients. 

 

The CTC law is given as follows: 

 

Ʈ = 𝑀 (ɵ̈ + 𝐾𝐷(ɵ̇𝐷 − ɵ̇𝑚) + 𝐾𝑝(ɵ𝐷 − ɵ𝑚)) + 𝑁                                   (4) 

 

Where, 

Ʈ is the torque required 

𝑀 is the mass matrix 

ɵ̈ is the desired acceleration 

ɵ̇𝐷is the desired velocity 

ɵ̇𝑚  is the measured velocity 

ɵ𝐷  is the desired angle 

ɵ𝑚  is the measured angle 

𝑁 is the torque required to overcome Coriolis, gravitational and centrifugal force 

𝐾𝐷 is the derivative gain coefficient 
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𝐾𝑝 is the  proportional gain coefficient 

 

Figure 7: CTC Scheme with linearised controller. 

 
CTC scheme has three inputs,ɵ𝐷 , ɵ̇𝐷, and ɵ̈𝐷 representing desired trajectory, desired velocity and desired 

acceleration respectively. Error signal generated by comparing the desired trajectory and current trajectory 

is multiplied by a factor 𝐾𝑝 and is added. Error from the desired velocity and the measured velocity is 

multiplied by a factor 𝐾𝐷  and added. The adder output is multiplied with the mass matrix. The result is 

added to coriolis and gravitational force models. The result is the controller output torque appropriate to 

control the joints position, velocity and acceleration. 

 

6. Matlab Implementation and Simulations 

6.1. The PID implementation. 

The 2DOF manipulator has 2 controllers for joint position tracking. 

 

Figure 8: 2 PID controllers 

 
The two PID controllers each controlling a single joint are used. Reference signal is generated from the 

trajectory generator. PID control tracks the trajectory and ensure the error between the reference and the 

measured is reduced timeously and as lowest as possible. To ensure the controllers are tuned properly, 

Matlab PID tuner is used. 
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6.2.  PID Single Joint Tunning Using PID Tuner In Matlab. 

Figure 9:  PID tuner results J1. 

 

 
 

Figure 9 shows the J1 tunning results indicating the J1 response characteristics indicating a rise time of 

180 seconds, and the controller coefficients, P = 0.1, I = 0.00048, and D = 5.3. 

 

Figure 10:  PID tuner results J2. 

 
 

On figure 10, Tunning results corresponding to J2 response characteristics indicating a rise time of 15 

seconds and the controller coefficients, P = 1.88, I = 0.028, and D = 30.18. 

 

6.3. The CTC implementation and results. 

Joint space mass matrix, velocity product torque and gravity torque Simulink blocks are used to model the 

robotic arm dynamics. Only the 𝐾𝑝 and 𝐾𝐷 parameters are adjusted. 

 

Figure 11:  CTC Simulink. 
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Adjusting the 2 parameters is all what it required to tune the controller because the model has been line-

arised and easier to adjust. Below is table of tunning results. 

 

Table 1: Controller gain after adjusting𝑲_𝒑 and 𝑲_𝑫 parameters 

𝑲𝒑\𝑲𝑫 1 100 1000 2000 3000 

1 14 250 348 352 354 

100 46 270 349 350 362 

1000 98 230 317 350 353 

2000 127 276 358 353 354 

3000 266 282 362 351 352 

 

Controller gain was obtained by determining the peak to peak output signal for J2. The maximum output 

of 362 corresponds to 𝐾𝑝 = 3000 and 𝐾𝐷 = 1000 or 𝐾𝑝 = 100 and 𝐾𝐷= 3000. 

 

Figure 12:  𝑲𝒑 = 1, 𝑲𝑫 = 1, Gain= 14 

 
 

Figure 13:  𝑲𝒑=1, 𝑲𝑫 =1, trajectory for J1 and J2 

 
 

Figure 14: 𝑲𝒑=2000, 𝑲𝑫 =1, Gain =127 
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Figure 15:   𝑲𝒑=1, 𝑲𝑫 =1000, Trajectory for J1 and J2 

 
 

Figure 16:   𝑲𝒑=3000, 𝑲𝑫 =1000, Gain = 362 

 
 

Figure 17:   𝑲𝒑=3000, 𝑲𝑫 =1000, Trajectory for J1 and J2 

 
 

CTC provides numerous benefits; however, it necessitates a deep understanding of the system's analytical 

model to calculate the feedforward torques necessary for trajectory execution. The dynamics of robotic 

manipulators are often coupled and exhibit significant nonlinearities, with uncertainties arising from 

friction and unmodeled dynamics. This complexity makes it challenging to achieve an accurate model, 

prompting extensive research into alternative control strategies. Notably, feedforward nonlinear control 

and inverse dynamics control are distinct approaches that can be employed, with the latter typically 

demonstrating superior tracking performance [8]. 
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7. The SAC Reinforcement Learning model 

A key feature of reinforcement learning (RL) is its interactive trial-and-error methodology. In this process, 

the agent learns by observing the results of its actions and modifying its behaviour according to the rewards 

it receives, which are represented as scalar values indicating the effectiveness of those actions. In RL 

terminology, the state refers to a collection of all the relevant information necessary to characterize the 

environment. 

 

Figure 18:   𝑲𝒑=3000, 𝑲𝑫 =1000, Trajectory for J1 and J2 

 
 

Figure. 18 depicts the typical interaction between an agent and its environment in a  RL algorithm, the 

agent observes state 𝑆 from the environment and interacts with it by choosing an action 𝐴 based on the 

current policy 𝜋. This action 𝐴 leads to a change in the environment, resulting in a new state 𝑆′and pro-

ducing scalar feedback in the form of a reward 𝑟. The transition data {𝑆, 𝐴, 𝑟, 𝑆′} is known as an experi-

ence, and this iterative process continues until the training is finished. The agent's primary objective is to 

learn an optimal policy 𝜋∗ that maximizes the expected return 𝑔𝑡, represented as follows 

𝑔𝑡 = ∑ ϒ𝑘𝑟𝑡+𝑘+1
∞
𝑘=0                                                                            (5)            

where the discount factor 𝛾 ∈ [0, 1], the importance of future rewards. 

A key challenge in RL lies in balancing exploration and exploitation: determining whether to try random 

actions to explore the environment or to utilize existing knowledge to maximize returns. The 𝜖- greedy 

strategy is frequently used in this context. It randomly selects an action with a probability of 𝜖 ∈ [0, 1], 

and opts for the greedy action otherwise. Finding an appropriate 𝜖 value is crucial for effectively balancing 

exploration and exploitation, with this value typically decreasing over time to prioritize exploitation. 

In this study, Soft Actor-Critic (SAC) Algorithm is a favorable among three major properties. An actor-

critic model is used which has different nets for policy and value functions, it is also described as off-

policy method which uses past experiences efficiently and maximizing entropy. The latter is a character-

istic property of SAC, which drives the policy to trade off expected return and entropy (a regularization 

term that measures the randomness of the policy). This equilibrium adds considerable balance and explo-

ration. 

The SAC agent is trained off-policy with a behaviour and target critic networks. The distinction between 

exploration and target policy offers more meta parameter control as to whether online data is collected 

with one strategy while the learned value function is updated according to another, as in the DDQN 

The SAC algorithm was selected for multiple reasons. As a model-free and off-policy approach, it excels 

in scenarios with continuous state and action spaces, making it ideal for practical applications. Further-

more, SAC demonstrates high sample efficiency and functions within a maximum entropy framework, 
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which benefits environments involving robotic arms. Additionally, the SAC algorithm generates smoother 

actions, which are crucial for achieving precise control of robotic arms [9]. 

As a model-free and off-policy approach, the SAC algorithm is ideal for tasks involving continuous state 

and action spaces, making it a popular choice for addressing real-world challenges. The SAC algorithm 

provides excellent sample efficiency and operates within a maximum entropy framework, which is partic-

ularly advantageous for robotic arm applications. Additionally, SAC produces smoother actions, which is 

essential for achieving precise control of a robotic arm [10]. 

SAC employs a stochastic approach that yields several benefits over deterministic ones. For example, 

increasing the randomness can prevent premature convergence to a local optimum and encourage explor-

ing the solution space more widely to guide an agent well enough to approach the global optimum. 

SAC is an off-policy RL algorithm in which three types of functions are represented by five networks. 

These are the policy, the action value, and the state value function. A randomized action network approx-

imates the policy function, a V critic network estimates the state value function, and Q-networks are used 

to approximate the action value function. The algorithm consists of a number of steps, including strategy 

evaluation, strategy improvement, updates to the state value network and tuning the entropy weight [11]. 

SAC is a popular DRL algorithm that is hailed for its impressive sample efficiency and robust-ness under 

continuous action domains. Method Standard policy gradient methods such as Trust Region Policy 

Optmisation (TRPO) and proximal policy Optimisation (PPO) considerably improved DRL via facilitating 

stable on-policy learning. These methods however tend to require more samples, being unable to effi-

ciently exploit the knowledge learned from the past. In contrast, SAC works as an off-policy algorithm 

which can leverage a replay buffer for re-using past experience and helps a lot for sample efficiency. SAC 

then, through adopting the maximum entropy framework, reasonably balances exploration and exploita-

tion and is therefore particularly attractive in complex industrial applications where such exploration costs 

are prohibitive. Its ability to handle high-dimensional state and action has enabled SAC to develop so-

phisticated control policies, a feature crucial for accurate robotic-arm control [12]. 

 

8. Adaptive CTC Based on SAC RL Model Design. 

The CTC model has shown that it can adress drift problems by modeling the Newton-Euler equation. The 

challenge is the need to adjust the 𝐾𝑝 and 𝐾𝐷 parameters which is time consuming as it is a try and error 

approach. In order to address this problem, an adaptive SAC RL model is proposed where the agent will 

learn the model by itself and updates its neuron’s weights accordingly. The RL agent has replaced the 𝐾𝑝 

parameter. 𝐾𝐷 parameter is preset to 1000. During training, the agent constantly adjusts the 𝐾𝑝 parameter 

until the position error for J2 is equal or less than 0.1 as shown in figure 19. At this error margin, the agent 

is rewarded with a value 10. If the error is greater than 0.1 as shown in figure 18, the penult is of value -1 

is given to the agent for failing to control the error within the margin. 
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Figure 19:   𝑲𝒑=1, 𝑲𝑫 =1 error margin for J2  greater than 0.1 

 
 

Figure 20:   𝑲𝒑=3000, 𝑲𝑫 =1000   error margin for J2 greater than 0.1 

 
 

Table 2: Controller gain after adjusting𝑲𝒑 and 𝑲𝑫 parameters 

Joint 

position 

 

 

 Max error 

𝐾𝑝=1,𝐾𝐷 =1 

Min error 

𝐾𝑝=1,𝐾𝐷 

=1 

J1 2.5 0.01 

J2 1.3 0.073 

 

Figure 21:   The SAC RL argent. 
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8.1. The Adaptive CTC Design. 

The 𝐾𝑝 parameter adjustment is carried out by ML model. RL model learns how to reduce the position 

error by adjusting the 𝐾𝑝 parameter. The goal is to reduce the J1 and J2 joint position errors magnitude to 

0.01and 0.073 respectively. This error margin corresponds to the desired trajectory tracking tolerance. 

Anything outside is considered as drift. 

 

Figure 22:   RL agent replaced the 𝑲𝒑 gain block 

 
 

 

The RL agent will explore the possible actions and exploit the actions which maximises the rewards. The 

reward is maximum if the position error is minimum. Consequently, tracking the trajectory with maximum 

precision. 

 

Figure 23:   Before training and  𝑲𝑫 parameter set to 1000. 

 
 

Figure 22 shows trajectory tracking before training of the RL agent. It is clear that the tracking accuracy 

is poor and exhibiting drift. Hence a need to train the model. 

 

8.2. The SAC RL Training. 

The initial joint angles are randomised to +/- 5 degrees. This will enable the argent to be able to compensate 

the drift in the range of +/-5 degrees. Argent gain range limit is +/- 100. This was set so that the amount 

of time required for training is reduced and precision control is not compromised. 
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Figure 24:   Training for the RL agent. 

 
 

Training terminated after 100 episodes, average reward reached 1333 and reward value at 1722. 

 

Figure 25:  After Training the RL agent. 

 
 

Trajectory tracking by the RL agent has achieved the accuracy expected. Both J1 and J2 are being 

controlled accurately with no drift. 

 

9. Results and Conclusion 

Figure 26:   The PID Controller results. 
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Figure 24 is J1 and J2 position with respect to the desired joint trajectory. Because there are various factors 

that contributes to a complex dynamic of a robotic arm, PID control fails to compensate for these factors 

hence a poor response to trajectory tracking. 

 

Figure 27:   The Computed Torque Controller results. 

 

 

CTC model has proved to be more effective as compared to PID model. The model takes into account the 

factors contributing to the dynamics of the robotic arm, hence a better performance on tracking position 

trajectory. Figure 27 shows how the model achieved trajectory tracking more precisely. Nevertheless, the 

model fails to adapt online to drift over time because it requires manually readjustment of the 𝐾𝑝 and 𝐾𝐷 

parameters. 

 

Figure 28: The Adaptive CTC based on SAC RL model. 

 
 

The adaptive CTC controller has achieved the expected performance by precisely tracking the joint 

position trajectory. It also has the aspect of online self-calibration as it learns from the environment and 

not from a model during training phase. The environment during training was meant to randomly change 

its initial joint positions and the agent would learn how to compensate for the error. During normal 

operation the agent would be in a position to compensate for drift without any human intervention. 
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