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Abstract 

The role of Large Language Models (LLMs) in software development has become quite common, 

integrating them more deeply into the daily routines of developers. This makes it increasingly important 

for LLMs to generate code that is not only coherent but also easy for humans to read, especially for creating 

different web applications. While previous studies have focused on individual LLMs regarding their 

functionality or security, there’s a noticeable lack of research comparing multiple LLM platforms in terms 

of accessibility, correctness, and usability. This gap is significant and serves as the driving force behind 

our work. We conducted a comprehensive empirical study to evaluate the coding capabilities of eight 

leading LLMs: Chat GPT, Claude Ai, Gemini, Mistral, Qwen Ai, Phind, Grok and Blackbox Ai. Our 

assessment not only looked at how well these models generate forms, user interfaces, and semantic ARIA 

roles for webpages but also measured five key criteria: compliance with WCAG 2.0, code accuracy, 

responsiveness to prompts, cost-effectiveness, and user-friendliness. To enhance efficiency, we also 

modified the FeedA11y framework to automate evaluations using tools like AChecker for automated web 

accessibility assessments. Our findings highlight significant differences among the LLMs. Lastly, we 

outline the proposed solutions and frameworks and discuss the implications of LLMs on inclusive 

development processes. 
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1. Introduction 

The way Large Language Models (LLMs) are being used in Software Engineering is evolving faster than 

ever, fundamentally changing how developers brainstorm, write, test, and maintain their code. With tools 

like GitHub Copilot, ChatGPT, and Claude, developers can now code with minimal input, boosting 

productivity and speeding up development timelines. However, this rapid adoption of LLMs raises 

important concerns, particularly about the quality and inclusivity of their outputs. This is especially 

relevant in the realm of web accessibility, which fundamentally relies on the WCAG 2.0 standards to 

ensure fair access for everyone. 

While some studies have examined LLMs in terms of their performance in code generation, debugging, 

or security assessments, fewer have explored how well these models adhere to accessibility guidelines or 
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inclusive design principles. To address this gap, we’re taking a closer look at eight of the leading LLMs 

available today, including general-purpose models like GPT, Claude and Gemini, as well as code-specific 

models like Qwen Ai. Our aim is to assess how effectively they generate HTML, CSS, and JavaScript 

code, while also capturing the nuances of prompting and feedback in iterative processes. We’re expanding 

the FeedA11y framework, originally designed to enhance web code sourced from LLMs through ReAct-

style accessibility critiques, to include support for cross-model comparison analyses. 

Our research aims to tackle some key questions: 

• RQ1: Which LLMs make it easiest to access web code? 

• RQ2: How do different platform prompting strategies (like Zero-shot, Few-shot, and Self-Criticism) 

impact accessibility outcomes? 

• RQ3: Which platforms strike the best balance between accessibility, accuracy, cost, and 

responsiveness? 

• RQ4: What common accessibility issues or failure patterns do LLMs tend to exhibit? 

This paper presents a thorough, reproducible benchmark for evaluating LLM accessibility, featuring cross-

architecture empirical assessments and practical tips for choosing the best LLMs for inclusive code 

generation. 

 

2. Related Work 

The latest improvements in Large Language Models (LLMs) have greatly impacted the software 

development cycle, particularly with the automation of coding tasks. Research such as Suh et al. [1] and 

Anand et al. [2] has noted the increasing importance of LLMs like ChatGPT and GitHub Copilot in aiding 

development automation. Yet, most of these works centre on general code synthesis, security, or 

productivity and not on the outputs that are generated and their accessibility. 

Multiple frameworks have been developed to evaluate the ability of LLMs to produce code that is 

syntactically and semantically executable at a given level [6][8]. However, very few address the practical 

compliance with web accessibility standards such as WCAG 2.0/2.1. For example, Suh et al. [1] did try to 

compare human coded accessible web pages and LLM generated counterparts, but the focus was on a 

narrow range of models and tasks. Also, Cai et al. [3] investigated the use of LLMs for GUI design but 

did not frame accessibility benchmarks either systematically or comparatively. 

Agarwal et al.’s works [6] describe the creation of automated evaluation harnesses for assessing LLM-

guided programming. Such tools are relevant, but focus mainly on correctness and efficiency, neglecting 

critical aspects such as usability, inclusive design, or other vital ergonomic factors. Other comparative 

evaluation works, like those by Liusie et al. [5], have investigated the capabilities of zero-shot generation, 

but mostly from the NLG perspective.  Up to this moment, no single study has assessed all available LLMs 

in an organized manner using structured prompts focused on accessibility compliance. Gaps like these are 

addressed in this paper, where eight LLMs are benchmarked with WCAG-aligned HTML/CSS tasks using 

a tailored version of FeedA11y for automated feedback refinements. 

 

3. Methodology 

This section dives into the experimental design we used to compare and evaluate the performance of eight 

large language models (LLMs) in creating web code that is both accessible and accurate. We’ll cover 

everything from task selection and model settings to prompting techniques, the code generation pipeline, 

and the evaluation methods and tools we employed. 
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3.1 LLM Platforms 

We chose eight different LLM platforms that include both general-purpose and code-focused models. Our 

selection was based on their popularity, availability, and how well they fit into today’s software 

development workflows. 

Qwen: Alibaba's open-source multilingual LLM family with superior Chinese/English reasoning and 

coding capabilities. 

Mistral: French startup famous for very powerful open-source LLMs such as Mixtral MoE comparable to 

bigger models. 

Phind: Search engine for developers with AI-driven, LLM-powered, and cited solutions to coding and 

tech-related questions. 

ChatGPT: A hit chatbot app by OpenAI (based on GPT series) for conversations, writing, and projects. 

Claude: Anthropic's assistant AI prioritizing safety with industry-leading context windows and sound 

reasoning 

Gemini: Google's multimodal chatbot embedded within the company's ecosystem, excellent at searching 

and facts. 

Blackbox: Autocomplete, search, and chat coding assistant supporting over 20 programming languages. 

Grok: xAI's chatbot within X (Twitter) with the reputation of having less filtering and real-time access. 

3.2 Task Design 

To assess how well LLMs perform, we came up with a practical coding task that really focus on 

accessibility and usability: 

1. UI Code Regeneration from code summaries (inspired by FeedA11y). 

2. Fixing Form Accessibility: This involves adding missing labels, ARIA roles, and alt text. 

3. Correcting Table Accessibility: We look at scope, headers, and captions. 

4. Applying ARIA Landmarks: This means ensuring semantic roles are applied correctly and are unique. 

5. Integrating Skip Navigation: We want to make sure keyboard users can easily skip to the main content. 

Each of these tasks is based on common failure points identified in WCAG 2.1 from previous studies. 

3.3 Prompting Strategies 

To understand how large language models (LLMs) react to varying levels of instruction, we can break it 

down like this: 

• Naive Prompting: This approach doesn’t mention accessibility at all. 

• Zero-Shot: Here, we provide basic instructions aimed at achieving WCAG compliance. • Few-Shot: 

This involves outlining WCAG rules along with examples of what’s correct and what’s not. 

• Self-Criticism: In this case, the model takes a moment to review and enhance its own code. 

• FeedA11y: This method focuses on refining the model based on feedback, using a ReAct-style 

approach that incorporates evaluator reports. 

We’ll assess each model using the Naive, Zero-Shot, and FeedA11y configurations. 

3.4 Code Generation Pipeline 

We’ve got a well-organized process inspired by FeedA11y that goes like this: 

1. Summarization Phase: An LLM creates code summaries based on the input files. 

2. Generation Phase: Another LLM instance takes those summaries and generates the actual code. 

3. Accessibility Evaluation: We put the code to the test using AChecker and QualWeb. 

4. Optional Refinement: FeedA11y takes the accessibility feedback and refines the code in an iterative 

manner. 
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We focus on block-level generation—like HTML sections, JavaScript functions, and CSS rules—to 

enhance rendering accuracy and pinpoint any errors. 

3.5 Tooling and Automation 

• Accessibility Evaluators: AChecker. 

• Rendering Checks: Headless browser comparison (like Puppeteer) 

• Linting Tools: ESLint, Prettier, CSSLint 

• Environment: We’ll keep prompt and generation logs for reproducibility. All LLM APIs will be 

accessed using standard settings (temperature, max tokens). 

 

4. Result 

Our empirical analysis measured the performance of eight of the top Large Language Models (LLMs) for 

web code generation on accessibility, in terms of total "known," "likely," and "potential" issues. As Figure 

1 shows, total issues by LLM and prompting strategy, enormous differences were seen. ChatGPT, and 

especially when using the FeedA11y feedback loop, had record-breaking performance, with a paltry 1 

total issue. This phenomenal reduction from its baseline (24 issues, Naive/Zero-Shot) illustrates the 

revolution in performance that can be gained from iterative improvement for highly advanced LLMs. By 

contrast, Grok had the highest intrinsic capacity, which reached the lowest level of issues (23) with Naive 

prompting and showed consistently low performance for all strategies, suggesting a high baseline for 

accessible code generation. 

 

 
Table 1: Total accessibility problems identified in web code generated by various LLMs across Naive, 

Zero-Shot, and FeedA11y prompting strategies. Lower values indicate better accessibility performance. 

Here in Table 1, N is Naïve code, ZS is Zero Shot code, FA is Feed Ally code, KP is Known Problem, LP 

is Likely Problem, PP is Potential Problem and TP is Total Accessibility Problems. 

The impact of prompting strategies differed widely across LLMs. While FeedA11y significantly assisted  
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ChatGPT, with a drastic decrease in accessibility errors, in the other models, its impact was significantly 

less, and in several instances, even negative. Claude and Blackbox AI stood out by exhibiting a surprising 

increase in total problems under Zero-Shot and FeedA11y prompting over their Naive performance (e.g., 

Claude from 29 to 41 problems), which may reflect a difficulty in correctly interpreting or solving intricate 

accessibility constraints from direct instruction. Qwen, Mistral, Gemini, and Phind maintained low 

variability in problem counts across the different prompting strategies, reflecting a more uniform, but less 

adaptive, performance profile. 

Lastly, a grouping of problem types was found to uncover the fact that "Potential Problems" always 

represented the overwhelming majority of problems found in nearly all LLMs, regardless of prompting 

strategy. This pervasive problem indicates a general shortcoming of LLMs to fully foresee and avoid the 

insidious and usually subtle accessibility issues that automated tools detect as "potential" issues. Whereas 

ChatGPT excelled by eliminating nearly all "Known" and "Likely" problems, the pervasive occurrence of 

"Potential Problems" across the board indicates a common area of future LLM research in the area of 

inclusive web code generation. 

 

5. Limitations 

While we conducted a thorough evaluation, there are a few limitations to this study that we should 

acknowledge: 

1. Static Evaluation Only: We relied on automated tools like AChecker, which can’t really assess 

dynamic or behavioral accessibility issues, such as keyboard traps or modals. 

2. Single Task Domain: Our focus was strictly on HTML/CSS-based UI code, so we haven’t tested   how 

these findings might apply to other areas like mobile or backend code. 

3. Prompt Dependency: The performance of the model can change with even slight variations in the 

prompts. This evaluation is based on fixed, idealized prompt formats. 

4. Limited Human Evaluation: Although we gathered quantitative metrics, we didn’t conduct extensive 

assessments involving developers or users. 

5. Black-box LLM APIs: We treated all models as black boxes, without considering the internal 

differences in how they handle context or tokenization, which could influence their performance. 

 

6. Conclusion 

This study performed a complete assessment of the eight most prominent Large Language Models (LLMs) 

regarding their ability to render code for webpages. Using a modified version of the FeedA11y framework, 

we examined how different prompting methods from simple to signature feedback loops impacted each 

model's accessibility performance. 

As expected, we concluded that chat GPT consistently surpassed their peers in generating HTML 

documents due to their greater adherence to web standards. The advanced models, like ChatGPT, tended 

to show the most pronounced enhancement in accessibility outcomes with the assistance of the FeedA11y 

feedback loop, but still had severe difficulty navigating sophisticated accessibility problems such as the 

correct implementation of semantic ARIA roles and landmarks, even with step-by-step guidance provided. 

In our case, the primary contribution of the work is the prompt formulation and the subsequent re-

prompting in the attempts to maximize turning accessibility compliance into a checklist. It raises the 

question of why some models do not accept step-by-step guidance on basic tasks such as inclusive website 

design. 
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