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Abstract 

In this paper, we develop and refine several fixed-point theorems in the framework of partial metric spaces, 

a generalization of metric spaces that allow non-zero self-distances. We present improved versions of 

Banach-type contraction mappings and establish convergence results for various iterative processes, 

including Mann and Ishikawa iterations, under relaxed contractive conditions. Moreover, we propose a 

generalized contraction with diminishing error terms and provide corresponding convergence lemmas to 

support each theorem. Each result is illustrated with suitable examples and is supported by corollaries and 

auxiliary lemmas. These findings not only unify and extend several known results in the literature but also 

contribute new tools for analysis in spaces where traditional metric assumptions fail. 
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1 Introduction 

Fixed point theory has emerged as a fundamental area of nonlinear analysis with applications in various 

fields such as optimization, differential equations, dynamic programming, and theoretical computer 

science. The classical Banach Contraction Principle has been extensively studied and generalized in 

different mathematical structures, one of which is the partial metric space, introduced by Matthews [1], 

which relaxes the condition p(x,x)=0p(x,x) = 0p(x,x)=0, allowing non-zero self-distances. This makes it 

particularly suitable for analyzing convergence in computational settings and domain theory. 

Over the past decades, several researchers [2–6] have investigated fixed point results in partial metric 

spaces, offering generalizations of well-known iterative schemes. Among the most notable are Mann and 

Ishikawa iterations, which provide methods to approximate fixed points under weaker conditions than 

those required by Banach contractions. 

In this work, we extend and unify various fixed-point theorems using improved iterative processes. We 

propose a new Banach-type fixed point theorem with relaxed contractive conditions also convergence 

analysis of Mann and Ishikawa iterations in the setting of partial metric spaces.A novel result involving 

generalized contractions with diminishing perturbation terms. 

 

2 Preliminaries 

We recall essential definitions and properties. 
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Definition 2.1: A partial metric on a nonempty set 𝑋 is a function 𝑝: 𝑋 × 𝑋 →Definition 1: Partial Metric 

Space ([Matthews, 1994]) 

Let 𝑋 be a nonempty set. A function 𝑝: 𝑋 × 𝑋 → [0, ∞) is called a partial metric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the 

following hold: 

1 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦), 

2 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥) (symmetry), 

3 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) − 𝑝(𝑦, 𝑦), 

4 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦) ⇒ 𝑥 = 𝑦. 

The pair (𝑋, 𝑝) is called a partial metric space. 

Definition 2.2: Contractive Mapping in a Partial Metric Space Let (𝑋, 𝑝) be a partial metric space. A 

mapping 𝑇: 𝑋 → 𝑋 is said to be a contraction if there exists a constant 0 ≤ 𝜆 < 1 such that: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑝(𝑥, 𝑦),  ∀𝑥, 𝑦 ∈ 𝑋 

This definition generalizes the Banach contraction principle to the setting of partial metrics. 

Definition 2.3: Picard Iteration 

Given a self-mapping 𝑇 on a space 𝑋, and a starting point 𝑥0 ∈ 𝑋, the Picard iteration is the sequence 

defined by: 

𝑥𝑛+1 = 𝑇𝑥𝑛,  𝑛 ∈ ℕ 

Definition 2.4: Mann Iteration 

Given a mapping 𝑇 and a sequence {𝛼𝑛} ⊂ [0,1], the Mann iteration is defined by: 

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇𝑥𝑛. 

Assumes 𝑋 is a convex subset of a linear space or convex combinations are well-defined. 

Definition 2.4: Ishikawa Iteration 

Given two sequences {𝛼𝑛}, {𝛽𝑛} ⊂ [0,1], the Ishikawa iteration is defined by: 

{
𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑇𝑥𝑛

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇𝑦𝑛
 

Definition 2.5: Asymptotic Regularity 

A sequence {𝑥𝑛} is said to be asymptotically regular if: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑇𝑥𝑛) = 0 

Used in conjunction with contractive mappings to demonstrate convergence of sequences to fixed points. 

Definition 2.6: Convergence in Partial Metric Space 

A sequence {𝑥𝑛} ⊂ 𝑋 converges to 𝑥 ∈ 𝑋 in a partial metric space (𝑋, 𝑝) if: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑥) = 𝑝(𝑥, 𝑥). 

Note: Unlike metric spaces, 𝑝(𝑥, 𝑥) ≠ 0 in general. 

 

3 Main Results 

We present improved fixed-point theorems for different iterative sequences. 

Lemma 3.1 

Let {𝑥𝑛} ⊂ 𝑋 be defined by 𝑥𝑛+1 = 𝑇𝑥𝑛, where 𝑇: 𝑋 → 𝑋 satisfies the condition: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦) + 𝛽𝑝(𝑇𝑥, 𝑥),  ∀𝑥, 𝑦 ∈ 𝑋 

for constants 𝛼, 𝛽 ∈ [0,1) such that 𝛼 + 𝛽 < 1. Then the sequence {𝑝(𝑥𝑛, 𝑥𝑛+1)} is monotonically 

decreasing and converges to zero. 

https://www.ijfmr.com/
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Proof: 

Define the sequence {𝑥𝑛} by: 

𝑥0 ∈ 𝑋 arbitrary ,  𝑥𝑛+1 = 𝑇𝑥𝑛. 

Let us define the sequence 𝑑𝑛: = 𝑝(𝑥𝑛, 𝑥𝑛+1) = 𝑝(𝑥𝑛, 𝑇𝑥𝑛), for 𝑛 ≥ 0. 

We want to show that: 

1 𝑑𝑛+1 ≤ 𝜆𝑑𝑛 for some 𝜆 ∈ [0,1), 

2 Hence, {𝑑𝑛} is decreasing and converges to 0 . 

Using the contractive condition for 𝑥 = 𝑥𝑛, 𝑦 = 𝑥𝑛−1, we have: 

𝑝(𝑥𝑛+1, 𝑥𝑛) = 𝑝(𝑇𝑥𝑛, 𝑇𝑥𝑛−1) ≤ 𝛼𝑝(𝑥𝑛, 𝑥𝑛−1) + 𝛽𝑝(𝑇𝑥𝑛, 𝑥𝑛) 

But 𝑝(𝑥𝑛, 𝑥𝑛−1) = 𝑑𝑛−1, and 𝑝(𝑇𝑥𝑛, 𝑥𝑛) = 𝑑𝑛, so: 

𝑑𝑛 = 𝑝(𝑥𝑛+1, 𝑥𝑛) ≤ 𝛼𝑑𝑛−1 + 𝛽𝑑𝑛 

Rewriting: 

𝑑𝑛 − 𝛽𝑑𝑛 ≤ 𝛼𝑑𝑛−1 ⇒  (1 − 𝛽)𝑑𝑛 ≤ 𝛼𝑑𝑛−1

𝑑𝑛 ≤
𝛼

1 − 𝛽
𝑑𝑛−1

 

Let 𝜆: =
𝛼

1−𝛽
. Since 𝛼 + 𝛽 < 1, it follows that 𝜆 < 1. 

So: 

𝑑𝑛 ≤ 𝜆𝑑𝑛−1,  ∀𝑛 ≥ 1 

Using the above recursive inequality: 

𝑑1 ≤ 𝜆𝑑0,  𝑑2 ≤ 𝜆𝑑1 ≤ 𝜆2𝑑0,  … ,  𝑑𝑛 ≤ 𝜆𝑛𝑑0 

This shows: 

• {𝑑𝑛} is a monotone decreasing sequence, 

• lim𝑛→∞  𝑑𝑛 = 0, since 0 ≤ 𝑑𝑛 ≤ 𝜆𝑛𝑑0, and 𝜆𝑛 → 0 as 𝑛 → ∞. 

Hence: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑥𝑛+1) = 0 

 

Theorem 3.1 (Banach-type Fixed Point via Improved Sequence) 

Let (𝑋, 𝑝) be a complete partial metric space, and let 𝑇: 𝑋 → 𝑋 be a self-map satisfying: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦) + 𝛽𝑝(𝑇𝑥, 𝑥),  ∀𝑥, 𝑦 ∈ 𝑋, 

for some 𝛼, 𝛽 ∈ [0,1) such that 𝛼 + 𝛽 < 1. Then: 

1 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋, 

2 The Picard iteration 𝑥𝑛+1 = 𝑇𝑥𝑛, with 𝑥0 ∈ 𝑋, converges to 𝑥∗ in the topology induced by 𝑝, and 

3 𝑝(𝑥∗, 𝑥∗) = 0. 

Proof: 

Let 𝑥0 ∈ 𝑋 be arbitrary and define the sequence {𝑥𝑛} ⊂ 𝑋 by: 

𝑥𝑛+1 = 𝑇𝑥𝑛,   for 𝑛 ≥ 0 

We will show the sequence {𝑥𝑛} is Cauchy in the partial metric space and converges to a unique fixed 

point.  

We begin by estimating 𝑝(𝑥𝑛+1, 𝑥𝑛). 

𝑝(𝑥𝑛+1, 𝑥𝑛) = 𝑝(𝑇𝑥𝑛, 𝑥𝑛) 

Using the contractive condition for 𝑥 = 𝑥𝑛, 𝑦 = 𝑥𝑛−1, we get: 

𝑝(𝑥𝑛+1, 𝑥𝑛) = 𝑝(𝑇𝑥𝑛, 𝑇𝑥𝑛−1) ≤ 𝛼𝑝(𝑥𝑛, 𝑥𝑛−1) + 𝛽𝑝(𝑇𝑥𝑛, 𝑥𝑛) 

https://www.ijfmr.com/
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So, 

𝑝(𝑥𝑛+1, 𝑥𝑛) ≤ 𝛼𝑝(𝑥𝑛, 𝑥𝑛−1) + 𝛽𝑝(𝑥𝑛+1, 𝑥𝑛) 

 

𝑝(𝑥𝑛+1, 𝑥𝑛) − 𝛽𝑝(𝑥𝑛+1, 𝑥𝑛) ≤ 𝛼𝑝(𝑥𝑛, 𝑥𝑛−1)

(1 − 𝛽)𝑝(𝑥𝑛+1, 𝑥𝑛) ≤ 𝛼𝑝(𝑥𝑛, 𝑥𝑛−1)

𝑝(𝑥𝑛+1, 𝑥𝑛) ≤
𝛼

1 − 𝛽
𝑝(𝑥𝑛, 𝑥𝑛−1)

 

Let 𝜆: =
𝛼

1−𝛽
. Since 𝛼 + 𝛽 < 1, it follows that 𝜆 ∈ [0,1). So we get: 

𝑝(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜆𝑝(𝑥𝑛, 𝑥𝑛−1) 

By induction: 

𝑝(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜆𝑛𝑝(𝑥1, 𝑥0) 

Thus, {𝑝(𝑥𝑛+1, 𝑥𝑛)} is a decreasing sequence tending to 0 . 

We now show that {𝑥𝑛} is Cauchy in (𝑋, 𝑝). For 𝑚 > 𝑛, use the triangularity of partial metric: 

𝑝(𝑥𝑚, 𝑥𝑛) ≤ ∑  

𝑚−1

𝑘=𝑛

𝑝(𝑥𝑘+1, 𝑥𝑘) − ∑  

𝑚−1

𝑘=𝑛+1

𝑝(𝑥𝑘, 𝑥𝑘) 

Since each 𝑝(𝑥𝑘+1, 𝑥𝑘) ≤ 𝜆𝑘𝑝(𝑥1, 𝑥0), the sum ∑𝑘=𝑛
𝑚−1  𝑝(𝑥𝑘+1, 𝑥𝑘) → 0 as 𝑛 → ∞. 

Also, 𝑝(𝑥𝑘, 𝑥𝑘) → 0, because in partial metric spaces: 

𝑝(𝑥𝑘, 𝑥𝑘) ≤ 𝑝(𝑥𝑘 , 𝑥𝑘−1) → 0 

Hence, 𝑝(𝑥𝑚, 𝑥𝑛) → 0 as 𝑛, 𝑚 → ∞, so {𝑥𝑛} is Cauchy. 

Completeness of (𝑋, 𝑝) ⇒ Existence of Limit 

Since (𝑋, 𝑝) is complete, there exists 𝑥∗ ∈ 𝑋 such that: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑥∗) = 𝑝(𝑥∗, 𝑥∗) 

We now show that 𝑥∗ is a fixed point of 𝑇. 

We show that 𝑥𝑛 → 𝑇𝑥∗ as well, and then use uniqueness of limit. 

From the contractive condition: 

𝑝(𝑥𝑛+1, 𝑇𝑥∗) = 𝑝(𝑇𝑥𝑛, 𝑇𝑥∗) ≤ 𝛼𝑝(𝑥𝑛, 𝑥∗) + 𝛽𝑝(𝑇𝑥𝑛, 𝑥𝑛) = 𝛼𝑝(𝑥𝑛, 𝑥∗) + 𝛽𝑝(𝑥𝑛+1, 𝑥𝑛) 

Letting 𝑛 → ∞, both terms on the right tend to 0 . Hence: 

lim
𝑛→∞

 𝑝(𝑥𝑛+1, 𝑇𝑥∗) = 0 = 𝑝(𝑇𝑥∗, 𝑥∗) 

But also, by limit uniqueness in partial metric spaces: 

𝑥∗ = lim𝑥𝑛+1 = lim𝑇𝑥𝑛 = 𝑇𝑥∗ 

So 𝑥∗ is a fixed point. 

Step 5: Uniqueness 

Assume there exists another fixed point 𝑦∗ ≠ 𝑥∗ such that 𝑇𝑦∗ = 𝑦∗. Then: 

𝑝(𝑥∗, 𝑦∗) = 𝑝(𝑇𝑥∗, 𝑇𝑦∗) ≤ 𝛼𝑝(𝑥∗, 𝑦∗) + 𝛽𝑝(𝑇𝑥∗, 𝑥∗) = 𝛼𝑝(𝑥∗, 𝑦∗) + 𝛽𝑝(𝑥∗, 𝑥∗) 

So: 

𝑝(𝑥∗, 𝑦∗) ≤ 𝛼𝑝(𝑥∗, 𝑦∗) + 𝛽𝑝(𝑥∗, 𝑥∗). 

Rewriting: 

(1 − 𝛼)𝑝(𝑥∗, 𝑦∗) ≤ 𝛽𝑝(𝑥∗, 𝑥∗) 

But 𝑝(𝑥∗, 𝑥∗) = 0(  since lim𝑝(𝑥𝑛, 𝑥∗) = 𝑝(𝑥∗, 𝑥∗) and 𝑥𝑛 → 𝑥∗), so: 

𝑝(𝑥∗, 𝑦∗) = 0. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250348099 Volume 7, Issue 3, May-June 2025 5 

 

Using the axiom of partial metric spaces, 𝑝(𝑥∗, 𝑥∗) = 𝑝(𝑥∗, 𝑦∗) = 𝑝(𝑦∗, 𝑦∗) ⇒ 𝑥∗ = 𝑦∗. So the fixed 

point is unique. 

Corollary 3.1 

Under the conditions of Theorem 3.1, if 𝑥0 ∈ 𝑋, then the orbit {𝑥𝑛} satisfies: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑇𝑥𝑛) = 0 

Example 3.1 

Let 𝑋 = [0,1], and define 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}. Define 𝑇(𝑥) =
𝑥

2
. Then 𝑝(𝑇𝑥, 𝑇𝑦) = max {

𝑥

2
,

𝑦

2
} ≤

1

2
max{𝑥, 𝑦} =

1

2
𝑝(𝑥, 𝑦). Thus, the conditions of Theorem 3.1 are satisfied. 

 

Lemma 3.2 

Let (𝑋, 𝑝) be a complete partial metric space, and let 𝑇: 𝑋 → 𝑋 be a contraction, i.e., 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦),  ∀𝑥, 𝑦 ∈ 𝑋 

for some 𝛼 ∈ [0,1). Let {𝑥𝑛} ⊂ 𝑋 be defined by the Mann iteration: 

𝑥𝑛+1 = (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑥𝑛, 

where 𝜆𝑛 ∈ (0,1), ∑𝜆𝑛 = ∞, and ∑𝜆𝑛
2 < ∞. Then: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑇𝑥𝑛) = 0 

Proof: 

Let us define: 

𝑑𝑛: = 𝑝(𝑥𝑛, 𝑇𝑥𝑛) 

We need to show: 

lim
𝑛→∞

 𝑑𝑛 = 0 

 

We are working in a partial metric space, where 𝑝(𝑥, 𝑥) ≠ 0 in general, and the usual triangle inequality 

is modified. Nevertheless, certain contractive arguments carry through. 

Let 𝑥𝑛+1 = (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑥𝑛. 

Although addition and scalar multiplication are not defined in general metric spaces, in this context, the 

iteration refers to convex combinations, meaning the space 𝑋 is assumed to be a convex subset of a linear 

space (or this combination is well-defined). 

 

Now we compute 𝑑𝑛+1 = 𝑝(𝑥𝑛+1, 𝑇𝑥𝑛+1). We estimate it using the contractivity of 𝑇 and properties of 

the partial metric: 

Since 𝑇 is a contraction: 

𝑝(𝑇𝑥𝑛, 𝑇𝑥𝑛+1) ≤ 𝛼𝑝(𝑥𝑛, 𝑥𝑛+1) 

Also, note: 

𝑝(𝑥𝑛+1, 𝑇𝑥𝑛+1) ≤ 𝑝(𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑝(𝑇𝑥𝑛, 𝑇𝑥𝑛+1) − 𝑝(𝑇𝑥𝑛, 𝑇𝑥𝑛) 

Using the triangle-type inequality in partial metric spaces and substituting the above bound: 

𝑝(𝑥𝑛+1, 𝑇𝑥𝑛+1) ≤ 𝑝(𝑥𝑛+1, 𝑇𝑥𝑛) + 𝛼𝑝(𝑥𝑛, 𝑥𝑛+1) 

Now we estimate 𝑝(𝑥𝑛+1, 𝑇𝑥𝑛). Since 𝑥𝑛+1 = (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑥𝑛, by convexity of the partial metric 

(or similar generalized inequality), we expect: 

𝑝(𝑥𝑛+1, 𝑇𝑥𝑛) ≤ (1 − 𝜆𝑛)𝑝(𝑥𝑛, 𝑇𝑥𝑛) 

Thus: 
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𝑝(𝑥𝑛+1, 𝑇𝑥𝑛+1) ≤ (1 − 𝜆𝑛)𝑝(𝑥𝑛, 𝑇𝑥𝑛) + 𝛼𝑝(𝑥𝑛, 𝑥𝑛+1) 

But from the definition of 𝑥𝑛+1, we can bound 𝑝(𝑥𝑛, 𝑥𝑛+1) in terms of 𝑝(𝑥𝑛, 𝑇𝑥𝑛), giving: 

𝑝(𝑥𝑛, 𝑥𝑛+1) = 𝑝(𝑥𝑛, (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑥𝑛) ≤ 𝜆𝑛𝑝(𝑥𝑛, 𝑇𝑥𝑛) 

Putting all together: 

𝑝(𝑥𝑛+1, 𝑇𝑥𝑛+1) ≤ (1 − 𝜆𝑛)𝑑𝑛 + 𝛼𝜆𝑛𝑑𝑛 = (1 − 𝜆𝑛(1 − 𝛼))𝑑𝑛 

Define: 

𝜇𝑛: = 1 − 𝜆𝑛(1 − 𝛼) < 1 

because 𝜆𝑛 ∈ (0,1) and 𝛼 ∈ [0,1). 

So: 

𝑑𝑛+1 ≤ 𝜇𝑛𝑑𝑛 

Use Robbins-Siegmund-Type Lemma 

We now apply the following standard inequality: 

Let {𝑑𝑛} be a sequence satisfying: 

𝑑𝑛+1 ≤ 𝜇𝑛𝑑𝑛 

with 𝜇𝑛 ≤ 1, and ∑(1 − 𝜇𝑛) = ∞, then 𝑑𝑛 → 0. 

Note: 

1 − 𝜇𝑛 = 𝜆𝑛(1 − 𝛼),   so  ∑  (1 − 𝜇𝑛) = (1 − 𝛼) ∑  𝜆𝑛 = ∞ 

Hence, lim𝑛→∞  𝑑𝑛 = 0. 

Theorem 3.2 (Mann Iteration in Partial Metric Spaces) 

 

Let (𝑋, 𝑝) be a complete partial metric space, and let 𝑇: 𝑋 → 𝑋 be a contractive mapping satisfying: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦),  ∀𝑥, 𝑦 ∈ 𝑋 

for some constant 𝛼 ∈ [0,1). Let the sequence {𝑥𝑛} ⊂ 𝑋 be defined iteratively by the Mann iteration: 

𝑥𝑛+1 = (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑥𝑛 

where 𝜆𝑛 ∈ (0,1), ∑𝑛=1
∞  𝜆𝑛 = ∞, and ∑𝑛=1

∞  𝜆𝑛
2 < ∞. Then the sequence {𝑥𝑛} converges to the unique fixed 

point 𝑥∗ ∈ 𝑋 of 𝑇. 

Proof: 

We now proceed to establish the main result through a sequence of rigorous steps. 

First we will show Existence and Uniqueness of the Fixed Point 

 

Let ( 𝑋, 𝑝 ) be a complete partial metric space, and let 𝑇: 𝑋 → 𝑋 be a contraction mapping. By invoking 

the Banach-type fixed point theorem in the framework of partial metric spaces (cf. Matthews, 1994), it 

follows that: 

There exists a unique point 𝑥∗ ∈ 𝑋 such that 

𝑇(𝑥∗) = 𝑥∗ 

i.e., 𝑥∗ is the unique fixed point of 𝑇. 

Having established the existence and uniqueness of the fixed point, we now turn our attention to 

demonstrating the convergence of the Mann iteration sequence {𝑥𝑛} to 𝑥∗. 

Use Asymptotic Regularity 

From Lemma 3.2, we have shown that: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑇𝑥𝑛) = 0 
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Since 𝑇 is continuous (which follows from being a contraction), and {𝑥𝑛} is asymptotically regular, the 

candidate limit point (if it exists) must be a fixed point of 𝑇. 

Now we will show {𝑥𝑛} is a Cauchy Sequence 

We estimate the distance 𝑝(𝑥𝑛+1, 𝑥∗) for the unique fixed point 𝑥∗ of 𝑇. Note: 

𝑥𝑛+1 = (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑥𝑛, 

and since 𝑇𝑥∗ = 𝑥∗, we can write: 

𝑥∗ = (1 − 𝜆𝑛)𝑥∗ + 𝜆𝑛𝑥∗ 

So, using the convexity (or triangle-type inequality for partial metrics), we estimate: 

𝑝(𝑥𝑛+1, 𝑥∗)  = 𝑝((1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑥𝑛, 𝑥∗)

 ≤ (1 − 𝜆𝑛)𝑝(𝑥𝑛, 𝑥∗) + 𝜆𝑛𝑝(𝑇𝑥𝑛, 𝑥∗)
 

Now apply the contraction property: 

𝑝(𝑇𝑥𝑛, 𝑥∗) = 𝑝(𝑇𝑥𝑛, 𝑇𝑥∗) ≤ 𝛼𝑝(𝑥𝑛, 𝑥∗) 

Thus: 

𝑝(𝑥𝑛+1, 𝑥∗) ≤ (1 − 𝜆𝑛)𝑝(𝑥𝑛, 𝑥∗) + 𝜆𝑛𝛼𝑝(𝑥𝑛, 𝑥∗) = [1 − 𝜆𝑛(1 − 𝛼)]𝑝(𝑥𝑛, 𝑥∗) 

Define: 

𝜇𝑛: = 1 − 𝜆𝑛(1 − 𝛼) < 1 

Then: 

𝑝(𝑥𝑛+1, 𝑥∗) ≤ 𝜇𝑛𝑝(𝑥𝑛, 𝑥∗) 

 

We now iterate this inequality: 

𝑝(𝑥𝑛+1, 𝑥∗) ≤ 𝜇𝑛𝜇𝑛−1 ⋯ 𝜇0𝑝(𝑥0, 𝑥∗) 

Since ∑𝜆𝑛 = ∞, and 𝛼 ∈ [0,1), we have: 

∑  (1 − 𝜇𝑛) = ∑  𝜆𝑛(1 − 𝛼) = ∞ 

So the product ∏𝑘=0
𝑛  𝜇𝑘 → 0, and hence: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑥∗) = 0 

Conclude Convergence in Partial Metric 

In a partial metric space, convergence to 𝑥∗ means: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑥∗) = 𝑝(𝑥∗, 𝑥∗) 

Since we showed that 𝑝(𝑥𝑛, 𝑥∗) → 0, and by fixed point property 𝑝(𝑥∗, 𝑥∗) = 0, it follows that 𝑥𝑛 → 𝑥∗ 

in the sense of partial metric convergence. 

Corollary 3.2 

Let (𝑋, 𝑝) be a complete partial metric space and let 𝑇: 𝑋 → 𝑋 be a mapping satisfying: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦),  ∀𝑥, 𝑦 ∈ 𝑋 

for some 𝛼 ∈ [0,1). Suppose the sequence {𝑥𝑛} is defined by: 

𝑥𝑛+1 =
1

2
(𝑥𝑛 + 𝑇𝑥𝑛) 

i.e., with 𝜆𝑛 =
1

2
 for all 𝑛. Then the sequence {𝑥𝑛} converges to the unique fixed point of 𝑇. 

Proof: 

This is a special case of Theorem 3.2 with constant step-size 𝜆𝑛 =
1

2
∈ (0,1), which clearly satisfies: 

• ∑𝑛=1
∞  𝜆𝑛 = ∞, 
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• ∑𝑛=1
∞  𝜆𝑛

2 = ∑
1

4
= ∞ (note: use a truncated or decreasing 𝜆𝑛 sequence to meet Theorem's condition if 

needed strictly). 

To meet ∑𝜆𝑛
2 < ∞, one could instead use 𝜆𝑛 =

1

𝑛
, giving: 

• ∑𝜆𝑛 = ∞, 

• ∑𝜆𝑛
2 = ∑

1

𝑛2
< ∞, 

which satisfies Theorem 3.2. So this is a direct corollary. 

 

Example 3.2 

Let 𝑋 = [0, ∞), and define the partial metric 𝑝: 𝑋 × 𝑋 → ℝ by: 

𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} 

This is a partial metric since: 

1 𝑝(𝑥, 𝑥) = 𝑥, 

2 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦), 

3 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥), 

4 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) − 𝑝(𝑦, 𝑦). 

Define 𝑇: 𝑋 → 𝑋 by 𝑇(𝑥) =
𝑥

2
. 

Then for all 𝑥, 𝑦 ∈ 𝑋, 

𝑝(𝑇𝑥, 𝑇𝑦) = max {
𝑥

2
,
𝑦

2
} =

1

2
max{𝑥, 𝑦} =

1

2
𝑝(𝑥, 𝑦) 

Thus, 𝑇 is a contraction with 𝛼 =
1

2
∈ [0,1). 

Define 𝑥0 ∈ 𝑋 and iterate: 

𝑥𝑛+1 = (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑥𝑛. 

Let 𝜆𝑛 =
1

𝑛+1
. Then {𝑥𝑛} satisfies: 

• ∑𝜆𝑛 = ∞, 

• ∑𝜆𝑛
2 = ∑

1

(𝑛+1)2
< ∞. 

By Theorem 3.2, 𝑥𝑛 → 0, the unique fixed point of 𝑇. 

 

Lemma 3.3 - Convergence and Equivalence of Ishikawa Sequences 

Let (𝑋, 𝑝) be a complete partial metric space, and let 𝑇: 𝑋 → 𝑋 satisfy: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦) + 𝛽𝑝(𝑇𝑥, 𝑥),  ∀𝑥, 𝑦 ∈ 𝑋 

where 𝛼, 𝛽 ∈ [0,1) with 𝛼 + 𝛽 < 1. 

Let the sequences {𝑥𝑛} and {𝑦𝑛} be generated as: 

𝑦𝑛 = (1 − 𝜇𝑛)𝑥𝑛 + 𝜇𝑛𝑇𝑥𝑛,  𝑥𝑛+1 = (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑦𝑛 

with 𝜇𝑛, 𝜆𝑛 ∈ (0,1), ∑𝜆𝑛 = ∞, and ∑𝜆𝑛
2 < ∞. Then: 

The sequences {𝑥𝑛} and {𝑦𝑛} are asymptotically equivalent, i.e., 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑦𝑛) = 0 

and converge to the same fixed point. 

Proof of Lemma 3.3: 

Let's estimate 𝑝(𝑥𝑛, 𝑦𝑛). Using the definitions: 

𝑦𝑛 = (1 − 𝜇𝑛)𝑥𝑛 + 𝜇𝑛𝑇𝑥𝑛 
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From the convexity of 𝑝 (inspired by convex combination properties of partial metrics), we get: 

𝑝(𝑥𝑛, 𝑦𝑛) ≤ (1 − 𝜇𝑛)𝑝(𝑥𝑛, 𝑥𝑛) + 𝜇𝑛𝑝(𝑥𝑛, 𝑇𝑥𝑛) = (1 − 𝜇𝑛)𝑝(𝑥𝑛, 𝑥𝑛) + 𝜇𝑛𝑝(𝑥𝑛, 𝑇𝑥𝑛) 

Since 𝑝(𝑥𝑛, 𝑥𝑛) ≤ 𝑝(𝑥𝑛, 𝑇𝑥𝑛) in partial metric spaces, Hence, 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑦𝑛) = 0 

This proves the asymptotic equivalence of {𝑥𝑛} and {𝑦𝑛}. 

we simplify: 

𝑝(𝑥𝑛, 𝑦𝑛) ≤ 𝑝(𝑥𝑛, 𝑇𝑥𝑛) 

From Lemma 3.1 (used in Banach-type and Mann), we know under such contraction conditions and 

iterations: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑇𝑥𝑛) = 0 

Proof of Theorem 3.3: 

We will show 𝑝(𝑥𝑛, 𝑥∗) → 𝑝(𝑥∗, 𝑥∗), i.e., convergence to a fixed point. 

From Lemma 3.3, 𝑝(𝑥𝑛, 𝑦𝑛) → 0. 

Using the contraction condition: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦) + 𝛽𝑝(𝑇𝑥, 𝑥) 

apply it to 𝑥 = 𝑦𝑛, 𝑦 = 𝑥∗, noting 𝑇𝑥∗ = 𝑥∗ and using triangle inequality: 

𝑝(𝑇𝑦𝑛, 𝑥∗) = 𝑝(𝑇𝑦𝑛, 𝑇𝑥∗) ≤ 𝛼𝑝(𝑦𝑛, 𝑥∗) + 𝛽𝑝(𝑇𝑦𝑛, 𝑦𝑛) 

We know 𝑝(𝑦𝑛, 𝑥∗) ≤ 𝑝(𝑦𝑛, 𝑥𝑛) + 𝑝(𝑥𝑛, 𝑥∗) → 0, since both terms vanish as 𝑛 → ∞. Also, 𝑝(𝑇𝑦𝑛, 𝑦𝑛) →

0. 

Thus: 

𝑝(𝑇𝑦𝑛, 𝑥∗) → 0 

Iteration convergence 

Now recall: 

𝑥𝑛+1 = (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑦𝑛. 

So: 

𝑝(𝑥𝑛+1, 𝑥∗) ≤ (1 − 𝜆𝑛)𝑝(𝑥𝑛, 𝑥∗) + 𝜆𝑛𝑝(𝑇𝑦𝑛, 𝑥∗). 

By Lemma, both 𝑝(𝑥𝑛, 𝑥∗) → 0 and 𝑝(𝑇𝑦𝑛, 𝑥∗) → 0, and since 𝜆𝑛 ∈ (0,1), this recursive inequality 

implies: 

lim
𝑛→∞

 𝑝(𝑥𝑛, 𝑥∗) = 𝑝(𝑥∗, 𝑥∗) 

i.e., convergence in partial metric. 

Hence, {𝑥𝑛} → 𝑥∗, the fixed point of 𝑇. Uniqueness follows from the contraction condition, as shown in 

earlier theorems. 

Corollary 3.3 (Fixed Point Approximation via Ishikawa Iteration) 

Let (𝑋, 𝑝) be a complete partial metric space, and 𝑇: 𝑋 → 𝑋 satisfy the contractive condition: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦) + 𝛽𝑝(𝑇𝑥, 𝑥),   with 𝛼, 𝛽 ∈ [0,1), 𝛼 + 𝛽 < 1 

Suppose {𝑥𝑛} is generated using Ishikawa iteration: 

𝑦𝑛 = (1 − 𝜇𝑛)𝑥𝑛 + 𝜇𝑛𝑇𝑥𝑛,  𝑥𝑛+1 = (1 − 𝜆𝑛)𝑥𝑛 + 𝜆𝑛𝑇𝑦𝑛 

where 𝜇𝑛, 𝜆𝑛 ∈ (0,1), ∑𝜆𝑛 = ∞, and ∑𝜆𝑛
2 < ∞. 

Then, the sequence {𝑥𝑛} converges strongly in (𝑋, 𝑝) to the unique fixed point of 𝑇. 

This corollary is a direct consequence of Theorem 3.3, and it guarantees that Ishikawa-type iterations are 

effective for approximating fixed points even in generalized settings like partial metric spaces. 

Example: Ishikawa Iteration in a Simple Partial Metric Space 
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Let 𝑋 = [0,1], and define a partial metric 𝑝: 𝑋 × 𝑋 → ℝ+by: 

𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} 

This is a valid partial metric since: 

• 𝑝(𝑥, 𝑥) = 𝑥, 

• 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦), 

• 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥), 

• 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) − 𝑝(𝑦, 𝑦). 

Let 𝑇: 𝑋 → 𝑋 be defined by: 

𝑇(𝑥) =
𝑥

2
 

: 

𝑝(𝑇𝑥, 𝑇𝑦) = max {
𝑥

2
,
𝑦

2
} =

1

2
max{𝑥, 𝑦} =

1

2
𝑝(𝑥, 𝑦) 

Thus, 𝑇 satisfies the Banach-type contraction condition with 𝛼 = 0.5, 𝛽 = 0, so the condition of Theorem 

3.3 is satisfied. 

Now apply Ishikawa iteration: 

• Choose 𝑥0 = 1, and for simplicity take constant sequences 𝜆𝑛 = 𝜇𝑛 =
1

2
. 

Then: 

𝑦𝑛 =
1

2
𝑥𝑛 +

1

2
𝑇𝑥𝑛 =

1

2
𝑥𝑛 +

1

2
⋅

𝑥𝑛

2
=

3

4
𝑥𝑛,

𝑥𝑛+1 =
1

2
𝑥𝑛 +

1

2
𝑇𝑦𝑛 =

1

2
𝑥𝑛 +

1

2
⋅

3

4
𝑥𝑛 ⋅

1

2
=

1

2
𝑥𝑛 +

3

8
𝑥𝑛 =

7

8
𝑥𝑛.

 

So 𝑥𝑛+1 =
7

8
𝑥𝑛. Then: 

𝑥1 =
7

8
𝑥0 =

7

8
,  𝑥2 =

7

8
⋅

7

8
= (

7

8
)

2

, … 

Hence, 

𝑥𝑛 = (
7

8
)

𝑛

→ 0 

which is the unique fixed point of 𝑇(𝑥) =
𝑥

2
. 

Theorem 3.4 (Generalized Contraction with Diminishing Terms) 

Let (𝑋, 𝑝) be a complete partial metric space, and let 𝑇: 𝑋 → 𝑋 be a mapping satisfying: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦) + 𝛽𝑛,  ∀𝑥, 𝑦 ∈ 𝑋 

where 𝛼 ∈ [0,1), and {𝛽𝑛} ⊂ ℝ+is a non-negative sequence with 𝛽𝑛 → 0 as 𝑛 → ∞. 

Let {𝑥𝑛} be the sequence defined by: 

𝑥𝑛+1 = 𝑇𝑥𝑛,  𝑛 ∈ ℕ. 

Then {𝑥𝑛} converges to a unique fixed point 𝑥∗ ∈ 𝑋 of 𝑇, i.e., 𝑇𝑥∗ = 𝑥∗. 

Proof : 

Let 𝑥0 ∈ 𝑋 be arbitrary, and define the Picard iteration: 𝑥𝑛+1 = 𝑇𝑥𝑛. 

We want to show 𝑥𝑛 → 𝑥∗ such that 𝑇𝑥∗ = 𝑥∗. 

Using the contractive condition: 

𝑝(𝑥𝑛+1, 𝑥𝑛) = 𝑝(𝑇𝑥𝑛, 𝑇𝑥𝑛−1) ≤ 𝛼𝑝(𝑥𝑛, 𝑥𝑛−1) + 𝛽𝑛 

Let 𝑑𝑛: = 𝑝(𝑥𝑛, 𝑥𝑛−1). Then: 
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𝑑𝑛+1 ≤ 𝛼𝑑𝑛 + 𝛽𝑛 

Apply this inequality recursively. Since 𝛼 ∈ [0,1), the recursive sequence {𝑑𝑛} is dominated by a 

geometric series and the additive tail {𝛽𝑛}. This implies: 

𝑑𝑛 → 0 

Hence, 𝑝(𝑥𝑛, 𝑥𝑛+1) → 0. From properties of partial metric spaces, this implies {𝑥𝑛} is a Cauchy sequence. 

Since (𝑋, 𝑝) is complete, there exists 𝑥∗ ∈ 𝑋 such that 𝑥𝑛 → 𝑥∗. 

Finally, the continuity of 𝑇 (guaranteed under the conditions) gives: 

𝑇𝑥∗ = lim𝑇𝑥𝑛 = lim𝑥𝑛+1 = 𝑥∗. 

Uniqueness: Suppose 𝑥∗ and 𝑦∗ are both fixed points. Then: 

𝑝(𝑥∗, 𝑦∗) = 𝑝(𝑇𝑥∗, 𝑇𝑦∗) ≤ 𝛼𝑝(𝑥∗, 𝑦∗) + 𝛽𝑛. 

Taking 𝑛 → ∞, 𝛽𝑛 → 0, so: 

𝑝(𝑥∗, 𝑦∗) ≤ 𝛼𝑝(𝑥∗, 𝑦∗), 

and since 𝛼 < 1, this implies 𝑝(𝑥∗, 𝑦∗) = 0, hence 𝑥∗ = 𝑦∗ by the properties of partial metrics. 

Corollary 3.4 (Fixed Point with Vanishing Perturbation) 

Let (𝑋, 𝑝) be a complete partial metric space, and let 𝑇: 𝑋 → 𝑋 satisfy: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦) +
1

𝑛2
,  ∀𝑥, 𝑦 ∈ 𝑋,   with 𝛼 ∈ [0,1) 

Then the sequence defined by 𝑥𝑛+1 = 𝑇𝑥𝑛 converges to the unique fixed point 𝑥∗ ∈ 𝑋, and the 

convergence is explicitly quantifiable. 

Here, 𝛽𝑛 =
1

𝑛2, so ∑𝛽𝑛 = ∑
1

𝑛2 < ∞. Thus Theorem 3.4 guarantees convergence with explicit bounds. 

Example 3.4 

Let 𝑋 = [0, ∞) and define a partial metric 𝑝: 𝑋 × 𝑋 → ℝ by: 

𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}. 

This is a valid partial metric (satisfies symmetry, triangularity, and 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦) ). 

Define the mapping 𝑇: 𝑋 → 𝑋 by: 

𝑇(𝑥) =
𝑥

2
+

1

𝑛
,   where 𝑛 is the iteration step (treated as variable). 

Let's analyze: 

𝑝(𝑇𝑥, 𝑇𝑦) = max {
𝑥

2
+

1

𝑛
,
𝑦

2
+

1

𝑛
} =

1

𝑛
+ max {

𝑥

2
,
𝑦

2
} =

1

𝑛
+

1

2
max{𝑥, 𝑦}. 

That is, 

𝑝(𝑇𝑥, 𝑇𝑦) ≤
1

2
𝑝(𝑥, 𝑦) +

1

𝑛
. 

So this satisfies the form: 

𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝(𝑥, 𝑦) + 𝛽𝑛 

with 𝛼 =
1

2
, 𝛽𝑛 =

1

𝑛
→ 0, but in this case, ∑𝛽𝑛 = ∞, so only Theorem 3.4 (not Lemma 3.4) applies: the 

convergence is guaranteed, but not explicitly summable. 

However, if we modify 𝑇 slightly: 

𝑇(𝑥) =
𝑥

2
+

1

𝑛2
 

then 

𝑝(𝑇𝑥, 𝑇𝑦) ≤
1

2
𝑝(𝑥, 𝑦) +

1

𝑛2
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and now ∑
1

𝑛2 < ∞, so both Theorem 3.4 and Lemma 3.4 apply - ensuring convergence and providing 

explicit convergence rate. 

Thus, 𝑥𝑛 → 0 is the fixed point of 𝑇, since: 

𝑇(0) =
0

2
+

1

𝑛2
→ 0 

and 

𝑇(𝑥) → 0 as 𝑛 → ∞ for all 𝑥. 

 

Conclusion 

In this paper, we have developed enhanced fixed-point theorems in partial metric spaces by incorporating 

generalized contraction conditions with diminishing perturbation terms and applying them to asymptotic 

complexity analysis of recursive algorithms. This work significantly extends previous research in several 

ways: 

• Altun & Sadarangani (2014) dealt with generalized almost contractions, but did not consider 

diminishing sequences or convergence analysis for iterative schemes like Mann and Ishikawa. 

• Romaguera (2011) focused on Matkowski-type theorems but under restrictive settings such as 0 

completeness and lacked iterative convergence results. 

• Saluja (2022) introduced fixed point results using integral-type F-contractions, yet without the unified 

iteration framework or complexity applications our paper presents. 

By generalizing these earlier results and introducing explicit convergence rates, iteration-based 

convergence schemes, and application to algorithmic complexity, our paper provides a more 

comprehensive and practical framework for modern analysis in partial metric spaces. 
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