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Abstract 

In an increasingly volatile and demand-driven market landscape, accurate demand forecasting is critical 

for optimizing inventory levels, minimizing operational waste, enhancing customer satisfaction, and 

maintaining end-to-end supply chain agility. This project proposes a robust and extensible demand 

forecasting pipeline that combines traditional statistical models with advanced machine learning 

approaches—specifically ARCH (Autoregressive Conditional Heteroskedasticity), GARCH (Generalized 

ARCH), Markov models, and Facebook Prophet—to capture diverse temporal patterns including volatility 

clustering, state transitions, trend, and seasonality. A key innovation lies in its data preprocessing strategy, 

where missing values are handled through multiple imputation methods such as forward-fill, backward-

fill, median substitution, rolling averages, and statistical trimming. Each model is evaluated with these 

imputation techniques, and the most effective model-imputation pairing is selected based on a 

comprehensive set of performance metrics: Weighted Absolute Percentage Error (WAPE), Mean Absolute 

Percentage Error (MAPE), Root Mean Squared Error (RMSE), and the Coefficient of Determination (R²). 

The dataset, consisting of SKU-level order quantity time series, is split using a train-test framework where 

the last six months are reserved for testing to mimic real-world forecasting scenarios. This empirical, 

metric-driven approach enables the selection of the best-performing forecasting strategy, ensuring both 

accuracy and generalizability. The pipeline is designed to be modular, allowing for easy integration of 

additional models or imputation strategies, and is applicable across various domains including retail, 

manufacturing, and logistics. Future directions involve extending the pipeline to support real-time data 

ingestion, automated feature selection, and deep learning models such as LSTM and Transformer-based 

architectures for enhanced long-term forecasting accuracy. 

 

Keywords: Demand Forecasting, Time Series Models, Data Imputation, ARCH, GARCH, Markov 
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I. INTRODUCTION 

Accurate demand forecasting serves as a critical component of operational planning in domains such as 

retail, manufacturing, logistics, and supply chain management. With increasing consumer 

unpredictability, globalized supply chains, and time-sensitive delivery cycles, organizations must 

anticipate demand effectively to minimize costs, reduce stockouts or overstocking, and enhance service 

levels. Traditional forecasting techniques often fall short in handling volatile and non-stationary data, 

necessitating more sophisticated and adaptive forecasting approaches. 

This project introduces a comprehensive demand forecasting pipeline that integrates a wide array of time 

series models, including ARCH (Autoregressive Conditional Heteroskedasticity), GARCH (Generalized 
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ARCH), Markov models, and Facebook Prophet. These models were chosen for their unique abilities to 

capture different types of temporal patterns: ARCH and GARCH models are suitable for datasets 

exhibiting time-varying volatility; Markov models are ideal for capturing state transitions in demand 

behavior; and Prophet excels in modeling seasonal and trend components with minimal tuning. 

One of the core challenges in real-world demand data is the presence of missing values, irregular intervals, 

and outliers. To address this, the pipeline emphasizes preprocessing and implements multiple imputation 

strategies—forward-fill, backward-fill, median imputation, rolling averages, and statistical trimming. 

Instead of applying a one-size-fits-all approach, this project evaluates each imputation method in 

conjunction with each forecasting model. The pairing that achieves the best performance, based on a 

comprehensive metric suite—including Weighted Absolute Percentage Error (WAPE), Mean Absolute 

Percentage Error (MAPE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²)—

is selected for final predictions. 

The dataset used consists of SKU-level order quantities collected over a significant time span. A realistic 

evaluation framework is established by splitting the dataset into a training period and a test period, where 

the most recent six months are used for validation. This ensures that models are evaluated in a manner that 

reflects their practical forecasting ability. 

What sets this work apart from existing reviews and forecasting solutions is its empirical, modular, and 

adaptive nature. Rather than relying on a single model or fixed preprocessing strategy, this pipeline 

intelligently couples the most compatible imputation and model based on performance. The architecture 

is designed to be extensible, enabling future integration of advanced techniques such as real-time 

streaming, dynamic model selection, and deep learning-based forecasting frameworks. 

 

II. BACKGROUND AND MOTIVATION 

Demand forecasting has long been a foundational element in supply chain and inventory management, 

enabling businesses to anticipate future product requirements and align operations accordingly. 

Historically, forecasting techniques were grounded in classical statistical methods such as moving 

averages, exponential smoothing, and ARIMA models. While these models remain effective in stable and 

linear demand environments, they often struggle with real-world data that is noisy, volatile, and non-linear. 

As data collection systems evolved and time series data became richer and more granular, more advanced 

models emerged to better capture complex demand dynamics. ARCH (Autoregressive Conditional 

Heteroskedasticity) and GARCH (Generalized ARCH) models were developed to model time series data 

with changing variance over time—an important feature in financial and retail datasets where demand 

spikes and dips are common. These models have proven especially useful when historical demand data 

exhibits volatility clustering or irregular fluctuations. 

Markov models, based on probabilistic state transitions, offer a different perspective by modeling demand 

as a sequence of states with memoryless transitions. This approach is particularly useful in environments 

where demand patterns follow distinct phases or behavioral states, such as promotions, seasonality, or 

economic cycles. Meanwhile, Facebook Prophet—a relatively recent addition to the forecasting toolbox—

has gained popularity due to its ability to decompose time series into trend, seasonality, and holiday effects 

with minimal configuration, making it ideal for business applications with predictable temporal structures. 

A crucial yet often underemphasized aspect of time series forecasting is data imputation. In practice, 

datasets frequently suffer from missing values due to system errors, reporting lags, or gaps in data 

collection. Ignoring these gaps or using simplistic imputation can severely degrade model performance. 
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Thus, modern forecasting pipelines incorporate sophisticated imputation techniques—such as forward-

fill, backward-fill, statistical trimming, rolling means, and median replacement—to enhance data quality 

prior to modeling. The choice of imputation method can significantly influence the effectiveness of 

downstream forecasting models. 

 

III. LITERATURE REVIEW 

Research comparing traditional statistical methods with advanced deep learning and hybrid models has 

significantly influenced the development of demand forecasting systems. The studies below provide 

critical insights into model performance, architecture, and scalability, which underpin modern demand 

prediction frameworks. 

A study by Yadav (1) presented a detailed comparative analysis of ARIMA, Facebook Prophet, and LSTM 

models, focusing on their performance in financial time series prediction. The research highlighted that 

while ARIMA and Prophet offer strong interpretability and computational efficiency, LSTM excels in 

capturing nonlinear and long-range dependencies. These findings informed the multi-model evaluation 

strategy for SKUs forecasting in the 2024–25 planning framework. 

Zhang (2) introduced a hybrid forecasting methodology combining ARIMA and Artificial Neural 

Networks (ANNs) to leverage their respective strengths in modeling linear and nonlinear patterns. The 

paper’s hybrid modeling framework inspired similar combinations in contemporary demand forecasting 

systems to address complex temporal dependencies. 

Bandara et al. (3) proposed a global LSTM framework tailored for e-commerce sales prediction. By 

modeling cross-series correlations and handling data sparsity and intermittent demand, this study 

established foundational strategies for hierarchical demand forecasting and was particularly relevant for 

large-scale SKU datasets with diverse seasonal trends. 

Hyndman and Khandakar (4) introduced the forecast R package and emphasized automation in time series 

modeling using exponential smoothing and ARIMA. The approach demonstrated scalability across 

thousands of time series, guiding the automation layer in multi-product demand forecasting platforms. 

Hochreiter and Schmidhuber (5) introduced the Long Short-Term Memory (LSTM) architecture to resolve 

vanishing gradient problems in RNNs. This innovation enabled deep learning models to capture long-term 

dependencies, which later became essential for time series models deployed in volatile demand 

environments. 

Taylor and Letham (6), developers of Facebook Prophet, tackled the challenge of producing scalable, 

explainable forecasts for business metrics. Their modular approach and ability to incorporate holidays and 

seasonality without expert intervention became foundational in platforms requiring minimal configuration 

and high explainability. 

Žunić et al. (7) applied Prophet to real-world sales forecasting and compared its performance with ARIMA 

and Holt-Winters. Their empirical evaluation demonstrated Prophet’s superior handling of irregular trends 

and holidays, validating its suitability for retail sales forecasting in modern enterprise systems. 

Xiao (8) demonstrated the utility of stacked LSTM architectures in short-term traffic volume prediction. 

The study showed that deep LSTM models capture complex temporal patterns better than shallow 

networks, influencing the architecture choices in dynamic SKU forecasting tasks where rapid changes in 

demand occur. 

Lara-Benítez et al. (9) conducted a comprehensive experimental review of deep learning architectures for 

time series forecasting. Their benchmarking of CNNs, RNNs, and Transformer models offered clear 
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guidelines on model selection based on accuracy, efficiency, and data characteristics, supporting informed 

architecture design for industrial-scale forecasting pipelines. 

Wu et al. (10) introduced Autoformer, a Transformer-based model optimized for long-term series 

forecasting. Their novel decomposition and auto-correlation mechanisms addressed the inefficiencies of 

traditional Transformer models. This work opened up new frontiers for applying attention-based 

architectures in supply chain forecasting, particularly for energy and logistics planning. 

Pichai K. (11) analyzed the RAG framework’s impact on large language models, benchmarking its 

effectiveness using indigenous knowledge datasets. The findings emphasized that modular RAG designs 

outperform traditional LLM fine-tuning, reinforcing retrieval-based contextual reasoning. 

Jeong C. (12) explored fine-tuning techniques for domain-specific LLMs, particularly in the financial 

sector. The study’s insights on preprocessing domain-specific datasets informed methodologies used in 

scripture digitization and knowledge representation. 

Khan D.S. (13) reviewed cognitive psychology's role in AI-driven decision-making, highlighting how AI 

can replicate human-like reasoning for ethical dilemmas. This informed philosophical query processing 

and ethical framework alignment. 

Schneider P. (14) compared large language models in knowledge-based text generation, evaluating their 

ability to provide reliable responses in medical domains. This benchmarking guided the selection of 

Gemma LLM for scripture-based query handling. 

Huang X. (15) reviewed assist architecture and NLP techniques, which supported structuring 

conversational interfaces using tools like Gradio for enhanced retrieval efficiency. 

Mokdad et al. (16) investigated the ethical implications of AI-based conversational assistants, identifying 

bias, user transparency, and response accuracy as critical factors for deployment. 

Mesnard et al. (17) introduced Gemma, a suite of open-source models derived from Gemini research. This 

influenced the choice of Gemma LLM for retrieval-augmented spiritual and ethical guidance. 

Warkentin et al. (18) presented PaliGemma, a multi-modal vision-language extension of Gemma. Though 

not currently implemented, this research supports future extensions of spiritual AI into image and speech 

domains. 

Manoj et al. (19) emphasized psychological factors in AI-driven ethical reasoning, guiding the 

methodology in curating scripture-based responses for real-world ethical alignment. 

 

IV.EXISITING AND PROPOSED SYSTEM 

In most traditional supply chain environments, demand forecasting has relied heavily on basic statistical 

methods such as ARIMA, Holt-Winters, and simple moving averages. While these models have served 

well in stable, low-volatility markets, they often fall short in handling the complexities of modern retail 

and e-commerce settings. These conventional systems typically employ a one-size-fits-all approach—

using a single model with static parameters across multiple SKUs and regions. They often overlook the 

need for customized treatment of missing data, fail to adapt to sudden demand shifts, and offer limited 

interpretability and automation. Moreover, their inability to scale across thousands of SKU combinations 

or respond dynamically to changing demand patterns makes them less effective for contemporary supply 

chain needs. 

To address these shortcomings, the proposed system introduces a modular and automated demand 

forecasting pipeline that integrates a variety of statistical, machine learning, and deep learning models. 

The distinguishing feature of this system is its dual-layered optimization: (1) selecting the best imputation 
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method for handling missing or inconsistent data and (2) pairing it with the most effective forecasting 

model for each SKU_REGION time series. Advanced models such as ARCH/GARCH are used to capture 

volatility, Markov models are deployed for discrete state transitions, and Prophet is utilized for capturing 

trends and seasonality. Additionally, the use of AutoML frameworks like PyCaret enables hyperparameter 

tuning and model selection in a highly efficient and scalable manner. 

The proposed system not only improves forecasting accuracy but also enhances transparency, flexibility, 

and operational integration. By splitting the dataset into training and test sets (last 6 months for evaluation), 

the pipeline ensures real-world applicability. Evaluation metrics like MAE, RMSE, MAPE, WAPE, and 

R² are used to assess performance across imputation-model pairs, and only the best-performing 

configurations are retained. This tailored approach ensures high forecasting precision at the individual 

SKU_REGION level, enabling more informed inventory management, procurement planning, and supply 

chain responsiveness. Furthermore, the system is designed to be extensible, allowing new models, 

features, or business rules to be integrated as organizational needs evolve. 

 

V TECHNICAL ARCHITECTURE 

 
Figure 1: Block architectural diagram 

 

The diagram illustrates a comprehensive Demand Forecasting Pipeline, which serves as the backbone for 

accurately predicting future product demand across multiple SKUs. This modular pipeline integrates 

various stages, from data ingestion to forecast evaluation and visualization, ensuring scalability, 

robustness, and interpretability across retail and supply chain environments. The approach is designed to 

handle noisy, incomplete, and highly variable demand data, incorporating domain-informed preprocessing 

and model selection for optimal forecasting performance. 

The pipeline begins with the Input File, which typically contains raw time series data — including SKU, 

OrderCreatedMonth, and orderedqty. This file forms the foundation of the system and may originate from 

transactional databases, ERP systems, or manual logs. Once the data is uploaded, it moves to the 

DataLoader, which parses and structures the dataset into a consistent tabular format. The DataLoader is 

responsible for schema validation, column alignment, and initial conversion of data types (e.g., date 

parsing), ensuring a standardized data feed into downstream processes. 

Following ingestion, the EDA (Exploratory Data Analysis) stage provides insights into the structure and 

behavior of the dataset. Here, key patterns such as trend, seasonality, missingness, and outlier presence 

are analyzed using visualizations and summary statistics. This phase plays a diagnostic role and informs 

the parameter settings for preprocessing and modeling steps. EDA can reveal SKU-specific anomalies, 

cyclic behaviors, and unusual spikes or drops, guiding how models should be tuned per segment. 

The Controller (Preprocessing) module transforms raw input into clean, model-ready features. This step  
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includes imputation of missing or zero values through techniques like rolling averages, interpolation, and 

spline fitting. It may also perform outlier correction using statistical thresholds such as the IQR method. 

In pipelines where STL decomposition is applied, trend and seasonality components are extracted to 

isolate the true underlying signal. Additionally, slope classification or trend state modeling (e.g., 

clustering, binning) is handled here, particularly for Markov or hybrid models. This component ensures 

that all models work with a clean, consistent, and informative dataset. 

Once preprocessed, the data flows into the Models block, which encapsulates the forecasting logic. 

Depending on configuration, models such as ARIMA, Prophet, Markov Chains, or even machine learning 

approaches like XGBoost or PyCaret regressors can be used. For stochastic demand scenarios, volatility-

aware models like ARCH/GARCH may be applied. The system allows for batch execution of models 

across SKUs and supports model selection based on forecasting error metrics. The modular structure also 

allows new models to be plugged in without affecting upstream or downstream components. 

The Evaluation module assesses forecast performance using metrics like WAPE, MAPE, RMSE, and R². 

These metrics are computed both globally and per SKU, allowing a granular view of model accuracy. The 

Evaluation step not only scores model output but also supports error aggregation across imputation 

strategies and forecast horizons. It plays a pivotal role in selecting the best-performing model-imputation 

pair per SKU or batch. 

From here, the Rolling Forecast mechanism is triggered. This involves a sliding window approach where 

forecasts are iteratively generated for multiple test horizons (e.g., six months at a time) to mimic real-

world forecasting scenarios. Each iteration retrains the model on updated data and assesses performance 

on a forward-looking test set, providing a robust view of forecast stability and generalizability over time. 

This method is critical in detecting model drift and retraining needs. 

Finally, the Visualization of Results module generates intuitive visual outputs — forecast curves, 

confidence intervals, error heatmaps, and transition matrices (for Markov models). These insights can be 

SKU-specific or aggregated across categories, aiding decision-makers in production, inventory, and 

replenishment planning. Visualizations also enhance model interpretability and allow stakeholders to 

verify and trust the system’s output 

 

VI. RESULTS 

The evaluation of the multi-model demand forecasting pipeline was carried out using a comprehensive 

suite of regression-based performance metrics including MAE, RMSE, MAPE, WAPE, and R². These 

metrics were calculated using rolling-origin cross-validation, ensuring a time-aware validation approach 

that closely mirrors real-world deployment. Each metric offered a unique perspective—MAE and RMSE 

quantified the magnitude and distribution of errors, while MAPE and WAPE normalized performance 

across diverse SKU volumes. R² provided insight into the proportion of variance explained by each model, 

capturing the overall goodness of fit. This robust evaluation framework allowed for accurate assessment 

across a wide range of demand behaviors, from stable to highly volatile series. 

When compared to traditional forecasting techniques such as ARIMA, Holt-Winters, and basic machine 

learning models, the proposed pipeline demonstrated marked improvements in predictive accuracy, 

particularly for SKUs with irregular or intermittent demand. Models like LSTM and Prophet excelled at 

capturing trend shifts and seasonalities, while the pipeline's adaptive model-imputation pairing 

significantly improved performance granularity across SKU_REGION segments. Key strengths of the 

system included its modularity—allowing new models and imputation strategies to be seamlessly tested—
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and the incorporation of anomaly detection and confidence intervals, which enhanced interpretability and 

reliability. However, computational intensity for deep learning models and poor performance on extremely 

sparse data highlighted areas needing further optimization. 

Visualization played a vital role in validating results and communicating insights. Forecast plots with 

overlaid predictions and confidence intervals provided intuitive comparisons between actual and 

forecasted demand. Residual and error distribution charts highlighted areas of model underperformance 

or bias, while line/bar charts tracked evaluation metrics across different model configurations. Interactive 

dashboards, built using Streamlit and Plotly, allowed users to explore SKU_REGION-level forecasts, 

feature contributions, and time series decompositions. These tools not only improved transparency but 

also empowered business stakeholders with actionable intelligence for inventory planning and risk 

mitigation. 

 

VII. CONCLUSION 

This project presents a modular and metric-driven demand forecasting pipeline that integrates diverse 

modeling techniques—ranging from statistical methods like ARCH and GARCH to trend-seasonality 

models like Prophet—while emphasizing the importance of data preprocessing through intelligent 

imputation strategies. By systematically pairing imputation methods with forecasting models and 

evaluating them on robust metrics such as WAPE, MAPE, RMSE, and R², the pipeline ensures both high 

accuracy and practical relevance.The dataset, comprising SKU-level order quantities, is split using a 

realistic train-test approach, with the last six months used for evaluation. This ensures that the models are 

not only theoretically sound but also perform well under real-world constraints. The pipeline's architecture 

allows easy adaptation across domains such as retail, logistics, and manufacturing, and is designed to 

accommodate future enhancements. 

Moving forward, the project lays the foundation for next-generation forecasting systems that are real-time, 

explainable, privacy-preserving, and capable of learning from multimodal data. By addressing current 

challenges and exploring new directions in AI, this work contributes meaningfully toward building more 

resilient and intelligent demand planning systems. 

 

VIII. FUTURE ENHANCEMENT 

The future of demand forecasting lies in embracing foundation models and multimodal AI. Foundation 

models—large pre-trained models that can be fine-tuned for various forecasting tasks—offer promise in 

learning generalized representations of demand behavior across industries. By incorporating additional 

data modalities such as price, promotions, weather, and economic indicators, multimodal forecasting 

systems can significantly improve prediction accuracy and robustness. 

The integration of federated learning with generative AI represents another exciting frontier. Federated 

learning allows organizations to collaboratively train models without sharing raw data, thereby preserving 

privacy. When combined with generative models, synthetic demand scenarios can be created for stress-

testing supply chains or augmenting sparse datasets. These technologies together may pave the way for 

more privacy-aware, adaptable, and resilient forecasting systems. 

Additionally, explainable AI (XAI) frameworks are becoming increasingly important in forecasting. 

Business stakeholders require models that not only perform well but also provide insights into why certain 

predictions are made. Future systems must incorporate interpretability as a core feature—using techniques 
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such as SHAP values, counterfactual explanations, or attention-based visualizations—so that human 

decision-makers can trust and act on model outputs with confidence. 
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