

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 1

RockNet

Ajay Kumar1, Thapisnu2, Raguram3, Mrs. A. Nalini4, Mr. M. Nadeesh5

1,2,3Diploma Student, Computer Engineering, Nachimuthu Polytechnic College, Pollachi, Tamil Nadu,

India
4Head of the Department, Department of Computer Engineering, Nachimuthu Polytechnic College, Pol-

lachi, Tamil Nadu, India
5Lecturer, Department of Computer Engineering, Nachimuthu Polytechnic College, Pollachi, Tamil Na-

du, India

Abstract

Day by day, the number of users is increasing on the internet, and the web servers need to cater to the

requests constantly. Also, if compared to the past years, this year, due to a global pandemic and

lockdown in various countries, the requests on the web have surged exponentially. The complexity of

configuring a web server is also increasing as the development continues. In this paper, we propose a

RockNet web server, which is highly scalable and can cater to many requests at a time. Additionally, to

ease users from the configuration of the web server, we introduced a Graphical User Interface which is

beginner-friendly.

Keywords: Rust, HTTP, Web Server, GUI, Asynchronous, Concurrency.

1. Introduction

Whenever a user accesses the web, he/she uses an HTTP client program called a web browser to fetch

contents from what's called a web server, which is an HTTP server program. HTTP client and server

normally use TCP as the transport layer protocol. Whenever a user visits a particular website, the brows-

er will send an HTTP GET request with some metadata stored in HTTP request headers to the web serv-

er. The web server will parse the request and prepare the HTTP response. If the server doesn't find the

requested content, then it will respond with a 404-status code. Alternatively, if the server finds the re-

quested content, it will respond with a 200-status code. There are many types of status codes, i.e., Infor-

mational, Successful, Redirects, Client errors, and Server errors. Websites can also be dynamically gen-

erated, which is integrated with some database engines, but in this paper, we’ll be going to limit our dis-

cussion to static websites only.

Traffic on web servers is increasing rapidly due to many clients connecting to the web server in such a

short time interval. That's why the server must cope with many requests at a time, therefore support for

concurrency and parallelism is indispensable. There are many concurrency models available, but each

one has its drawbacks. Configuring a web server is also a tedious task and, if not configured properly, it

can be vulnerable to security attacks.

Considering the above problems, in this paper, we introduce the RockNet web server that can handle

many requests at a time by utilizing multiple cores of the processor and also make use of the non-

blocking IO operations provided by the operating system. We have also solved the complication of con-

figuration by introducing a lightweight, user-friendly GUI.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 2

2. BACKGROUND

A. HTTP Protocol

Hyper Text Transfer Protocol is one of the most widely used web protocols. It is a stateless protocol in

which each transaction is independent of all other transactions. There are HTTP clients, which in most

cases are web browsers, that initialize the transactions by sending HTTP requests, which are replied to

by the HTTP server’s response. Mainly there are 2 types of HTTP requests: GET & POST. GET is used

to fetch content from the server, and POST is used to submit content to the server. In HTTP requests,

there are numerous headers like the method, which is used to indicate whether the request type is GET

or POST, URI or HOST, which is used to indicate the server’s domain name and, in some cases, the re-

quested file, version, which is used to indicate HTTP protocol versions. On the other hand, HTTP re-

sponse contains headers like status code, which is used to denote the result of the transaction, content-

type, which specifies what kind of file is transferred, and server, which contains server name and ver-

sion.

There are multiple versions of the HTTP protocol [1], namely HTTP/1.0, HTTP/1.1, HTTP/2, HTTP/3,

in which HTTP/3 is still in the development phase. HTTP/1.1 supports pipelining, virtual hosting, and

chunked responses. HTTP/2 is faster than HTTP/1.1 and supports additional features such as server push

and multiplexing.

B. HTTP over TLS (HTTPS)

For encrypting transactions between client and server, HTTPS is used. Secure HTTP or HTTPS is

achieved using the Transport Layer Security protocol. For RSA-based encryption process, the client first

sends a Client Hello message with some random bytes called “Client Random,” and the server replies

with a Server Hello message with some random bytes called “Server Random” and an SSL certificate for

authentication purposes. Now the client creates a “premaster secret,” which is also random bytes but en-

crypted with the server's public key and sends it to the server. The server then decrypts the premaster

secret, and both client and server create a session key based on client random, server random, and pre-

master secret. Now all the communication between client and server will be encrypted with a session

key. There is another encryption process called Diffie-Hellman, which is moderately different than RSA.

C. Virtual Hosting

Hosting every single website with an individual server is quite expensive and inefficient. That’s why

support for virtual hosting is necessary. Through virtual hosting, one can host many websites using a

single web server. There are mainly 2 types of virtual hosting: Port-based & Domain Name-based. Using

port-based virtual hosting, one can utilize multiple ports for each website hosted on a single machine,

and therefore only a single IP address is used. In domain-based virtual hosting, a single port and IP ad-

dress are utilized, and the domain name of the website is used to distinguish between multiple websites.

There is also an IP-based virtual hosting to host multiple websites on a single machine but utilizing mul-

tiple IP addresses.

3. WORKING AND IMPLEMENTATION

RockNet web server is developed to ease the configuration of websites in development environments as

the other web servers in the industry only support terminal-based configuration, which can be time-

consuming for beginners. On the other hand, RockNet supports Graphical User Interface (GUI), allow-

ing users to easily host websites in a development environment and focus more on website development

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 3

rather than server configuration. The RockNet web server consists of two major components: RockNet

Core and RockNet GUI.

A. RockNet

This module constitutes the core functionality of the RockNet web server. Its primary responsibility is to

read the configuration file, either generated by the RockNet GUI or provided by the user, and allocate

resources accordingly for each website mentioned in the file. RockNet supports both HTTP and HTTPS

protocols. Unencrypted HTTP communication uses the HTTP/1.1 version, while encrypted HTTPS

communication is powered by the more efficient HTTP/2.0 version. Within the Rust ecosystem, various

crates enhance the program’s functionality. For RockNet, the Hyperium H2 crate implements the

HTTP/2.0 specification, and the rustls crate facilitates transport layer security (TLS) operations. With

rustls, RockNet can perform the TLS 1.3 handshake, significantly reducing encryption setup time. TLS

1.3 requires only one round-trip to establish a connection, compared to two round-trips needed in TLS

1.2 [3].

Additionally, RockNet employs the TLS extension Application-Layer Protocol Negotiation (ALPN) [4],

which streamlines protocol selection during the TLS handshake. By negotiating HTTP/2 directly within

the handshake, ALPN eliminates the need for the extra round-trip required by the traditional Connec-

tion-Upgrade process, enhancing communication efficiency.As described earlier, RockNet supports both

port-based and domain name-based virtual hosting.

1. Port-Based Virtual Hosting: RockNet creates separate kernel-level threads for each website, isolating

individual websites’ behaviour and optimizing the use of multi-core processors by distributing the

load across cores.

2. Domain-Based Virtual Hosting:

o For HTTP communication, RockNet utilizes the HOST header in requests to distinguish between

domain names.

o For HTTPS communication, the server leverages the TLS extension Server Name Indication (SNI) to

identify the SSL certificate and private key for each website dynamically at runtime. This enables

each virtually hosted website to use a unique SSL certificate and private key for secure communica-

tion.

3. RockNet also incorporates a key feature of HTTP/2: Server Push [5][6]. This allows the server to

send resources proactively without waiting for client requests, reducing latency and improving

throughput by bundling necessary dependencies with the response. However, the server must care-

fully select the files for Server Push to avoid unnecessary bandwidth consumption if the client does

not require the sent resources.

B. RockNet GUI

This module is isolated from the RockNet core as it contains various GUI elements that are independent

of the server itself. As discussed earlier, configuring a web server can be daunting for beginners. A GUI-

based configuration tool simplifies this process, making it more accessible. The primary function of the

GUI is to generate the configuration file, which acts as a bridge between the RockNet core and the

RockNet GUI. Unlike popular web servers in the industry that rely on complex configuration file for-

mats such as XML, JSON, or YAML—known for being error-prone and difficult to manage—RockNet

adopts the TOML (Tom’s Obvious Minimal Language) format. TOML is straightforward, easy to under-

stand, and simple to parse, making it an ideal choice for this purpose [7].

The RockNet GUI is developed using the FLTK (Fast Light Tool Kit) framework in the Rust programin

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 4

g language, making it lightweight. The GUI has a low memory footprint, ranging between 45–50MB,

and produces a compact binary of approximately 5MB. Including this small binary in the installation

package has a negligible impact on its size. Additionally, since FLTK and Rust are cross-platform, the

GUI and the entire RockNet web server support all major operating systems.

The GUI provides additional functionalities such as monitoring the web server’s status, including the

current CPU load and memory usage. It also aids in troubleshooting by enabling users to read or modify

log levels to more verbose settings, helping identify specific issues. With the GUI, users can avoid di-

rectly interacting with the configuration file. Instead, the GUI dynamically lists all hosted websites and

their parameters as defined in the configuration file, streamlining server management.

Figure 1. RockNet Web Server GUI Dashboard

C. Concurrency Model

There are various concurrency models or design patterns available to handle multiple requests simulta-

neously. One simple approach is the Thread Pool Model, where a group of pre-spawned threads is pre-

pared to handle incoming requests. When a request arrives, one of the available threads is assigned to

process it. This enables the server to handle multiple requests in parallel, with the number of requests

served concurrently limited by the initial number of spawned threads. While this model can improve

throughput, it has some drawbacks. The number of threads is fixed, and creating threads incurs operating

system overhead. Additionally, if the number of requests is much lower than the number of threads,

many threads will remain idle, leading to a waste of computational resources.

Another approach is the Event-Driven Model, in which servers handle multiple requests using non-

blocking IO operations provided by the operating system. In this method, a single thread functions as an

event scheduler. Its tasks include accepting connections, reading requested files, and sending responses

back to the client. All operations are asynchronous and non-blocking, allowing the thread to avoid wait-

ing for any single event to complete. Instead, the operating system notifies the thread upon event com-

pletion.The event-driven model has a significant advantage in resource efficiency, but its effectiveness

depends on the operating system's support for non-blocking IO. While most modern operating systems

like Linux and Windows offer non-blocking support for network IO, their support for non-blocking disk

IO is either lacking or experimental. Consequently, some operations may become synchronous and

blocking, leading to potential performance degradation.

The RockNet web server is based on the Tokio framework [8], which is a runtime for writing asynchro-

nous, event-driven, and non-blocking applications in the Rust programming language. Tokio is based on

AMPED or Asymmetric Multi-Process Event-Driven architecture, as described in [9]. This architecture

is an extension of the above-described event-driven architecture and resolves its major constraints by

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 5

introducing worker threads. By assigning blocking or synchronous tasks to the worker thread, the event

scheduler remains free to assign other upcoming requests to available worker threads. In this way, we

can achieve maximum throughput and efficiency. The default number of worker threads is equal to the

number of cores available in the working system.

Tokio is not limited to AMPED architecture because it also supports other features like a work-stealing

queue, in which the load amongst worker threads is distributed uniformly. This ensures that all the CPU

cores are equally utilized.

4. RESULT AND DISCUSSION

To evaluate and benchmark the performance of RockNet and Apache (a widely used web server in the

industry) [10], we utilized the Apache Benchmark (AB) tool [11] to perform load testing and stress test-

ing on the servers. The tests were conducted on a host system with the following configuration: AMD

E300 Dual Core CPU clocked at 1.3GHz, 4GB RAM running at 800MHz, and Arch Linux with Kernel

version 6.10.43. It is important to note that the results are dynamic and may vary depending on factors

such as system configuration, ambient temperature, and operating system.

Figure 2. Graphical comparison of response time with respect to HTTP requests

In this experiment, both servers were subjected to 5000 unencrypted HTTP requests, with 500 requests

sent concurrently in each batch, resulting in 10 batches of 500 requests. This test aimed to observe how

the servers handle a high volume of concurrent requests and how their response times are affected during

this period.From the analysis of the graph, it is evident that as the number of requests reaches the range

of 750 to 800, the response time of the Apache web server begins to rise sharply, reaching approximate-

ly 400ms. This behaviour highlights a critical point where the server's ability to manage concurrent re-

quests starts to degrade significantly.

By analyzing the above graphs, we can see that when the number of requests reaches 750-800, the re-

sponse time of Apache web is increasing rapidly around 400ms. The RockNet web server demonstrates a

response time of 340ms, which is significantly lower than the Apache web server. When the number of

requests increases from 1000 to 3500, the response time for the Apache web server rises from 410ms to

500ms. In contrast, under the same conditions, RockNet's response time increases from 340ms to 450ms,

still outperforming Apache. However, when the number of requests exceeds 3500, RockNet's response

time begins to grow faster than Apache's. At 5000 requests, both servers converge at a response time of

800ms.

5. CONCLUSION & FUTURE SCOPE

This paper introduces RockNet, a new web server developed using the Rust programming language, di-

verging from the traditional use of C in prominent industry web servers. Rust's memory safety, scalabil-

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 6

ity, and speed enhance RockNet's robustness, making its performance comparable to or exceeding its

counterparts. Leveraging Tokio's asynchronous, event-driven, and work-stealing architecture, RockNet

maximizes concurrency while efficiently managing system resources. To simplify server setup for be-

ginners, RockNet incorporates a Graphical User Interface (GUI), enabling easy configuration within de-

velopment environments and allowing users to focus on website creation.

The implementation of the Common Gateway Interface (CGI) facilitates PHP integration, enabling the

delivery of dynamic content over the web. Additionally, utilizing the io_uring subsystem, introduced in

Linux Kernel 5.1, allows for highly efficient, non-blocking asynchronous disk operations, improving

concurrency and throughput. While Windows does not yet support io_uring, its implementation is ex-

pected in version 21H2, as referenced in [12].

RockNet also supports HTTP/3, the upcoming version of the HTTP protocol, which replaces TCP with

QUIC-UDP at the transport layer. This transition significantly enhances communication performance

between clients and servers, reducing response times and latency.

6. Appendix

[STARTING ROCKNET]

[STATUS OF ROCKNET]

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 7

[MySQL]

[STATUS OF PHP FPM]

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 8

[PHP RENDER]

[ROCKNET’S DEFAULT PAGE]

[ROCKNET’S DASHBOARD]

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 9

[REALTIME GRAPH]

[LOG REPORT]

[AUTO INDEXING]

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 10

[BENCHMARK OF ROCKNET & APACHE]

[STOPPING ROCKNET]

Book References

1. Fulton, K. R., Chan, A., Votipka, D., Hicks, M., & Mazurek, M. L. (2021). Benefits and Drawbacks

of Adopting a Secure Programming Language: Rust as a Case Study. In Seventeenth Symposium on

Usable Privacy and Security (SOUPS 2021) (pp. 597-616). USENIX.

2. Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas Jost, Narseo Vallina-

Rodriguez, and Oliver Hohlfeld. (2020). Tracking the deployment of TLS 1.3 on the web: a story of

experimentation and centralization. SIGCOMM Comput. Commun. Rev., 50(3), 3–15. DOI:

10.1145/3411740.3411742.

3. Shoemaker, R. B. (2020). RFC 8737 Automated Certificate Management Environment (ACME)

TLS Application Layer Protocol Negotiation (ALPN) Challenge Extension.

4. Apache Software Foundation. (2020). Apache HTTP Server Project (httpd). https://httpd.apache.org.

5. Apache Software Foundation. (2020). ab-Apache HTTP server benchmarking tool.

https://httpd.apache.org/docs/2.4/programs/ab.html.

https://www.ijfmr.com/
https://httpd.apache.org/
https://httpd.apache.org/docs/2.4/programs/ab.html

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348188 Volume 7, Issue 3, May-June 2025 11

6. Jonathan, H. (2020, July). The 3 Best Config File Formats. https://jhall.io/posts/best-config-file-

formats.

7. Zimmermann, T., Rüth, J., Wolters, B., & Hohlfeld, O. (2017, June). How HTTP/2 pushes the web:

An empirical study of HTTP/2 server push. In 2017 IFIP Networking Conference (IFIP Networking)

and Workshops (pp. 1-9). IEEE.

8. Rosen, S., Han, B., Hao, S., Mao, Z. M., & Qian, F. (2017, April). Push or request: An investigation

of HTTP/2 server push for improving mobile performance. In Proceedings of the 26th International

Conference on World Wide Web (pp. 459-468).

9. Abdullah, S. A., & Ahmad, A. M. (2016). HTTP/2 in Modern Web and Mobile Sensing-based Ap-

plications: Analysis, Benchmarks, and Current Issues. J Electrical & Electronic System, 5, 193.

10. Pai, V. S., Druschel, P., & Zwaenepoel, W. (1999, June). Flash: An efficient and portable Web serv-

er. In USENIX Annual Technical Conference, General Track (pp. 199-212).

11. Web References

1. Tokio Framework -rs. (2021). Tokio Framework Runtime. Retrieved from https://Tokio Frame-

work.rs

2. Actix-rs. (n.d.). Actix Documentation. Retrieved from https://actix.rs/docs/

3. PHP-FPM. (n.d.). PHP-FPM Documentation. Retrieved from https://php-fpm.org/

4. Plotters. (n.d.). Plotters Documentation. Retrieved from https://plotters-rs.github.io/home/#!/

https://www.ijfmr.com/
https://jhall.io/posts/best-config-file-formats
https://jhall.io/posts/best-config-file-formats
https://tokio.rs/
https://tokio.rs/
https://actix.rs/docs/
https://php-fpm.org/
https://plotters-rs.github.io/home/#!/

