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Abstract 

Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a nontrivial connected simple graph. A subset 𝑆 of 𝑉(𝐺) is a dominating set of 

𝐺 if for every 𝑣 ∈ 𝑉(𝐺) ∖ 𝑆, there exists 𝑥 ∈ 𝑆 such that 𝑥𝑣 ∈ 𝐸(𝐺). A set  𝑆 ⊆ 𝑉(𝐺) is said to be an 

outer-connected dominating set in 𝐺 if 𝑆 is dominating and either 𝑆 = 𝑉(𝐺) or ⟨𝑉(𝐺) ∖ 𝑆⟩ is connected. 

The outer-connected domination number of 𝐺 is the minimum cardinality of an outer-connected 

dominating set of 𝐺, denoted by �̃�𝑐(𝐺). A fair dominating set in graph 𝐺 is a dominating set 𝑆 such that 

all vertices in 𝑉(𝐺) ∖ 𝑆 are dominated by the equal number of vertices in 𝑆. The fair domination number 

of 𝐺 is the minimum cardinality of a fair dominating set of 𝐺, denoted by 𝛾𝑓𝑑(𝐺). A nonempty subset 𝑆 ⊆

𝑉 (𝐺) is an outer-connected fair dominating set of 𝐺, if 𝑆 is a fair dominating set of 𝐺 and the subgraph 

⟨𝑉(𝐺) ∖ 𝑆⟩ induced by 𝑉(𝐺) ∖ 𝑆 is connected. The outer-connected fair domination number of 𝐺 is the 

minimum cardinality of an outer-connected fair dominating set of 𝐺, denoted by �̃�𝑐𝑓𝑑(G).  In this paper, 

we initiate the study of the concept and we show the existence of a connected graph 𝐺 with |𝑉(𝐺)|  =  𝑛  

and �̃�𝑐𝑓𝑑(𝐺)  =  𝑘 for all positive integer 𝑘. Further, give the outer-connected fair domination number of 

some special graphs. 

 

Keywords: dominating set, outer-connected dominating set, fair dominating set, outer-connected fair 

dominating set 

 

1. Introduction 

A graph 𝐺 is a pair (𝑉(𝐺), 𝐸(𝐺)), where 𝑉(𝐺) is a finite nonempty set called the vertex-set of 𝐺 and 𝐸(𝐺) 

is a set of unordered pairs {𝑢, 𝑣} (or simply 𝑢𝑣) of distinct elements from 𝑉(𝐺) called the edge-set of 𝐺. 

The elements of 𝑉(𝐺) are called vertices and the cardinality |𝑉(𝐺)| of 𝑉(𝐺) is the order of 𝐺. The elements 

of 𝐸(𝐺) are called edges and the cardinality |𝐸(𝐺)| of 𝐸(𝐺) is the size of 𝐺. If |𝑉(𝐺)| = 1, then 𝐺 is 

called a trivial graph. If 𝐸(𝐺) = ∅  , then 𝐺 is called an empty graph. The open neighborhood of a vertex 

𝑣 ∈ 𝑉(𝐺) is the set 𝑁𝐺(𝑣) = {𝑢 ∈ 𝑉(𝐺)  ∶ 𝑢𝑣 ∈ 𝐸(𝐺)}. The elements of 𝑁𝐺(𝑣) are called neighbors of 𝑣. 

The closed neighborhood of 𝑣 ∈ 𝑉(𝐺) is the set 𝑁𝐺[𝑣] = 𝑁𝐺(𝑣) ∪ {𝑣}. If 𝑋 ⊆ 𝑉(𝐺), the open 

neighborhood of  𝑋 in 𝐺 is the set 𝑁𝐺(𝑋) = ⋃ 𝑁𝐺(𝑣)𝑣∈𝑋 . The closed neighborhood of 𝑋 in 𝐺 is the set 

𝑁𝐺[𝑋] =  ⋃ 𝑁𝐺[𝑣]𝑣∈𝑋 = 𝑁𝐺(𝑋) ∪ 𝑋. When no confusion arises, 𝑁𝐺[𝑥] [res. 𝑁𝐺(𝑥)] will be denoted by 

𝑁[𝑥] [resp. 𝑁(𝑥)].  A 𝑢-𝑣 walk in 𝐺 is a sequence of vertices in 𝐺, beginning with 𝑢 and ending at 𝑣 such 
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that consecutive vertices in the sequence are adjacent. A 𝑢-𝑣 walk in a graph in which no vertices are 

repeated is a 𝑢-𝑣 path. If 𝐺 contains a 𝑢-𝑣 path, then 𝑢 and 𝑣 are said to be connected and 𝑢 is connected 

to 𝑣 (and 𝑣 is connected to 𝑢).  A graph 𝐺 is connected if every two vertices of 𝐺 are connected, that is, if 

𝐺 contains a 𝑢-𝑣 path for every pair 𝑢, 𝑣 of vertices of 𝐺. Since every vertex is connected to itself, the 

trivial graph is connected. For the general terminology in graph theory, readers may refer to [1]. 

Domination in graph was introduced by Claude Berge in 1958 and Oystein Ore in 1962 [2]. Following an 

article [3] by Ernie Cockayne and Stephen Hedetniemi in 1977, the domination in graphs became an area 

of study by many researchers. A subset 𝑆 of 𝑉(𝐺) is a dominating set of 𝐺 if for every 𝑣 ∈ 𝑉(𝐺) ∖ 𝑆, there 

exists 𝑥 ∈  𝑆 such that 𝑥𝑣 ∈ 𝐸(𝐺), that is, 𝑁[𝑆] = 𝑉(𝐺). The domination number 𝛾(𝐺) of 𝐺 is the smallest 

cardinality of a dominating set of 𝐺. Some studies on domination in graphs were found in the papers         

[4-17]. 

A set 𝑆 of vertices of a graph 𝐺 is an outer-connected dominating set if every vertex not in 𝑆 is adjacent 

to some vertex in 𝑆 and the sub-graph induced by 𝑉(𝐺) ∖ 𝑆 is connected. The outer-connected domination 

number �̃�𝑐  (𝐺) is the minimum cardinality of the outer-connected dominating set 𝑆 of a graph 𝐺. The 

concept of outer-connected domination in graphs was introduced by Cyman [18]. Some related studies of 

outer-connected domination in graphs are found in [19-28]. 

A fair dominating set in graph 𝐺 is a dominating set 𝑆 such that all vertices in 𝑉(𝐺) ∖ 𝑆 are dominated by 

the equal number of vertices in 𝑆. The fair domination number of 𝐺 is the minimum cardinality of a fair 

dominating set of 𝐺, denoted by 𝛾𝑓𝑑(𝐺). The concepts of fair domination in graphs were introduced by 

Caro, Hansberg, and Henning [29]. Some related studies of fair domination in graphs are found in            

[30-35]. 

Motivated by the introduction of the outer-connected dominating sets and the fair dominating sets, a new 

variant of domination in graphs is introduced in this paper. Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a nontrivial 

connected simple graph. A nonempty subset 𝑆 ⊆ 𝑉 (𝐺) is an outer-connected fair dominating set of 𝐺, if 

𝑆 is a fair dominating set of 𝐺 and the subgraph ⟨𝑉(𝐺) ∖ 𝑆⟩ induced by 𝑉(𝐺) ∖ 𝑆 is connected. The outer-

connected fair domination number of 𝐺 is the minimum cardinality of an outer-connected fair dominating 

set of 𝐺, denoted by �̃�𝑐𝑓𝑑(G). In this paper, we initiate the study of the concept and we show that given 

positive integers 𝑘 and 𝑛 such that 𝑛 ≥ 2 and 1 ≤ 𝑘 ≤ 𝑛 − 1, there exists a connected graph 𝐺 with 

|𝑉(𝐺)|  =  𝑛  and �̃�𝑐𝑓𝑑(𝐺)  =  𝑘. Further, give the outer-connected fair domination number of some 

special graphs. 

 

2. Results 

Definition 2.1 A graph 𝐺 = 𝐾𝑛 is called a complete graph of order 𝑛 when 𝑥𝑦 is an edge in 𝐺 for every 

distinct pair 𝑥, 𝑦 ∈ 𝑉(𝐺). The complement of a graph 𝐺 is a graph �̅� on the same vertices such that two 

distinct vertices of �̅� are adjacent if and only if they are not adjacent in 𝐺. 

From the definitions, the following result is immediate. 

Remark 2.2 Let 𝐺 be a connected graph of order 𝑛 ≥ 2. Then  1 ≤ �̃�𝑐𝑓𝑑(𝐺) ≤  𝑛 − 1. 

It is worth mentioning that the upper bound in Remark 2.2 is sharp. For example, �̃�𝑐𝑓𝑑(�̅�𝑛) =  𝑛 − 1 

for all 𝑛 ≥ 2. The lower bound is also attainable as the following result shows. 

Theorem 2.3 Let 𝐺 be a connected graph of order 𝑛 ≥ 2. Then �̃�𝑐𝑓𝑑(𝐺) = 1 if 𝐺 = 𝐾𝑛. 

Proof. Suppose now that 𝐺 = 𝐾𝑛 and let 𝑆 = {𝑥}. Then 𝑆 is a dominating set of a complete graph  𝐺. 

Since all vertices in 𝑉(𝐺) ∖ 𝑆 is dominated by the equal number of vertices in 𝑆, it follows that 𝑆 is a fair 

https://www.ijfmr.com/
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dominating set of 𝐺. Further, every vertex in 𝑉(𝐺) ∖ 𝑆 is adjacent to a vertex 𝑥 in 𝑆 and the sub-graph 

induced by 𝑉(𝐺) ∖ 𝑆 is connected since 𝐺 is a complete graph. Thus, 𝑆 is an outer-connected fair 

dominating set of 𝐺. Clearly, 𝑆 = {𝑥} is a minimum outer-connected fair dominating set of 𝐺. Hence, 

�̃�𝑐𝑓𝑑(𝐺) = 1. ∎ 

It is easy to see that every connected graph 𝐺 has an outer-connected fair dominating set. The next result 

says that the value of the parameter �̃�𝑐𝑓𝑑(𝐺)  ranges over all positive integers. 

Theorem 2.4 Given positive integers 𝑘 and 𝑛 such that 𝑛 ≥ 2 and 1 ≤ 𝑘 ≤ 𝑛 − 1, there exists a connected 

graph 𝐺 with |𝑉(𝐺)|  =  𝑛  and �̃�𝑐𝑓𝑑(𝐺)  =  𝑘. 

Proof. Consider the following cases: 

Case 1. Suppose 𝒌 =  𝟏. 

Let 𝐺 =  𝐾𝑛. Then,  |𝑉 (𝐺)|  =  𝑛 and by Theorem 2.3, �̃�𝑐𝑓𝑑(𝐺) = 1. 

Case 2. Suppose 𝒌 = 𝟐. 

Let 𝑉(�̅�2) = {𝑢1, 𝑢2}, 𝑉(𝑃𝑚) = {𝑣1, 𝑣2, … , 𝑣𝑚} such that 𝐺 =  �̅�2 + 𝑃𝑚 for 𝑚 ≥ 4, 𝑛 = 2 + 𝑚, see the 

graph 𝐺 in Figure 1. 

 
Figure 1 

 

Then 𝑆 = 𝑉(�̅�2) is a dominating set of 𝐺 and all vertices in 𝑉(𝐺) ∖ 𝑆 = 𝑉(𝑃𝑚) is dominated by the equal 

number of 2 vertices in 𝑆. Thus, 𝑆 is a fair dominating set of 𝐺. Further, every vertex in 𝑉(𝐺) ∖ 𝑆 is 

adjacent to a vertex in 𝑆 and the sub-graph induced by 𝑉(𝐺) ∖ 𝑆 is connected. By definition, 𝑆 is an outer-

connected fair dominating set of 𝐺. Now, 𝑆 =  𝑉(�̅�2) = {𝑢1, 𝑢2} is a minimum outer-connected fair 

dominating set of 𝐺 = �̅�2 + 𝑃𝑚 since 𝛾(𝐺) ≠ 1 for 𝑚 ≥ 4. Therefore, |𝑉(𝐺)| = 2 + 𝑚 = 𝑛 and 

�̃�𝑐𝑓𝑑(𝐺) = |𝑆| = 2. 

Case 3. Suppose 𝟑 ≤ 𝒌 < 𝒏 − 𝟏. 

Let 𝑉(𝑃𝑘) = {𝑢1, 𝑢2, … , 𝑢𝑘−1, 𝑢𝑘}, 𝐸(𝑃𝑘) = {𝑢1𝑢2, 𝑢2𝑢3, … , 𝑢𝑘−1𝑢𝑘}, 𝑉(𝐾𝑚) = {𝑣1, 𝑣2, … , 𝑣𝑚} with 

𝑚 ≥ 3 such that 𝑉(𝐺) = 𝑉(𝑃𝑘) ∪ 𝑉(𝐾𝑚), 𝐸(𝐺) = {𝑢1𝑢2, 𝑢2𝑢3, … , 𝑢𝑘−1𝑢𝑘} ∪ {𝑢𝑘𝑣1} ∪ 𝐸(𝐾𝑚), and 𝑛 =

𝑘 + 𝑚, see the graph of 𝐺 in Figure 2. Consider 𝑆 = [𝑉(𝑃𝑘) ∖ {𝑢𝑘}] ∪ {𝑣𝑚}. Then 𝑆 = {𝑢1, 𝑢2, … 𝑢𝑘−1} ∪

{𝑣𝑚}. Since {𝑢1, 𝑢2, … 𝑢𝑘−1} is a dominating set in 𝑃𝑘 and {𝑣𝑚} is a dominating set in 𝐾𝑚, it follows that 

𝑆 is a dominating set in 𝐺. Let 𝑢, 𝑣𝑟 ∈ 𝑉(𝐺) ∖ 𝑆. Then 𝑢 = 𝑢𝑘 and 𝑣𝑟 ∈ 𝑉(𝐾𝑚) ∖ {𝑣𝑚}. Now, 𝑁𝐺(𝑢) ∩

𝑆 = {𝑢𝑘−1} and 𝑁𝐺(𝑣𝑟) ∩ 𝑆 = {𝑣𝑚}. This implies that |𝑁𝐺(𝑢) ∩ 𝑆|= |𝑁𝐺(𝑣𝑟) ∩ 𝑆| = 1. Hence, all 

vertices in 𝑉(𝐺) ∖ 𝑆 are dominated by the equal number of vertices in 𝑆, that is, 𝑆 is a fair dominating set 

of 𝐺. Further, 𝑉(𝐺) ∖ 𝑆 = {𝑢𝑘} ∪ {𝑣1, 𝑣2, … , 𝑣𝑚−1} is connected since 𝑢𝑘𝑣1, 𝑣1𝑣2, … , 𝑣𝑚−2𝑣𝑚−1 ∈ 𝐸(𝐺). 

Thus, every vertex in 𝑉(𝐺) ∖ 𝑆 is adjacent to a vertex in 𝑆 and the sub-graph induced by 𝑉(𝐺) ∖ 𝑆 is 

connected. This implies that 𝑆 is an outer-connected dominating set of 𝐺. 

https://www.ijfmr.com/
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Figure 2 

 

By definition, 𝑆 is an outer-connected fair dominating set of 𝐺. Now, suppose that 𝑆 is not a minimum 

outer-connected fair dominating set of 𝐺. Then there exists 𝑥 ∈ 𝑆 such that 𝑆 ∖ {𝑥} is an outer-connected 

dominating set of 𝐺. If 𝑥 ∈ {𝑢1, 𝑢2, … , 𝑢𝑘−2}, then 𝑉(𝐺) ∖ 𝑆 is not connected. If 𝑥 = 𝑢𝑘−1 or 𝑥 = 𝑣𝑚, then 

𝑆 is not a dominating set of 𝐺. In either case, 𝑆 ∖ {𝑥} is not an outer-connected fair dominating set of 𝐺 

contrary to our assumption that 𝑆 ∖ {𝑥} is an outer-connected dominating set of 𝐺. Thus, 𝑆 is not a 

minimum outer-connected fair dominating set of 𝐺. Hence, |𝑉(𝐺)| = 𝑘 + 𝑚 = 𝑛 and 

�̃�𝑐𝑓𝑑(𝐺) = |𝑆| = |{𝑢1, 𝑢2, … 𝑢𝑘−1} ∪ {𝑣𝑚}| = (𝑘 − 1) + 1 = 𝑘. 

Clearly,  𝑘 < (𝑘 + 𝑚) − 1 = 𝑛 − 1, since 𝑛 = 𝑘 + 𝑚 and 𝑚 ≥ 3. 

 

Case 4. Suppose that 𝒌 = 𝒏 − 𝟏. 

Let 𝐺 = 𝑃1 + �̅�𝑛−1 and let 𝑆 = 𝑉(�̅�𝑛−1), see the graph of 𝐺 in Figure 3. 

 

 
Figure 3 

 

Then 𝑆 is a dominating set of 𝐺. Since the only vertex in 𝑃1 is dominated by all vertices in 𝑆, 𝑆 is a fair 

dominating set of 𝐺. Further, a vertex in 𝑃1 is adjacent to a vertex in 𝑆 and the sub-graph induced by 𝑉(𝑃1) 

is connected. This implies that 𝑆 is an outer-connected dominating set of 𝐺. By definition, 𝑆 is an outer-

connected fair dominating set of 𝐺. Clearly, 𝑆 = 𝑉(�̅�𝑛−1) is a minimum outer-connected fair dominating 

set of 𝐺. Hence, |𝑉(𝐺)| = 1 + (𝑛 − 1) = 𝑛, and  �̃�𝑐𝑓𝑑(𝐺) = |𝑆| = |𝑉(�̅�𝑛−1)| = 𝑛 − 1. 

This proves the assertion. ∎ 

Definition 2.5 A simple graph 𝐺 is an undirected graph with no loop edges or multiple edges. 

Definition 2.6 The path 𝑃𝑛 = { 𝑎1 𝑎2 𝑎3 … 𝑎𝑛 } is the graph with 𝑉(𝑃𝑛) = {𝑎1 , 𝑎2, 𝑎3, … , 𝑎𝑛} and  

𝐸(𝑃𝑛) = {𝑎1𝑎2, 𝑎2 𝑎3, … , 𝑎𝑛−1𝑎𝑛}. 
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Remark 2.7 Let 𝐺 = 𝑃𝑛, 𝑛 ≥ 2. Then �̃�𝑐𝑓𝑑(𝐺) = {

1, 𝑖𝑓 𝑛 = 2        
2, 𝑖𝑓 𝑛 = 3 𝑜𝑟 4

𝑛 − 2, 𝑖𝑓 𝑛 ≥ 5         
 

Proof. Suppose that 𝑛 = 2. Let 𝐺 = 𝑃2 such that 𝑉(𝐺) = {𝑥, 𝑦}. The set 𝑆 = {𝑥} is a fair dominating set 

of 𝐺. Since the subgraph induced by 𝑉(𝐺) ∖ 𝑆 = {𝑦} is connected, it follows that 𝑆 is an outer-connected 

dominating set of 𝐺. Thus, 𝑆 is an outer-connected fair dominating set of 𝐺, that is, �̃�𝑐𝑓𝑑(𝐺) = |𝑆| = 1. 

Suppose that 𝑛 = 3. Let 𝐺 = 𝑃3 such that 𝑉(𝐺) = {𝑥, 𝑦, 𝑧} and 𝐸(𝐺) = {𝑥𝑦, 𝑦𝑧}. The set 𝑆 = {𝑥, 𝑧} is a 

fair dominating set of 𝐺. Since the subgraph induced by 𝑉(𝐺) ∖ 𝑆 = {𝑦} is connected, it follows that 𝑆 is 

an outer-connected dominating set of 𝐺. Thus, 𝑆 is an outer-connected fair dominating set of 𝐺, that is, 

�̃�𝑐𝑓𝑑(𝐺) = |𝑆| = 2. Suppose that 𝑛 = 4. Let 𝐺 = 𝑃4 such that 𝑉(𝐺) = {𝑥, 𝑦, 𝑤, 𝑧} and 𝐸(𝐺) =

{𝑥𝑦, 𝑦𝑤, 𝑤𝑧}. The set 𝑆 = {𝑥, 𝑧} is a fair dominating set of 𝐺. Since the subgraph induced by 𝑉(𝐺) ∖ 𝑆 =

{𝑦, 𝑤} is connected, it follows that 𝑆 is an outer-connected dominating set of 𝐺. Thus, 𝑆 is an outer-

connected fair dominating set of 𝐺, that is, �̃�𝑐𝑓𝑑(𝐺) = |𝑆| = 2. Suppose that 𝑛 = 5. Let 𝐺 = 𝑃5 such that 

𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝐸(𝐺) = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣5}. The set 𝑆 = {𝑣1, 𝑣4, 𝑣5} is a fair 

dominating set of 𝐺. Since the subgraph induced by 𝑉(𝐺) ∖ 𝑆 = {𝑣2, 𝑣3} is connected, it follows that 𝑆 is 

an outer-connected dominating set of 𝐺. Thus, 𝑆 is an outer-connected fair dominating set of 𝐺, that is, 

�̃�𝑐𝑓𝑑(𝐺) = |𝑆| = 3 = 5 − 2 = 𝑛 − 2. Similarly, if 𝑛 ≥ 6, then �̃�𝑐𝑓𝑑(𝐺) = |𝑆| = 𝑛 − 2. Hence, 

�̃�𝑐𝑓𝑑(𝐺) = 𝑛 − 2 if 𝑛 ≥ 5. This proves the assertion. ∎ 

 

Definition 2.8 The cycle 𝐶𝑛 = { 𝑎1𝑎2𝑎3 … 𝑎𝑛𝑎1 } is the graph with 𝑉(𝐶𝑛) = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} and 

𝐸(𝐶𝑛) = {𝑎1𝑎2, 𝑎2𝑎3, … , 𝑎𝑛𝑎1}. 

 

Remark 2.9 Let 𝐺 = 𝐶𝑛, 𝑛 ≥ 3. Then   �̃�𝑐𝑓𝑑(𝐺) = 𝑛 − 2. 

 

Proof. Suppose that 𝑛 = 3. Let 𝐺 = 𝐶3 such that 𝑉(𝐺) = {𝑥, 𝑦, 𝑧}. The set 𝑆 = {𝑥} is a fair dominating 

set of 𝐺. Since the subgraph induced by 𝑉(𝐺) ∖ 𝑆 = {𝑦, 𝑧} is connected, it follows that 𝑆 is an outer-

connected dominating set of 𝐺. Thus, 𝑆 is an outer-connected fair dominating set of 𝐺, that is, �̃�𝑐𝑓𝑑(𝐺) =

|𝑆| = 1 = 3 − 2 = 𝑛 − 2. Suppose that 𝑛 = 4. Let 𝐺 = 𝐶4 such that 𝑉(𝐺) = {𝑥, 𝑦, 𝑤, 𝑧} and 𝐸(𝐺) =

{𝑥𝑦, 𝑦𝑤, 𝑤𝑧, 𝑧𝑥}. The set 𝑆 = {𝑥, 𝑦} is a fair dominating set of 𝐺. Since the subgraph induced by 𝑉(𝐺) ∖

𝑆 = {𝑤𝑧} is connected, it follows that 𝑆 is an outer-connected dominating set of 𝐺. Thus, 𝑆 is an outer-

connected fair dominating set of 𝐺, that is, �̃�𝑐𝑓𝑑(𝐺) = |𝑆| = 2 = 4 − 2 = 𝑛 − 2. Similarly, if 𝑛 ≥ 5, then 

�̃�𝑐𝑓𝑑(𝐺) = |𝑆| = 𝑛 − 2. Hence, �̃�𝑐𝑓𝑑(𝐺) = 𝑛 − 2 for all 𝑛 ≥ 3. This proves the assertion. ∎ 

 

Definition 2.10 A graph 𝐾𝑛 = (𝑉(𝐾𝑛), 𝐸(𝐾𝑛)) is called a complete graph of order 𝑛 when 𝑥𝑦 is an edge 

in 𝐾𝑛 for every distinct pair 𝑥, 𝑦 ∈ 𝑉(𝐾𝑛). 

 

Definition 2.11 A complete bipartite graph is a graph whose vertex set can be partitioned into V1 and V2 

such that every edge joins a vertex in V1 with a vertex in V2, and every vertex in V1 is adjacent with every 

vertex in V2. 
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Remark 2.12 Let 𝐺 = 𝐾𝑚,𝑛, 𝑚, 𝑛 ≥ 1. Then   �̃�𝑐𝑓𝑑(𝐺) = {

𝑛, 𝑖𝑓    𝑚 = 1
𝑚, 𝑖𝑓      𝑛 = 1
2, 𝑖𝑓 𝑚, 𝑛 ≥ 2

. 

 

Proof. Suppose that 𝑚 = 1. Let 𝐺 = 𝐾1,𝑛 such that 𝑉(𝐺) = 𝑉1 ∪ 𝑉𝑚 = {𝑥} ∪ {𝑣1, 𝑣2, … , 𝑣𝑚} and 𝐸(𝐺) =

{𝑥𝑣1, 𝑥𝑣2, … , 𝑥𝑣𝑚}. The set  𝑆 = 𝑉𝑚 = {𝑣1, 𝑣2, … , 𝑣𝑚}  is fair dominating set of 𝐺. Since the subgraph 

induced by 𝑉(𝐺) ∖ 𝑆 = {𝑥} is connected, it follows that 𝑆 is an outer-connected dominating set of 𝐺. Thus, 

𝑆 is an outer-connected fair dominating set of 𝐺. Suppose that 𝑆 is not a minimum outer-connected 

dominating set of 𝐺. Then there exists 𝑣 ∈ 𝑆 such that 𝑆 ∖ {𝑣} is outer-connected dominating set of 𝐺. 

This is a contradiction since for any 𝑣 ∈ 𝑆,  𝑆 ∖ {𝑣} is not a dominating set of 𝐺. Thus, 𝑆 is must be a 

minimum outer-connected dominating set of 𝐺, that is, �̃�𝑐𝑓𝑑(𝐺) = |𝑆| = |{𝑣1, 𝑣2, … , 𝑣𝑛}| = 𝑛. Similarly, 

if 𝑛 = 1 for 𝐺 = 𝐾𝑚,1, then  �̃�𝑐𝑓𝑑(𝐺) = 𝑚. Suppose that 𝑚, 𝑛 ≥ 2. Let 𝐺 = 𝐾𝑚,𝑛 such that 𝑉(𝐺) = 𝑉𝑚 ∪

𝑉𝑛 = {𝑢1, 𝑢2, … , 𝑢𝑚} ∪ {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸(𝐺) = {𝑢𝑣: 𝑢 ∈ 𝑉𝑚, 𝑣 ∈ 𝑉𝑛}. Consider the set  𝑆 = {𝑢1, 𝑣1}. 

Since 𝑢1 ∈ 𝑉𝑚, 𝑢1𝑣 ∈ 𝐸(𝐺)  for all 𝑣 ∈ 𝑉𝑛, that is, 𝑢1 ∈ 𝑉𝑚 dominates 𝑉𝑛. Similarly, 𝑣1 ∈ 𝑉𝑛 dominates 

𝑉𝑚. This implies that 𝑆 = {𝑢1, 𝑣1} is a dominating set of 𝐺, see the graph of 𝐺 in Figure 4. 

 

 
Figure 4. 

 

Let 𝐺 = 𝐾𝑚,𝑛 such that 𝑉(𝐺) = 𝑉𝑚 ∪ 𝑉𝑛 = {𝑢1, 𝑢2, … , 𝑢𝑚} ∪ {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸(𝐺) = {𝑢𝑣: 𝑢 ∈

𝑉𝑚, 𝑣 ∈ 𝑉𝑛}. Consider the set  𝑆 = {𝑢1, 𝑣1}. Since 𝑢1 ∈ 𝑉𝑚, 𝑢1𝑣 ∈ 𝐸(𝐺)  for all 𝑣 ∈ 𝑉𝑛, that is, 𝑢1 ∈ 𝑉𝑚 

dominates 𝑉𝑛. Similarly, 𝑣1 ∈ 𝑉𝑛 dominates 𝑉𝑚. This implies that 𝑆 = {𝑢1, 𝑣1} is a dominating set of 𝐺. 

Since 𝐺 cannot be dominated by a single vertex, it follows that 𝑆 = {𝑢1, 𝑣1} is a minimum dominating set 

of 𝐺. Let 𝑥 ∈ 𝑉(𝐺) ∖ 𝑆. If 𝑥 ∈ 𝑉𝑚, then 𝑁𝐺(𝑥) ∩ 𝑆 = {𝑣1}, and if 𝑥 ∈ 𝑉𝑛, then 𝑁𝐺(𝑥) ∩ 𝑆 = {𝑢1}. Thus, 

|𝑁𝐺(𝑥) ∩ 𝑆| = 1 for all 𝑥 ∈ 𝑉(𝐺) ∖ 𝑆. This implies that 𝑆 is a fair dominating set of 𝐺. Further, let  𝑢, 𝑣 ∈

𝑉(𝐺) ∖ 𝑆 such that 𝑢 ∈ 𝑉𝑚 and 𝑣 ∈ 𝑉𝑛. Then 𝑢𝑣 ∈ 𝐸(𝐺) by Definition 2.11. Thus, the subgraph induced 

by 𝑉(𝐺) ∖ 𝑆 is connected. This implies that 𝑆 is an outer-connected dominating set of  𝐺, that is, 𝑆 is a 

minimum outer-connected fair dominating set of 𝐺. Thus, �̃�𝑐𝑓𝑑(𝐺) if 𝑚, 𝑛 ≥ 2. This completes the proofs. 

∎ 

 

3. Conclusion and Recommendations 

In this work, we introduced a new parameter of domination in graphs - the outer-connected fair domination 

in graphs. The existence of a graph with outer-connected fair domination number were proven. The outer-

connected fair domination number of some special graphs were computed. This study will pave a way to 
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new research such bounds and other binary operations of two graphs. Other parameters involving outer-

connected fair domination in graphs may also be explored. Finally, the characterization of an outer-

connected fair domination in graphs and its bounds is a promising extension of this study. 
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