

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 1

Smart Trigger Execution Framework in IoT

Gateway Applications for Home Automation

Omkar Wagle1, Abhijeet Sonar2, Aishwarya Lonarkar3

1ov.wagle@gmail.com, Independent Researcher, CA

 2abhijeetsonar.us@gmail.com, Independent Researcher, India

 3aishwaryalonarkar@gmail.com, Independent Researcher, TX

Abstract

This paper presents a trigger-based execution framework designed to enhance the responsiveness,

flexibility, and reliability of Zigbee-based home automation systems. The framework enables users

to define automation triggers—including conditions and corresponding actions-via a mobile

application, which are then centrally managed by a local gateway. The gateway processes incoming

data from Zigbee sensors in real time, evaluates trigger conditions, and executes actions by

interfacing with Zigbee[1] devices. A relational database schema supports structured storage of

triggers, conditions, actions, and device metadata. Additionally, the integration of the Paho MQTT
[2] client within the Zigbee[1] System-on-Chip (SoC) application allows for direct MQTT[2]

communication, improving system autonomy and reducing latency. This architecture minimizes

cloud dependency, enhances data privacy, and facilitates dynamic device control, making it a

robust and future- ready solution for smart home automation. The proposed system is particularly

suited for user-centric environments where intelligent, local decision-making is critical.

Keywords: Paho MQTT, Zigbee, Smart Trigger, Home automation, Internet of Things (IoT)

1. Introduction

The evolution of smart home technologies has led to a growing demand for automation systems that are

intelligent, responsive, and user-friendly. These systems aim to simplify daily life by allowing users to

automate device behaviors based on environmental inputs such as triggering lights when motion is

detected or adjusting heating systems in response to temperature changes. Achieving such

functionality requires a robust and flexible framework capable of defining, storing, and executing

automation logic efficiently and securely.

This paper introduces a trigger-based execution framework tailored for Zigbee-based home automation

environments. At the core of the system is a mobile application that allows users to define automation

triggers, each composed of conditions (e.g., sensor thresholds) and corresponding actions (e.g., device

commands). These triggers are stored locally in a structured database on the gateway, which also serves

as the central decision-making application. By offloading trigger evaluation and action execution to the

gateway, the system minimizes reliance on cloud services, thereby improving latency, enhancing

privacy, and ensuring greater operational reliability.

Furthermore, the integration of the Paho MQTT[2] client into the Zigbee System-on-Chip (SoC)

https://www.ijfmr.com/
mailto:1ov.wagle@gmail.com
mailto:2abhijeetsonar.us@gmail.com
mailto:3aishwaryalonarkar@gmail.com

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 2

application enables direct, bidirectional communication between Zigbee devices and the MQTT[2] broker.

This design reduces the burden on the gateway for handling message routing, supports real-time device

updates, and improves the system’s modularity and scalability. The resulting architecture offers a

responsive, secure, and extensible platform for smart home automation, capable of adapting to a wide

range of Internet of Things (IoT)[3] scenarios.

2. System Architecture Overview

The Mobile Application (Android/iOS) serves as the user interface for creating and managing

automation triggers involving Zigbee-based devices. When a user wants to automate a task, they start by

creating a trigger, which is identified by a unique trigger_id and given a user-friendly trigger_name. This

trigger information is then sent to the Gateway Application and stored in the local database under the

trigger table. Once a trigger is created, the user can add one or more conditions to it. Each condition links

a specific sensor device (e.g., a temperature or motion sensor) to the trigger and defines a logic trigger in

JSON format—such as “temperature < 15°C.” The condition structure includes the trigger_id, device_id,

device_name, and the trigger_condition as a JSON string. This structure is also sent to the gateway,

where it is stored in the trigger_condition table. Following the condition, the user can specify an action

that should be performed when the condition is satisfied.

For example, actions like turning on a Zigbee bulb or locking a smart door are defined using trigger

details and stored in the trigger_action table. The Gateway Application receives these settings from the

mobile app and saves them in its SQLite[5] database. Zigbee sensors send real-time data to the gateway,

which checks if any condition matches. If so, it fetches the corresponding action and sends it to the

device via the Zigbee SoC, enabling smooth and automated device control based on sensor input.

This setup ensures devices react instantly without needing constant cloud access. It also gives users more

privacy and control over their smart home environment.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 3

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 4

3. Mobile Application:

3.1. Trigger Creation via Mobile Application

The automation process begins when a user opens the mobile application, which serves as the primary

interface for configuring smart device behaviors. Within the app, the user initiates the creation of a new

automation trigger, known as a "trigger." This trigger acts as a blueprint for the automation, defining the

conditions under which specific actions should occur.

Upon creating a trigger, the system assigns it a unique identifier, referred to as trigger_id, and allows the

user to provide a descriptive name, trigger_name, for easy reference. This information is encapsulated in

a structured format:

• Trigger Structure: {trigger_id: Integer, trigger_name: String}

This structured data is then transmitted to the Gateway Application, where it is stored in the trigger table

of the local SQLite[5] database. This storage ensures that the system can efficiently manage and reference

the trigger during operation.

3.2. Trigger Condition Creation via Mobile Application

After establishing a trigger, the user can define specific conditions that determine when the trigger

should activate. These conditions are linked to particular devices within the system. For instance, a

user might set a condition to monitor the temperature reported by a sensor. To add a condition, the user

selects the relevant device and specifies the condition in a JSON- formatted string. This structured data

includes the trigger's identifier, the device's identifier and name, and the condition itself:

• Condition Structure: {trigger_id: Integer, device_id: Integer, device_name: String,

trigger_condition: JSON String}

This condition structure is sent to the Gateway Application and stored in the trigger_condition table of

the SQLite[5] database. By organizing conditions in this manner, the system can efficiently evaluate

whether the specified criteria are met during operation.

3.3. Trigger Action Creation via Mobile Application

Once conditions are set, the user defines the actions that should occur when those conditions are

satisfied. Actions are also associated with specific devices. For example, if a temperature sensor detects a

reading below a certain threshold, the system might turn on a heater. To specify an action, the user selects

the target device and defines the desired action in a JSON-formatted string. The action structure includes

the trigger's identifier, the device's identifier and name, and the action details:

• Action Structure: {trigger_id: Integer, device_id: Integer, device_name: String, trigger_action:

JSON String}

This action structure is transmitted to the Gateway Application and stored in the trigger_action table of

the SQLite[5] database. Storing actions in this structured format allows the system to execute the

appropriate responses when conditions are met.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 5

4. Gateway Application

In an IoT automation framework, the gateway serves as the central hub that orchestrates the interaction

between the user- defined automation triggers and the connected devices. The gateway receives this

information when a user creates a new trigger through the mobile application. It stores it in the trigger

table of its local SQLite[5] database. Each trigger is assigned a unique identifier (trigger_id), which is the

unique identifier in the trigger table.

Subsequently, when the user defines specific conditions and actions associated with this trigger, the

gateway stores these details in the trigger_condition and trigger_action tables, respectively. Both tables

reference the trigger_id as a foreign key, establishing a relational link to the original trigger. This

structured approach ensures that each condition and action is accurately associated with its corresponding

trigger, facilitating efficient retrieval and execution.

In addition to managing triggers, the gateway maintains a complete record of all devices linked to the

network in

the device_info table. This table includes critical information such as device_id, device_name,

manufacturer details, device capabilities, and attributes. By referencing this table, the system ensures that

only recognized and registered devices are involved in automation triggers, thereby maintaining system

integrity and preventing unauthorized device interactions.

The gateway continuously monitors incoming data from Zigbee devices through the Zigbee System-on-

Chip (SoC) application. Upon receiving a report from a device, the gateway initiates a multi-step process:

4.1. Condition Matching: The gateway queries the trigger_condition table using the device_id and

device_name from the incoming report to identify any matching conditions.

4.2. Evaluation: If matching conditions are found, the gateway iterates through each, evaluating whether

the current state or data from the device satisfies the specified condition.

4.3. Action Retrieval: For each condition that evaluates to true, the gateway retrieves the corresponding

action from the trigger_action table using the associated trigger_id.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 6

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 7

4.4. Command Execution: The gateway constructs a command payload based on the retrieved action

details, incorporating the relevant device_id and device_name. This command is then dispatched to

the appropriate Zigbee device to execute the desired action.

5. Database Schema and Operational Workflow

The Gateway Application employs a structured relational database to manage automation triggers

effectively. This database comprises several interconnected tables, each serving a specific purpose in the

automation process.

5.1. trigger Table

This table serves as the foundational registry for all automation triggers defined by users. Each entry in

the trigger table includes:

• trigger_id: A unique integer that acts as the primary key, ensuring each trigger can be distinctly

identified.

• trigger_name: A descriptive name the user provides to reference the trigger easily.

The trigger_id is crucial as it establishes relationships with other tables, linking specific conditions

and actions to their corresponding triggers.

5.2. trigger_condition Table

This table records the specific conditions under which a trigger should activate. Each condition is

associated with a particular device and includes:

• trigger_id: A foreign key referencing the trigger table, indicating which trigger the condition

belongs to.

• device_id: An identifier for the device involved in the condition.

• device_name: The name of the device, providing a human-readable reference.

• trigger_condition: A JSON-formatted string detailing the specific condition (e.g., temperature <

15°C).

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 8

By structuring conditions in this manner, the system can efficiently evaluate whether incoming data from

devices satisfies any user-defined conditions.

5.3. trigger_action Table

This table defines the actions to be executed when corresponding conditions are met. Each action entry

includes:

• trigger_id: A foreign key linking back to the trigger table, indicating which trigger the action is

associated with.

• device_id: The identifier of the device that will perform the action.

• device_name: The name of the device, aiding in identification.

• trigger_action: A JSON-formatted string specifying the action to be taken (e.g., turn on a smart

bulb).

This structure allows the system to execute precise actions on designated devices when conditions are

fulfilled.

5.4. device_info Table

To manage and validate devices within the network, the device_info table maintains comprehensive

records of all connected devices, including:

• device_id: A specific identifier that differentiates one device from another.

• device_name: The human-readable name of the device.

• manufacturer: Information about the device's manufacturer.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 9

• device_capability: Details about what the device can do (e.g., sensing temperature, controlling

lights).

• device_attributes: Additional properties or settings relevant to the device.

This table ensures that only recognized and properly configured devices are involved in automation

triggers, maintaining system integrity.

6. Zigbee SOC Application

6.1. Operational Workflow of the Zigbee SOC application

6.1.1. Device Communication

All Zigbee devices in the network connect through a central component called the Zigbee SOC

application. This application acts like the brain of the network’s communication system. It

manages how devices talk to each other by following specific triggers (called communication

protocols). Its job is to make sure messages sent between devices are delivered correctly and

reliably, preventing data loss or errors.

6.1.2. Data Reception

Whenever a Zigbee device (such as a sensor or switch) wants to share information-like sending a

status update or reporting sensor data-it sends this information to the network. The Zigbee SOC

application receives this incoming data and acts as a middleman by passing it along to another

software called the gateway application. This gateway is responsible for understanding and

processing the data to decide what needs to be done next.

6.1.3. Command Transmission

After the gateway application processes the data from the devices, it might decide that an action

should be taken. For example, if a temperature sensor reports that the room is too hot, the gateway

might decide to turn on a fan or AC unit. The gateway sends this instruction back to the Zigbee

SOC application in the form of a command, specifying exactly what the device should do.

6.1.4. Device Control

Once the Zigbee SOC application receives the command from the gateway, it sends the command

directly to the targeted Zigbee device (e.g., a smart light or motor). The device then performs the

action requested, such as turning on, off, or adjusting settings. This completes the communication

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 10

loop, enabling real-time control and automation within the network.

In modern Zigbee-based home automation systems, integrating the Paho MQTT[2] client directly into

the Zigbee SOC application streamlines communication between Zigbee devices and the MQTT broker.

This architecture allows the Zigbee SOC to handle MQTT[2] messaging autonomously, reducing

dependency on intermediary gateway applications. The Zigbee SOC, equipped with a System-on-Chip

(SoC), interfaces with various Zigbee devices such as sensors and actuators. By incorporating the

Paho MQTT[2] client, the SOC can publish sensor data to specific MQTT[2] topics (e.g.,

zigbee2mqtt/device_name) and subscribe to command topics (e.g., zigbee2mqtt/device_name/set).

This bidirectional communication enables real-time monitoring and control of devices through the

MQTT[2] broker.

Implementing the Paho MQTT[2] client on the Zigbee SOC offers several advantages:

• Efficiency: Direct MQTT[2] communication reduces latency and overhead associated with routing

messages through a separate gateway application.

• Scalability: The publish/subscribe model of MQTT[2] facilitates easy addition of new devices

and services without significant changes to the existing infrastructure.

• Reliability: Features like automatic reconnection and Quality of Service (QoS) levels in the Paho

MQTT[2] client enhance the robustness of the communication, ensuring message delivery even in

unstable network conditions.

This setup is particularly beneficial in scenarios requiring prompt response times and minimal system

complexity. By offloading MQTT[2] responsibilities to the Zigbee SOC, the system achieves a more

modular and maintainable architecture, conducive to the dynamic needs of home automation

environments.

7. Conclusion

The proposed trigger execution framework delivers a comprehensive, scalable, and efficient solution

for managing intelligent behaviors in Zigbee-based home automation systems. The system ensures

low-latency operation and enhanced privacy by enabling users to define automation triggers through a

mobile application and offloading trigger processing to a local gateway, the system ensures low-latency

operation and enhanced privacy. The modular database schema-including tables for triggers, conditions,

actions, and device metadata-supports structured trigger storage and reliable execution. Integration of the

Zigbee SoC with the Paho MQTT[2] client further enhances system responsiveness and autonomy

by streamlining communication with the MQTT[2] broker. This architecture reduces reliance on cloud

services and allows for real-time decision- making and secure device control, making it well-suited for

dynamic, user-centric smart home environments. As the demand for responsive and intelligent home

automation systems grows, the presented framework offers a future-ready foundation adaptable to a

wide range of IoT scenarios.

8. References

1. Zigbee Alliance, Zigbee Specification, Zigbee Alliance, 2017. [Online]. Available: https://csa-

iot.org/all-solutions/zigbee/

2. Eclipse Foundation, "Eclipse Paho - MQTT client library," [Online]. Available:

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250348840 Volume 7, Issue 3, May-June 2025 11

https://www.eclipse.org/paho/

3. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision,

architectural elements, and future directions," Future Generation Computer Systems, vol. 29, no.

7, pp. 1645–1660, 2013.

4. International Telecommunication Union, Overview of the Internet of Things, Recommendation

ITU-T Y.2060, 2012. [Online]. Available: https://www.itu.int/rec/T-REC-Y.2060-201206-I/en.

5. D. R. Hipp, SQLite, SQLite Consortium. [Online]. Available: https://www.sqlite.org/

https://www.ijfmr.com/
http://www.eclipse.org/paho/
http://www.itu.int/rec/T-REC-Y.2060-201206-I/en
http://www.sqlite.org/

