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Abstract 

Mental stress, a pervasive global health concern, significantly impacts individual well-being, economic 

productivity, and contributes to a spectrum of physical and psychological disorders. The concurrent 

proliferation of wearable sensors, ubiquitous smart devices, and online social platforms has generated 

unprecedented volumes of multimodal data, creating a fertile ground for the objective, continuous, and 

automated detection of human stress. This paper provides a comprehensive and in-depth review of the 

application of machine learning (ML) techniques for mental stress detection. We survey the diverse 

landscape of data modalities, from direct physiological signals such as Electroencephalography (EEG) 

and Heart Rate Variability (HRV), to indirect behavioral cues derived from video and speech analysis, 

and rich textual data mined from social media. A detailed analysis of the machine learning paradigms 

employed is presented, covering classical models like Support Vector Machines (SVM) and Ensemble 

Learning, as well as advanced Deep Learning architectures including Convolutional and Recurrent 

Neural Networks (CNNs, RNNs) and state-of-the-art transformer-based models for Natural Language 

Processing (NLP). Finally, we discuss promising future directions poised to overcome these hurdles, 

including the development of sophisticated multimodal fusion techniques, the creation of closed-loop 

systems for real-time stress mitigation, and the integration of more advanced, context-aware artificial 

intelligence. 
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1. Introduction 

Mental stress, defined as the physiological and psychological response to perceived threats or 

demands—known as stressors—is an inescapable component of modern life. While acute, short-term 

stress can be adaptive, enhancing focus and performance, chronic or excessive stress is maladaptive. 

Traditional methods for assessing stress predominantly rely on self-report instruments like the Perceived 

Stress Scale (PSS) and clinical interviews. Although valuable, these methods are inherently subjective, 

prone to recall bias, sporadic, and fail to capture the dynamic, moment-to-moment fluctuations of stress 

experienced in naturalistic, real-world settings. This significant methodological gap has spurred a 

concerted search for objective, continuous, and non-intrusive methods for stress detection. 

The convergence of ubiquitous computing—particularly through wearable technology and 

smartphones—and artificial intelligence has catalyzed a paradigm shift in mental health monitoring. 
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Machine learning (ML), a field of AI that endows systems with the ability to learn complex patterns 

from data without explicit programming, is at the epicentre of this revolution [1][4] By analyzing vast 

streams of data from diverse sources, ML models can identify subtle yet consistent physiological, 

behavioral, and linguistic patterns that are indicative of stress. This capability offers a powerful toolkit 

for early detection, continuous monitoring, and personalized intervention, moving mental healthcare 

from a reactive to a proactive model. 

This review provides a structured and comprehensive overview of this rapidly evolving domain. We 

outline the detailed methodological pipeline, from data acquisition to model deployment, and elucidate 

the underlying conceptual framework that connects the neurophysiological stress response to a 

computationally tractable machine-learning problem. An expanded synthesis of the literature is 

presented, followed by a rigorous comparative analysis of different approaches and a deep discussion of 

their implications. 

 

2. Methodology 

The methodologies reviewed in the literature adhere to this conceptual framework, demonstrating 

significant diversity in both data acquisition techniques and the computational models applied. 

2.1. Data Acquisition and Modalities: The choice of data modality is fundamental to the system's 

design, balancing factors like intrusiveness, accuracy, and scalability. A diagram could effectively 

illustrate these diverse data streams flowing into a central processing unit. 

• Physiological: This category represents the most direct measurement of the stress response. Data is 

captured using various sensors. EEG data is collected with headsets ranging from multi-channel, 

clinical-grade caps to more portable, consumer-grade devices. ECG is often captured with chest 

straps for high-fidelity R-peak detection, while photoplethysmography (PPG) sensors in 

smartwatches and fitness trackers provide a more convenient, albeit sometimes less accurate, 

alternative for estimating HRV. GSR/EDA sensors are typically integrated into wrist-worn devices 

or research-grade equipment. 

• Behavioral: These modalities capture the external manifestations of an individual's internal state. 

Video-based systems use cameras to record facial expressions, with algorithms then identifying the 

activation of specific Facial Action Units (AUs) associated with negative affect, such as brow 

lowering (AU4) or lip corner depression (AU15) [8]. Audio-based systems analyze vocal prosody, 

extracting acoustic features like pitch (fundamental frequency), jitter (pitch perturbation), shimmer 

(amplitude perturbation), and Mel-frequency cepstral coefficients (MFCCs) [9].  Actigraphy, 

typically from accelerometers in wearables, is used to monitor sleep quality, restlessness, and general 

activity levels, all of which are modulated by stress [3]. 

• Textual: Leveraging the digital footprint of individuals, this modality involves scraping textual data 

from social media platforms like Reddit or Twitter. This process requires careful handling of data 

anonymization to protect user privacy. NLP techniques are then applied to these large corpora to find 

linguistic markers correlated with stress [2] [7]. 

2.2. Machine Learning and Deep Learning Models The analytical core of these systems consists of a 

wide range of algorithms: 

• Classical ML Models: These models are often favored when feature sets are well-understood and 

interpretability is a priority. Support Vector Machines (SVM) remain highly popular for their 

effectiveness in finding optimal separating hyperplanes in high-dimensional feature spaces [5]. 
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Ensemble methods like Random Forests and Gradient Boosting are also widely used due to their 

robustness and ability to handle complex feature interactions [6]. 

• Deep Learning (DL) Models: DL models have become dominant for their ability to perform 

automatic feature learning from raw, high-dimensional data. CNNs, for example, are adept at 

learning spatial patterns and can be applied to 2D representations of time-series data, like 

spectrograms from audio or EEG signals arranged in a topographical map. RNNs and LSTMs are 

inherently suited for sequential data, as their internal memory allows them to capture temporal 

dependencies in physiological time series or the sequential structure of language [10] [9]. 

• NLP Models: In the textual domain, the field has rapidly advanced from using bag-of-words models 

to sophisticated transformer architectures like BERT. Transformers utilize a self-attention 

mechanism, allowing the model to weigh the importance of different words in a sentence 

dynamically, leading to a much deeper contextual understanding. This enables the detection of 

nuanced expressions of stress that were previously intractable [11] [12]. 

 

3. Comparison Tables 

Stress Detection in Humans through EEG 

Research Title Dataset 

Employed 

Method 

Used 

Strength of the 

Technique 

(Inferred) 

Potential for 

Enhancement 

(Inferred) 

R. Katmah, F. Al-Shargie, U. Tariq, F. 

Babiloni, F. Al-Mughairbi, and H. Al-

Nashash, “A review on mental stress 

assessment methods using eeg 

signals,” Sensors, vol. 21, no. 15. 

MDPI AG, Aug. 01, 2021. doi: 

10.3390/s21155043. 

Not 

specified 

(review 

paper) 

Review of 

EEG-based 

methods 

Comprehensive 

overview of 

existing 

methods. 

Can guide 

future research 

by identifying 

gaps. 

R. Subhani, W. Mumtaz, M. N. B. M. 

Saad, N. Kamel, and A. S. Malik, 

“Machine learning framework for the 

detection of mental stress at multiple 

levels,” IEEE Access, vol. 5, pp. 

13545–13556, Jul. 2017, doi: 

10.1109/ACCESS.2017.2723622. 

Not 

specified 

Machine 

learning 

framework 

Explores multi-

level detection 

of stress. 

Further 

validation on 

diverse 

datasets. 

G. Jun and S. K. G., “EEG based 

stress level identification,” in 2016 

IEEE International Conference on 

Systems, Man, and Cybernetics 

(SMC), 2016, pp. 3270–3274. doi: 

10.1109/SMC.2016.7844738. 

Not 

specified 

EEG-based 

stress level 

identification 

Direct approach 

to stress level 

identification. 

Integration 

with other 

biosignals for 

robustness. 

G. Giorgos, G. Dimitris, and T. 

Manolis, “Detection of stress/anxiety 

state from EEG features during video 

watching,” Annu Int Conf IEEE Eng 

Not 

specified 

EEG feature 

analysis 

during video 

watching 

Contextual 

stress detection. 

Real-time 

application and 

broader 

scenarios. 
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Med Biol Soc., vol. 7, no. 1, pp. 

6037–6041, 2015, doi: 

10.1109/EMBC.2015.7319767. 

 

Stress Detection Using Speech Signal 

Research Title Dataset 

Employed 

Method Used Strength of 

the Technique 

(Inferred) 

Potential for 

Enhancement 

(Inferred) 

Mustaqeem and Soonil Kwon “A 

CNN-Assisted Enhanced Audio 

Signal Processing for Speech 

Emotion Recognition” MDPI 

Journal 28 December 2019. 

Not 

specified 

CNN-Assisted 

Audio Signal 

Processing 

Combines 

CNN with 

audio 

processing for 

emotion. 

Further 

enhancements in 

audio feature 

extraction. 

Issa, D.; Fatih Demirci, M.; 

Yazici, A. Speech emotion 

recognition with deep 

convolutional neural networks. 

Biomed. Signal Process. Control 

2020, 59, 101894. 

Not 

specified 

Deep 

convolutional 

neural networks 

Deep learning 

for speech 

emotion 

recognition. 

Optimization of 

network 

architectures. 

Zamil, A.A.A.; Hasan, S.; Baki, 

S.M.J.; Adam, J.M.; Zaman, I. 

Emotion Detection from Speech 

Signals using Voting Mechanism 

on Classified Frames. In 

Proceedings of the 2019 

International Conference on 

Robotics, 

Not 

specified 

Voting 

Mechanism on 

Classified 

Frames 

Ensemble 

method for 

robust emotion 

detection. 

Testing with a 

wider range of 

datasets. 

 

Recognition of Stress via Audio Visual information 

Research Title Dataset 

Employed 

Method Used Strength of 

the 

Technique 

(Inferred) 

Potential for 

Enhancement 

(Inferred) 

Luna-Jiménez, C.; Kleinlein, R.; Griol, 

D.; Callejas, Z.; Montero, J.M.; 

Fernández-Martínez, F. A Proposal for 

Multimodal Emotion Recognition Using 

Aural Transformers and Action Units on 

RAVDESS Dataset. Appl. Sci. 2022, 12, 

327. https://doi.org/10.3390/app 

12010327 

RAVDESS 

Dataset 

Aural 

Transformers 

and Action 

Units 

Utilizes a 

specific 

public 

dataset and 

advanced 

techniques. 

Exploring 

fusion 

strategies and 

real-time 

performance. 

Mansouri-Benssassi, E.; Ye, J. Speech 

Emotion Recognition With Early Visual 

Not 

specified 

Spiking 

Neural 

Novel 

neural 

Efficiency and 

biological 
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https://doi.org/10.3390/app


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250349499 Volume 7, Issue 3, May-June 2025 5 

 

Cross-modal Enhancement Using 

Spiking Neural Networks. In 

Proceedings of the 2019 International 

Joint Conference on Neural Networks 

(IJCNN), Budapest, Hungary, 14–19 

July 2019; pp. 1–8. 

Networks with 

Cross-modal 

Enhancement 

network 

approach 

with cross-

modal 

fusion. 

plausibility. 

Luna-Jiménez, C.; Griol, D.; Callejas, 

Z.; Kleinlein, R.; Montero, J.M.; 

Fernández-Martínez, F. Multimodal 

Emotion Recognition on RAVDESS 

Dataset Using Transfer Learning. 

Sensors 2021, 21, 7665. 

https://doi.org/10.3390/s21227665 

RAVDESS 

Dataset 

Transfer 

Learning 

Efficiently 

leverages 

pre-trained 

models. 

Fine-tuning for 

specific stress 

recognition 

tasks. 

 

Towards Deep Learning-Based Facial Recognition 

Research Title Dataset 

Employed 

Method Used Strength of the 

Technique 

(Inferred) 

Potential for 

Enhancement 

(Inferred) 

Naga, P.; Marri, S.D.; Borreo, 

R. Facial emotion recognition 

methods, datasets and 

technologies: A literature 

survey. Mater. Today Proc. 

2021. 

Not 

specified 

(literature 

survey) 

Literature survey 

on methods, 

datasets, 

technologies 

Comprehensive 

overview of the 

field. 

Identifies trends 

and future 

research 

directions. 

Ashraf, A.; Gunawan, T.; 

Rahman, F.; Kartiwi, M. A 

Summarization of Image and 

Video Databases for Emotion 

Recognition. In Recent Trends 

in Mechatronics Towards 

Industry 4.0. Lecture Notes in 

Electrical Engineering; 

Springer: Singapore, 2022; 

Volume 730, pp. 669–680. 

Various 

Image and 

Video 

Databases 

Summarization 

and analysis of 

databases 

Provides insights 

into available 

resources. 

Helps in 

selecting 

appropriate 

datasets for 

research. 

 

4. Literature Review 

Stress Detection in Humans through EEG 

Electroencephalography (EEG) signals, representing the brain's electrical activity, offer a direct 

physiological window into stress states, making them a primary modality for objective stress assessment. 

Comprehensive reviews, such as that by Instrumental in charting the landscape of EEG-based stress 

detection methods. These reviews not only catalog existing techniques but critically identify gaps, 

suggesting that while the field is robust, there remains a significant need for more robust, generalized, 

and clinically validated solutions. [13] 
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Demonstrated a machine learning framework for multi-level mental stress detection, highlighting a 

move towards more granular, severity-based assessment rather than simple binary stress/non-stress 

classification.[14] 

Explored direct EEG-based stress level identification. While straightforward, such approaches often 

benefit from multimodal integration with other biosignals (e.g., heart rate, skin conductance) to enhance 

reliability and provide a more holistic stress profile, mitigating the inherent variability of EEG.[15] 

Contextual understanding is crucial for practical applications. 

Pioneered stress/anxiety state detection from EEG features during video watching, illustrating the 

potential for applications in interactive and dynamic environments. The strength here lies in linking 

brain activity to specific stimuli.[16] 

 

Stress Detection Using Speech Signal 

Speech signals offer a highly accessible and non-invasive modality for stress and emotion detection, 

with significant potential for real-world applications. Early foundational work, exemplified by 

Introduced a CNN-assisted approach to enhance audio signal processing for speech emotion recognition. 

Convolutional Neural Networks (CNNs) excel at learning hierarchical features, which can significantly 

improve the extraction of relevant acoustic patterns.[17] 

Leveraged deep convolutional neural networks directly for speech emotion recognition, indicating a 

strong trend towards end-to-end deep learning solutions that can learn features directly from raw audio. 

[18] 

Employed a voting mechanism based on classified frames for emotion detection. This ensemble method 

enhances robustness by combining multiple decisions, a valuable strategy for improving overall 

accuracy, but requires extensive validation across diverse datasets to prove its generalizability.[19] 

 

Recognition of Stress via Audio Visual Information 

Combining audio and visual cues for stress and emotion recognition offers a richer, more robust dataset 

than single modalities, leading to potentially higher accuracy and reliability. This multimodal approach 

is particularly relevant for applications requiring a comprehensive understanding of human affective 

states. 

Made a significant contribution by proposing multimodal emotion recognition using Aural Transformers 

and Action Units on the RAVDESS Dataset. The strength of this work lies in its utilization of a well-

known public dataset, facilitating reproducibility and comparison, combined with advanced transformer 

architectures for audio and Action Units for facial expressions. Future directions include exploring more 

sophisticated fusion strategies (e.g., early, late, or hybrid fusion) and optimizing models for real-time 

performance in unconstrained settings. [20] 

Introduced Spiking Neural Networks with early visual cross-modal enhancement for speech emotion 

recognition. This indicates a promising move towards biologically plausible and potentially more 

energy-efficient models. Future work could focus on scalability and hardware implementation for real-

time applications. Finally,[21] 

Further explored multimodal emotion recognition on the RAVDESS Dataset using Transfer Learning. 

The power of transfer learning lies in efficiently leveraging pre-trained models, reducing the need for 

massive domain-specific datasets. Fine-tuning these models for specific stress recognition tasks, rather 

https://www.ijfmr.com/
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than general emotion recognition, and assessing their performance in diverse real-world scenarios are 

important next steps.[22] 

 

Towards Deep Learning-Based Facial Recognition 

Facial recognition has become a cornerstone of emotion and stress detection, especially with the 

transformative power of deep learning. This field benefits immensely from comprehensive reviews that 

map its rapid evolution. 

Provided a valuable literature survey on facial emotion recognition methods, datasets, and technologies. 

This survey's strength lies in its ability to consolidate diverse research, helping to identify current trends 

(e.g., the dominance of deep learning, the emergence of 3D facial models) and highlighting critical areas 

for future work, such as improving robustness to occlusions, varying lighting conditions, and diverse 

ethnic facial features. Similarly,[23] 

Contributed by summarizing existing image and video databases specifically curated for emotion 

recognition. Future research will likely focus on synthesizing more diverse and realistic facial datasets, 

potentially leveraging generative adversarial networks (GANs), and developing standardized 

benchmarks for cross-dataset evaluation. Furthermore, the integration of explainable AI (XAI) 

techniques will be crucial for understanding how deep learning models interpret facial cues and ensuring 

fair and transparent decision-making.[24] 

 

5. Future Directions and Research Gaps 

Addressing the current challenges effectively illuminates the path forward, pointing to several promising 

and critical future directions for research. 

• Real-time Stress Detection and Mitigation: The ultimate vision extends beyond mere detection to 

intervention. The future lies in creating closed-loop biofeedback systems that not only identify stress 

in real-time but also deliver personalized, just-in-time interventions. The work by [5] on using 

binaural beat stimulation is an early prototype. Future systems could integrate a wide array of 

interventions, such as triggering guided breathing exercises on a smartwatch, suggesting a short 

walk, or adapting the user's music playlist to be more calming. 

• Advanced Wearable Sensors: The field's progress is inextricably linked to sensor innovation. The 

next generation of wearables will likely be more comfortable, more accurate, and more energy-

efficient. We can anticipate the integration of novel sensors capable of non-invasively measuring 

biomarkers previously confined to the lab, such as cortisol levels in sweat, providing a more direct 

window into the HPA axis activity. 

• Advanced Learning Paradigms: To break the dependency on large, labeled datasets, the field must 

embrace more advanced learning paradigms. Federated learning holds promise for training models 

on decentralized data (e.g., on users' phones) without compromising raw data privacy. Unsupervised 

and semi-supervised learning techniques are crucial for leveraging the vast amounts of unlabeled 

data being generated. Furthermore, reinforcement learning could be used to train agents that learn 

optimal, personalized intervention strategies over time based on user feedback and physiological 

responses. 

• Personalized and Context-Aware Models: One-size-fits-all models are doomed to fail. The future 

requires deeply personalized models that learn an individual’s unique physiological and behavioral 

stress signature. Crucially, these models must be context-aware. A system must be able to 

https://www.ijfmr.com/
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differentiate a high heart rate caused by exercise from one caused by an argument. This requires 

integrating multimodal sensor data with contextual information from smartphone calendars, GPS, 

ambient sound, and app usage to build a rich, holistic understanding of the user's life and the triggers 

of their stress. 

 

6. Conclusion 

The application of machine learning to the detection of human mental stress has rapidly evolved from a 

niche academic pursuit into a vibrant and impactful field of research. This review has charted its 

significant progress, detailing the impressive breadth of data modalities being harnessed—from the 

electrical whispers of the brain to the overt language of social media—and the growing sophistication of 

the machine learning techniques being employed. From interpretable classical algorithms to powerful 

deep learning architectures, these models have demonstrated a remarkable and promising ability to 

identify the complex, multi-faceted signature of stress across a variety of meaningful contexts. 

However, the journey from research prototype to reliable, real-world tool is far from complete. The path 

is obstructed by formidable challenges, chief among them being the development of models that can 

generalize across diverse contexts and individuals. The critical needs for algorithmic transparency and 

interpretability, alongside the pressing ethical imperatives of data privacy and security, must be placed at 

the forefront of the research agenda. 
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