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ABSTRACT 

Hydrological modeling is a tool for the investigation of hydrologic system for both the hydrologists and 

practicing water resources engineers involved in the planning, development, and management of water 

resources systems.  The Artificial Neural Network (ANN) solutions have been found promising in 

modeling the complex hydrological systems as compared to the traditional conceptual or empirical 

approaches. The basic building block of such ANN models used in hydrology employs an artificial 

neuron called McCulloch and Pitts Artificial Neuron (MPAN) proposed by McCulloch and Pitts in the 

early 1940s. Recently, some researchers have proposed the use of Generalized Neuron (GN) models in 

other branches of engineering and sciences but such attempts have been limited in hydrology so far.  

Neural system (NS) models presented here include: (a) a traditional feed-forward multi-layer perceptron 

(MLP) ANN model (employing MPAN) trained using back-propagation algorithm, and (b) three 

different GN models. This paper presents the results of an investigation aimed at developing NS models 

for the purpose of rainfall-runoff modeling. The performance of the developed GN models is compared 

with a traditional feed-forward neural network model developed using MPANs.  The rainfall and flow 

data derived from the Kentucky River Basin, USA were used for the model development and validation.  

With their compact structure, less number of parameters, and, lesser training time, the GN models were 

found more promising for the rainfall-runoff modeling in the present study.  The results obtained in this 

study indicate that the GN models have tremendous potential for application in hydrological 

development.  It is hoped that future research efforts will focus on exploiting the strengths of such 

artificial neuron models for an effective and efficient operation and management of water resources and 

environmental systems.  

 

Keywords:  Hydrological Modeling, Generalized Neuron, Advanced Neuron Models, Artificial Neural 

Network, Neural System in Hydrology  

 

1. INTRODUCTION 

Water is a natural resource that is essential to all kinds of lives on the earth.  Out of the total water 

available on earth, only about one percent is available as fresh water on land, and the rest is contained 

either in the oceans, or in the form of frozen ice on mountain tops and glaciers (Subramanya, 1994).  An 

important factor in the water resources planning, development, design operation, or management project 

is the accurate estimation of the available water at a local source such as a river.  If the estimated runoff 

at a location in a river is inaccurate, it may lead to inaccurate policy being implemented resulting in not 

only the loss of revenue but also the loss of life and property in extreme cases.  Runoff forecast models 
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are useful in many water resources applications such as flood control, drought management, operation of 

water supply utilities, optimal reservoir operation, and design of various hydraulic structures such as 

dams, bridges, and culverts, etc.  Runoff forecasts are normally made through the development of runoff 

forecast models that use only hydrologic data, or through rainfall-runoff models that use both hydrologic 

and climatic data.  Historically, hydrologists have employed conceptual methods that incorporate the 

physics of the system in modeling, or empirical approaches that do not consider the underlying physics 

while modeling.  There has been a tremendous growth in the use of artificial neural networks (ANNs) 

for the modeling hydrological systems in the last fifteen years or so.  The ANN solutions have been 

found promising in modeling the complex hydrological systems as compared to the traditional 

conceptual or empirical approaches. The ANN applications to hydrological modeling range from simple 

application of ANNs (Mins and Hall, 1996; Shamseldin et al, 1997; Campolo et al., 1999; Jain and 

Indurthy, 2003) to complex ANN models involving specialized efforts such as the use of genetic 

algorithms for training of neural networks (Jain and Srinivasulu, 2004); developing hybrid neural 

networks (Chen and Adams, 2006); and data-decomposition and integration of techniques (Abrahart and 

See, 2000; and Jain and Srinivasulu, 2006).  Most of the ANN applications to hydrology employ the 

‘McCulloch and Pitts’ Artificial Neuron (MPAN) that was proposed in the early 1940s.  The MPAN has 

been found to function very well in most engineering applications; however, determination of an optimal 

ANN architecture has remained a trial and error procedure over the years.  Such trial and error 

procedures are often inefficient in terms of computational effort and may not be able to ensure optimal 

solutions. There are no standard guidelines that can be employed uniformly for determining the 

architecture i.e. the number of hidden layers as well as the number of hidden neurons of the ANN 

models.  Therefore, there appears to be a strong need to explore another artificial neuron structures to 

overcome such limitations.  The increased demand on the more and more accurate estimations of future 

variables has forced the researchers to look beyond MPAN.  Recently, some researchers have proposed 

the use of Generalized Neuron (GN) models in other branches of engineering and sciences but such 

attempts have been limited in hydrology.  The GN differs from the traditional MPAN in many ways 

including its capability to have non-linear discriminant function.  The major limitation of the MPAN has 

been the linear nature of the discriminant function employed in the aggregation of inputs.  There is no 

need to determine the number of hidden layers and consequently the number of hidden neurons as a 

single generalized neuron is capable of modeling a complex physical system.  Some recent studies in 

hydrology focusing on the integration of conceptual and ANN methods or using different training 

methods (viz. genetic algorithms) emphasize the need of developing more robust and efficient 

hydrological models capable of producing more accurate flow forecasts.  Some of the reasons for the 

ANNs not been adopted as operational tools are the reluctance shown by water resources policy makers, 

ignorance about their strength, ANNs being data-driven models and the perception that they are not able 

to explain the physical behavior of the catchment, etc.  There are certain issues that need the attention of 

researchers in order to develop solutions that are capable of providing improved model performance in 

modeling and forecasting of the complex physical systems such as hydrologic and environmental 

systems.  The motivation of the present thesis work mainly stems from these issues which are either 

unexplored or are partially explored. 

 

STUDY AREA AND PERFORMANCE STATISTICS 

Study Area and Data:  The data derived from the Kentucky River Basin were employed to train and  

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250349775 Volume 7, Issue 3, May-June 2025 3 

 

test all the models developed in this study.  The Kentucky River Basin (see Figure 1), encompasses over 

4.4 million acres (17,820 km2) of the state of Kentucky.  Forty separate counties lie either completely or 

partially within the boundaries of the catchment.  The Kentucky River is the sole source for the several 

water supply companies of the state.  The drainage area of the Kentucky River at Lock and Dam 10 

(LD10) near Winchester, Kentucky is approximately 10,240 km2 and the time of concentration of the 

catchment is approximately two days.  The data used in this study include the average daily streamflow 

(m3/s) from Kentucky River at LD10 and LD11 (near Heidelberg), and the daily average rainfall (mm) 

from the five rain gauges (Manchester, Hyden, Jackson, Heidelberg, and Lexington Airport) scattered 

throughout the Kentucky River catchment.  A total length of the data of 26-years (1960-1989 with data 

in some years missing) was available.  The data were divided into two sets: a training data set consisting 

of the daily rainfall and flow data for thirteen years (1960-1972), and a testing data set consisting of the 

daily rainfall and flow data of thirteen years (1977-1989).  The statistical properties of the training and 

testing input data set have been presented in Table 1, which show that both the data set represent the 

overall catchment characteristics well. 

 
Figure 1: Kentucky River Basin 

 

Table 1: Statistical properties of the Kentucky River data 

 
Flow 

 (cubic meters/sec) 
Rainfall (mm) 

 Training Testing Training Testing 

     

Minimum 3.60 3.28 0.000 0.000 

Maximum 2528.69 2806.19 77.40 81.99 

Average 149.94 144.78 3.24 3.16 

Std. 

Deviation 
243.30 232.81 6.20 6.18 

Skewness 3.67 4.00 3.49 3.94 

Model Performance:  The performance of all the models developed in this study was evaluated using 

five different standard statistical measures.  These are Normalized root mean square error (NRMSE), 

Nash-Sutcliffe efficiency (E), Pearson coefficient of correlation (R), average absolute relative error  

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250349775 Volume 7, Issue 3, May-June 2025 4 

 

(AARE) and threshold statistic (TS). The equations to compute these statistics are provided below. 
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Where XO is the observed value of the variable, XE is the estimated value of the variable from a model, 

XO  is the average observed value of the variable, XE  is the average estimated value of the variable, nx 

is the number of data points estimated for which the absolute relative error (ARE) is less than x%, N is 

the total number of data points estimated, and all the summations run from 1 to N.  The value of x of 

25%, 50%, and, 100% were considered in this study to compute threshold statistics.  Lower value of 

NRMSE would indicate better model performance and vice-versa; however the NRMSE, can still be 

biased towards high magnitude of the output variable as the numerator involves square of deviation.  

The AARE, which is relative with respect to individual output variable values, is better indicator as it 

will not be biased towards either high or low magnitude values.  Values of AARE close to 0.0 represent 

good model performance.  The TS can range between 0% and 100% with higher values representing 

good model performance. Coefficient of correlation can range between    -1.0 and +1.0 with magnitudes 

close to 1.0 meaning good linear dependence between observed and modeled outputs.  The Values of 

Nash efficiency can range between – and +1.0 with values close to 1.0 being very good.   

 

2. GENERALIZED NEURON MODEL 

The ANN model presented above uses MPAN as a building block.  The ANN models using MPAN 

model suffers from certain weaknesses described earlier.  In this paper, a new generalized neuron model 

is proposed, which overcomes some of the drawbacks of conventional neural network employing 

MPAN.  The GN model incorporates non-linearities present in the system through the non-linear 

discriminant function.  Also, there is no need of the selection of number of hidden layers and the number 

of hidden neurons.  This reduces the complexity and dimensionality of the overall ANN model.  The GN 

model consists of five components as opposed to two in the McCulloch and Pitts artificial neuron 

(MPAN).   The typical structure of a GN model is shown in Figure 2.  The five components of a GN 

model are (1) first discriminant function (f1), (2) second discriminant function (f2), (3) activation 

function (g1) corresponding to the first discriminant function, (4) activation function (g2) corresponding 

to the second discriminant function, and (5) an assimilation function (f3) that aggregates outputs from 

the components (3) and (4) above. The training of the GN model is carried out in a manner similar to the 

training of a traditional ANN using gradient descent method.  A GN model receives inputs from an 

external source and gives output to an external receiver like in a conventional ANN model.  As shown in 

Figure 2, a GN receives the inputs through its first two components and then computes the net input 

signal depending on the discriminant functions employed.  A bias element is added to simulate the  
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threshold characteristic of an artificial neuron. 

 

The net input signal can be calculated as follows: 

)1,,1(=1 1 bBiasXWDfNetD ii                                 (6) 

)2,,2(=2 2 bBiasXWDfNetD ii                      (7) 

Where NetD1 and NetD2 are the net input signals to the GN model corresponding to the first and second 

discriminant functions, respectively; f1 and f2 are the first and second discriminant functions; WD1i and 

WD2i are the weights corresponding to the first and second discriminant functions, respectively, 

connecting to the inputs Xi’s; i is an index representing the elements of the input vector; and Bias b1 and 

Bias b2 are the bias weights corresponding to the two components of the GN model.   

   

 
Figure 2: Generalized Neuron model 

The outputs from the two components are calculated using the respective activation functions, which can 

be a Sigmoid, a Gaussian, a Spline, a linear function, or any other mathematical function satisfying the 

conditions of being an activation function in the traditional ANNs employing MPANs.  The two outputs 

can be calculated as follows: 

)1(1 1 NetDgO =           (8) 

)2(2 2 NetDgO =           (9) 

Where, g1 and g2 are the first and second activation functions associated with the first and second 

discriminant functions, respectively.  The overall output from the GN model is then calculated using a 

linear aggregation of the two outputs calculated above.  This can mathematically be represented as 

follows: 

2)-1(+1=)2,1(= 3 OWOWOOfO                  (10) 

Where O is the overall output from the GN model; f3 is the assimilation function that calculates output 

from the GN model; W is the weight corresponding to the output O1; and (1-W) is the weight 

corresponding to the output O2.  The training of the GN model is carried out in a manner similar to the 

training of a traditional ANN using gradient descent method.  It can be described by the following 

equations: 

)1(1)(1)1(1 ++=+ kWDkWDkWD iii                 (11) 

)(1)1(1 1 kWDXkWD iiDi  +=+                    (12) 

Where k and k +1 are the training steps; WD1i (k +1) is the updated weight connecting ith input to the 

first discriminant function of the GN model at training step (k +1); ΔWD1i (k +1) is the amount of 

Xn 

∙ 

∙ 

∙ 

X2 

X1 

Xn 

. 

. 

. 

X2 

 

X1 

 

 

f3 

g2 

g1 

f2 

f1 

O 

Bias b1 

Bias b2 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250349775 Volume 7, Issue 3, May-June 2025 6 

 

weight adjustment to be made at the training step (k +1); η is the learning rate; δD1 is the error signal 

corresponding to the first discriminant function; and α is the momentum factor.  The adjustment of the 

weights corresponding to the second discriminant function (ΔWD2i (k +1)) is carried out in an exactly 

similar manner.  The method of calculating the error signals, δD1 and δD2, depends upon the kind of 

discriminant and activation functions employed in the GN model.  More details of the training of a GN 

model can be found in Chaturvedi et al. [2004].  The total number of weights to be optimized in a GN 

model is (2N+3) where N is the total number of inputs received by the GN model from an external 

source.  The overall structure of the GN model described above provides a very compact ANN model as 

compared to the traditional MLP model having many times more weights due to the number of hidden 

neurons involved in them.  The GN model described above has been employed in electrical systems but, 

in the knowledge of the authors, has not been employed in hydrology.   Two different discriminant 

functions and two different activation functions were employed in this study after investigating many 

functions.  The use linear and non-linear discriminant function was investigated for developing the GN 

models.  Sigmoid and Gaussian functions were employed as activation functions.   

 

3. MODEL DEVELOPMENT 

Four types of neuron models were developed in the present study.  The first model is MLP model with a 

traditional neuron structure, the other three models are Generalized Neuron models based on the concept 

of GN (discussed earlier). 

 

MLP Models   

The MLP model is the feed-forward type neural network model trained using BP algorithm.  It consists 

of three layers: an input layer, a hidden layer, and an output layer (see Figure 3).  The inputs to the ANN 

are average rainfall at various time steps (Pt, Pt-1, and Pt-2); and flow in Kentucky River at LD10 in the 

past (Q10t-1, and Q10t-2).  The neuron models thus developed would require forecasts of one key inputs 

Pt, and the output from the neuron models is Q10t being modeled.  The number of neurons in the hidden 

layer was determined using a trial and error procedure.  The BP method with momentum factor was used 

to train various ANN architectures.  The architecture of MLP models in the form of 5-N-1 was 

investigated in which N represents the number of hidden neurons.  The number of neurons in the hidden 

layer was varied from 1 to 15 to select the best possible architecture of the ANN model.  For each value 

of hidden neurons, the BP algorithm was used to minimize the SSE at the output layer.  Various standard 

error statistics during training data-set were plotted against the number of hidden neurons to determine 

optimal MLP architecture.  Using this method, MLP architecture of 5-4-1 was found the best.  Trial and 

error method was employed to find out the suitable learning rate coefficient and momentum correction 

factor to develop each of the models. The stopping criteria for the training of the models were kept as 

50,000 as the maximum number of iterations or sum square error as 0.0005, whichever is achieved first.  

Once the MLP models were trained, they were used to calculate various error statistics on both training 

and testing data sets.  The results in terms of various error statistics during training and testing are 

presented in Table 2. 
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Figure 3: Structure of a feed-forward ANN 

 

Generalized Neuron Models 

Three types of generalized neuron (GN) models were developed to model flow at LD10 in this study.  

The three GN models consist of different combinations of aggregation and activation functions.  Two 

different aggregation functions and two different activation functions were employed after investigating 

many functions in this study.  The use of one linear and one non-linear aggregation function was 

investigated for developing GN models.  Sigmoid and Gaussian functions were employed as activation 

functions.  These are described in the following equations: 

 

Linear Discriminant Function ( ∑ ):  
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Gaussian Activation Function ( Ω ):                     

)16(
2)(NeteO −=  

The three GN models are referred to as GNA, GNB and GNC models in this study.  In the first GN 

model (GNA), linear aggregation function (Σ), and Sigmoid activation function (∫) are used in the first 

part; and Pie aggregation function (Π) and Gaussian activation function (Ω) are used in the second part 

(see Figure 4).  The GNB model employed Σ and ∫ in the first part, and Σ and Ω in the second part. The 

GNC model employed Σ and Ω in the first part, and Π and Ω in the second part.  The three GN models 

are shown in Figure 4.  A gradient descent method similar to the back-propagation algorithm with 

momentum correction factor described earlier was employed for training of the three GN models.  The 

inputs to GN models are same as those for the MLP models.  The input and output data set were 

normalized to [0.1 0.9] for the development of GN models also.  For each GN model, a suitable 

combination of training parameters (learning rate and momentum correction factor) was determined after 
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a few trials.  The stopping criteria for the training of the GN models were kept same as those for the 

MLP models. 

 

   
 

(GNA Model)   (GNB Model) 

 
 (GNC Model) 

Figure 4: Generalized Neuron models 

 

4. RESULTS AND DISCUSSIONS 

The results in terms of various error statistics from neural system models with five inputs are presented 

in Table 2(a) and Table 2(b).  The best value of an error statistic from a model has been represented in 

bold font in the table.  It may be noted that all the neural system models performed very well as shown 

by the E and R values in excess of 0.90 from all the models both during training and testing.  Looking at 

the results from Table 2(a) and Table 2(b), it is clear that the GNB model performed the best in terms of 

most of the error statistics.  It obtained the highest E and R values of 0.926 and 0.962 during training 

data set; and 0.918 and 0.959 during testing data set, respectively, which is very good.  It also obtained 

the least AARE values of 23.13% and 22.84% during training and testing, respectively.  It obtained a 

TS25 value of 50.7% during testing indicating that in almost half of the testing data points estimated, the 

ARE was less than 25%.  The GNB model obtained the least NRMSE values both during training and 

testing. Comparing the performance of all the GN models, it may be said that the performance of GN 

models was comparable.   Further, the performance of all the GN models was significantly better than 

the MLP model.    

 

Table 2 (a): Statistical results from MLP and GN models 

Model NRMSE E R AARE 

     

During Training     

MLP 0.503 0.904 0.954 32.76 

GNA 0.479 0.913 0.955 30.17 

GNB 0.441 0.926 0.962 23.13 
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GNC 0.457 0.920 0.959 29.75 

During Testing     

MLP 0.670 0.823 0.948 27.78 

GNA 0.482 0.908 0.953 30.53        

GNB 0.454 0.918 0.959 22.84 

GNC 0.462 0.916 0.957 29.82 

 

Table 2 (b): Statistical results from MLP and GN models 

Model TS25 TS50 TS100 

Execution Time 

 (CPU time) 

During Training     

MLP 38.5 52.5 64.7 00:16:55.21 

GNA 42.4 60.6 75.5 00:01:57.55 

GNB 49.1 69.3 84.4 00:01:58.70 

GNC 46.1 67.6 82.4 00:01:52.68 

During Testing     

MLP 36.4 63.9 74.7 - 

GNA 43.9 62.7 75.5 - 

GNB 50.7 69.4 82.8 - 

GNC 46.9 67.5 81.3  

Finally, looking at the execution times from Table 2(b), it can be noted that all the GN models take 

significantly less time for training as compared to the MLP model, which highlights their superiority 

over the traditional feed-forward neural networks.  Observed and estimated flows from the four neural 

system models with five inputs are shown in the form of scatter plots in Figure 5 for testing data set.  It 

is noted from Figure 5(a) that the MLP model was not able to capture the complex relationship between 

inputs and output data very well especially for high magnitude flows.  The narrow scatter around the 

ideal line from the GNB model (see Figure 5(c)) further strengthens the conclusions about its 

superiority. 
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Figure 5: Scatter plot from the neuron models during testing 

The GNC model estimated flows during testing exceedingly well (see Figure 5 (c)) and the points are 

narrowly scattered around the ideal line.  This indicated that the combination of a non-linear aggregation 

function and sigmoid activation function in a GN model may be suitable for estimating the high 

magnitude flows. 

 

5. SUMMARY AND CONCLUSIONS 

Two different structures of the Neuron have been used in the present study, first is MPAN and the other 

is Generalized neuron.  Three layered Feed forward Neural Network using MPAN and Generalized 

neural network using single generalized neuron have been used to develop different models in the 

present work.  This paper presents the findings of a study aimed at developing Generalized Neuron 

model for river flow forecasting.  The results from the GN model are compared with a traditional feed-

forward ANN trained with back-propagation with momentum factor.  The daily rainfall and flow data 

for a 26-year period from Kentucky River, USA were employed.  The performances of the models were 

evaluated using five different types of error statistics capable of assessing ANN model performance 

comprehensively.  Considering the statistical and graphical results together, it may be concluded that the 

GN models offer an exciting alternative for modeling of the complex hydrological systems as they 

consist of a compact structure, are easy to develop, take less time to train, and exhibit better 

generalization ability than the traditional MLP type of ANN models.  Further, out of the three GN 

models, GNB model was found to be the best while the GNC model was suitable for capturing timing 

and magnitude of peak flows.  The GN model was able to achieve similar performance as compared to a 

fully connected feed-forward ANN developed on the same data set.  The GN model overcomes some of 

the problems associated with traditional ANNs developed using MPAN as a building block.  It offers a 

flexible structure wherein various alternative discriminant, activation, and assimilation functions can be 

used to model the specific nature inherent in different types of problems. The results obtained in this 

study indicate that a compact neuron model consisting of a single artificial generalized neuron is capable 

of modeling the complex, dynamic, and non-linear rainfall-runoff process in a large catchment.  The GN 

model has tremendous potential for solving a variety of problems in hydrology.  It is hoped that future 

efforts will focus on the use of GN model in hydrology to exploit their strengths to advantage in 

hydrological modeling.  
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