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Abstract

Recently, Andrews introduced partition function £0(n)and £0(n) where the function £0(n)
denotes the number of partitions of n in which every even part is less than each odd part and the
function £0(n) denotes the number of partitions enumerated by £0(n) in which only the largest
even part appears an odd number of times. Pore and Fathima in [2] obtained some congruences
modulo 2, 4, 10 and 20 for the partition function £0(n). In this paper, we prove some conjectures

due to Pore and Fathima [2] and also find some new congruences for the partition functions £0(n)
and £0,(n).
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1. INTRODUCTION

A partition of a nonnegative integer n is a representation of n as a sum of a positive integers,
called summands or parts of the partition. For example, the partitions of 6 are 6, 5 + 1, 4 +
2,4+1+1,3+3,3+2+1,3+1+1+1,2+2+ 2,2+ 2+
1+13,2+1+1+1+1,1+1+1+1+ 1+ 1.

p(n) denotes the number of partitions of n. So, p(6) = 11.

The generating function for p(n), due to Euler is given by

- 1
;p(n)q TG D

where, as customary, for any complex number a and |g| < 1

(@ 9w = | [(1—aeh.
i=0
Throughout this paper we use fi, = (¢%; %) oo.

Ramanujan [3], [4, pp. 210-213] found three simple congruences satisfied by p(n), namely

p(5n + 4) = 0 (od 5), (1.1)
p(7n+5) =0 (mod 7), (1.2)
p(11ln+6) =0 (mod 11) . (1.3)

Andrews [1] introduced the partition function £0(n) which counts the number of partitions of
n in which every even part is less than each odd part. For example, £EO(n)=7. The seven
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partitions of 6 it enumerates are 6, 5 + 1,4 + 2,3 + 3,3 + 1+ 1+ 1, 2 + 2 + 2,
1+1+1+1+ 1+ 1.
In [1], Andrews shows that the generating function for £0(n) is

Z EO(m)q™ = —q)fz

Andrews also defined the partitlon functlon £0(n) which counts the number of partitions
enumerated by £0(n) in which only the largest even part appears an odd number of times. For
example, £0(6) = 4. The four partitions of 6 it enumerates are 6, 3 + 3, 2 + 2 + 2, 1 +
1+ 1+ 1+ 1+ 1. Andrews provide the generating function for E0(n) as

3
Sieo EO(m) q" = 7% - (14)

Pore and Fathima [2] proved some congruences modulo 2, 4, 5, 10 and 20 for £0(n). For example
EO0(Bn + 4) = 0 (mod 2),

EO0(Bn + 6) = 0 (mod 4),

E£O0(10n + 8) = 0 (mod5),

£0(40n + 38) = 0 (mod 20),

£0(20n + 18) = 0 (mod 10).

They conclude with a conjecture on £0(n) .

Conjecture 1.1.
EO00(Bn+ 1)+ 8) =0 (mod 20),r =1(14 (1.5
They also consider

2
e E0.(M" =75 (1.6)

where the function £0,(n) counts the number of partitions enumerated by £0(n) in which only
the largest even part appears an odd number of times except when parts are odd and number of parts
is even. For example, £0,(6) = 6. The six partitions of 6 it enumerates are 6, 3 + 3,2 + 2 + 2,
5+1,3+1+1+1,1+1+1+1+1.

They obtained some congruences modulo 2 for £E0,(n),for exa
EO, (4n + 2) = 0 (mod 2). (1.7)

In this paper, we find exact generating functions for EO(10n + 8), EO(50n + 8) and
£0,(10n + 4) and prove some congruences modulo 8 and 20 for these partition functions.

Theorem 1.2. We have

S0 E0(10n+ )" = Sfiofe . (1.8)
C TS FEf10f3 e fh
0(50 8)g" = 800 14000q 2
Z n+8)q f1 f10 + q——— f1 + f1 _—— 4

n=0
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+80000g3 255/ f5f1° +160000g* 2110 fz fi0 (1.9)

Corollary 1.3. Conjecture 1.1 is true.
Theorem 1.4. We have

Y%, E£0,(10n + 4)q" 3){3 ’;38 8q foIjO £ (1.10)
1
Corollary 1.5.
£0,(10(5n + 1) + 4) = 0 (mod 23), r = 1(1)4 . (1.11)
2.PRELIMINARIES
Rogers-Ramanujan continued fraction R(q) is defined by
1
Ry L0, L@ @y @e)eahe)s |
O T T B B N (Y DN CHT D P
__4a
Lemma 2.1. [6,p. 165] IfR = R
_ a?
fi=fs(R-q-5%) @1
and
1 f3 q5 2¢° ¢’ | 1
=k (R*+qR® +2¢?R? +3¢3R +5¢* 2L+ 2L -4 1) (22)
1/5 2/5
. _aq _ 4
Lemma 2.2. [5, Equations (2.10)-(2.18)] If x = R and y = R then
2
a1=xy2—xq?= (2.3)
2 4
a =5 E = (24)
_ ¥ 2x 4
az = — qyg—K+K 2q , (2.5)
=By o a2
Ay —xy+x3y—— +— t2q, (2.6)
2
a5=x5—%=a1+a2a4, (2.7
4
ag == x1° — L = a% + 242, (2.8)
4
ar = x%y - 2= = a,a5— q’az, (2.9)
gy ="+ ¢*% = a,as +a (2.10)
8= 7 q~ 7= Q2085 4 > .
=X 4y 2.11
a9'—y qx12_a2a6+a7 ) (2.11)
_ LSS
where K = hfE
Lemma 2.3. From [5, Egs. (2.6), (2.7), (2.29)] we have
g flo _ Js
P M T (2.12)
3 o _ B
R T (2.13)
fo e Sh _ _fs
i 29 T Rl ' (2.14)
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The following congruences which can be easily established by applying binomial theorem
+ = f7 (mod 4) (2.15)
& = £t (mod 8) (2.16)

3. EXACT GENERATING FUNCTION FOR £0(10n + 8), £0(50n + 8)
Proof of Theorem 1.2. From [2, Egs. (3.7)] we have

_ 3
Yo, EO(2n)q" = ji— . 3.1)

Employing (2.1) and (2.2) in the above, extracting the terms involving ¢°***, dividing both sides
of the resulting identity by ¢*, and then replacing ¢° by g, we find that

® 3 £10 2 4
Z £0(10n + 8)q" = 157502 + 504 <x5 - %) +20 <x4y3 - )
n=0

f‘112 x2y3
3 6 3 4
y x x® y 4
-2 Y a2 ) 21 7 |\ _ 1 6,,2 _r
0q<x 1 y3> > <y3 x6> 5<x g +x6y2>
%Z x4 y2
~60q (xy? — W) — 60q? (? +2)1 . (3.2)

where x and y are as defined in Lemma 2.2.
Using Lemma 2.2 we have

am;=;—2+z—j=a§+z (3.3)
all:zi—z—z—zza%+342 (3.4)
A= x%y% + xZ—;Z =a? — 2q? (3.5)
asz:=x*y? — x:’; = a,a, — q*a, (3.6)

Employing (2.7), (2.5), (2.3), (3.3), (3.4), (3.5), (3.6) in (3.2), we arrive at

© TOA0n + 8)q" = 5L (L _ 40)3 (2L 4 ¢)2 3.7
Zn:O ( n+ )q - f19f55f23 f1f150 Q) (f1f150+q) . ()

Using (2.12) and (2.13) in (3.7), we arrive at (1.8).
Applying [5, Egs (1.7)], (1.8) can be written as

—_ 2
Y%, EO(10n + 8)q™ =5 ff— Y% ,Q(5n+1)q", (3.8)

where Q(n) denote the number of partitions of a nonnegative integer into distinct parts.
Now extracting the terms involving g°™ in (3.8) and then replacing g° by g, we find that

R 2
Y%, E0(50n + 8)q" =5 % Y% ,Q(25n + 1) g" (3.9)

Applying [5, Egs (1.8)] in the above we arrive at (1.9).

Now taking modulo 4 in both sides of (1.8) and applying (2.15), we arrived at

> o, EO0(50n + 8)q"™ =5f,0fZ (mod 4). (3.10)
Equating coefficients of g°™**" , r = 1(1)4 from both sides of the above equation we can
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prove (1.9).

4. EXACT GENERATING FUNCTION FOR £EO0,.(10n + 4)q"
Proof of Theorem 1.4. From (1.6), we have

Y0 €0.(2m)q" =2 (4.1

Employing (2.1) and (2.2) in the above and extracting the terms involving ¢°"*?, dividing
both sides of the resulting identity by ¢ and then replacing ¢° by q, we find that

2 4
Y 0 €0 (10n + 4)q™ fl;{'j [-15¢g% — 10q (x5 - q—) +5 (x6y2 + %) + 20q (xyz -

xq?)+20q2(;—2+z—4)—2(x y—E)—SZq(x y+ )+54q (— ——)+4q( ’
2] (4.2)

where x and y are as defined in Lemma 2.2.
Using (2.3), (2.4), (2.6), (2.7), (2.9), (2.10) and (3.3) in (4.2), we arrive at

A (ffS 2 fofs 2 fafe
S0 E0.(10n + 8)q" = 510 (flff,o 4q) e +q)) (3f1f150 +8q) (4.3)

Invoking (2.12) and (2.13) in (4.3), we arrive at (1.10).
Now taking modulo 8 in both sides of (1.10) and applying (2.16) we get

6
¥ E0,(10n + 4)g" = 3 ]fio (mod 8) (4.4)

STy = 1(1)4 from both sides of the above equation we can prove (1.11).

Equating coefficients of g
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