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Abstract:  

Infection and vector born diseases have been a great concern of human kind since the very beginning of 

our history. Mosquito, a creature that causes human deaths more than other creatures in the world, spread 

lethal diseases called Mosquito-Borne Diseases (MBDs). Mosquito-borne diseases have been the cause of 

concern for the whole world for centuries. In India, malaria and dengue are the center of focus as confirmed 

cases of these diseases are more than the other MBDs. According to the National Center for Vector-Borne 

Diseases (NCVBD), India has witnessed over 18 lakh confirmed cases and over 2500 deaths since 2019 

caused by mosquitoes, approximately11% of confirmed cases and 9% of deaths were from Uttar Pradesh. 

This study aims at providing the Considerable role of correlation of mathematical modeling and dynamical 

aspects of epidemic disease. This study emphasizes an understanding of deterministic modelling applied 

to the population dynamics of infection disease. Here we are mainly emphasizing the historical 

background of mathematical modelling and role of dynamics in Malaria.  
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Introduction:  

The field of infectious diseases is ever long been concerned with epidemiological aspects and considerable 

with correlation of bio-mathematical historical background [1,2,3]. The spread of infection diseases has 

always been of concerns and a threat to public health.  

 

Historical Background of Mathematical Modeling in Epidemiology:  

The historical aspects of epidemiological mathematical modeling were initiated from records of historians 

and scholars are the Plague of Athens (430-428 BC). The most precise description is provided by the 

scientific historian – Thucydides – (460-400 BC) including the symptoms, disease progression and number 

of death. Hippocrates’s (459-337 BC) work, “On the epidemics”, tells us about the factors which were 

affecting the disease spreading and ways of the spreading at that time. A physician, Dr. Ross, used a 

differential equation model to describe the transmissions of malaria between human beings and 

mosquitoes in 1911, and determined that there exists a threshold of the size of mosquitoes below which 

the spread of malaria can be controlled. The science could explain “why” and mathematics could explain 

“how”. Pragmatic approaches were limited and there was appropriate theory to explain the mechanism by 

which epidemics spread. Massive mathematical models have been formulated and developed to study 

various infectious diseases. The modeling of infectious diseases has shown rich dynamic behavior and 

phenomena. In india the drastic effects of epidemic disease were remarkable in the field of epidemiology. 

Human viruses in ancient Indian literature such as the Rigveda (c. 8000 BC), Charaka Sahara (c. 700 BC) 

and several other Ayurvedic texts until 1600 AD, Puranas (c. 200 BC to 750 AD), travel accounts of 

visitors to India, and some British records.  

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com     ●   Email: editor@ijfmr.com 

 

IJFMR250448223 Volume 7, Issue 4, July-August 2025 2 

 

In India, malaria affects more than a million people annually, a figure that amounts to about 4% of the 

global malaria burden (World Health Organization, 2018). With its extensive geographic and climatic 

diversity, the epidemiology of malaria ranges from endemic areas with perennial transmission to outbreak-

prone, unstable areas. The situation is further complicated due to the presence of a wide distribution of 

anopheline vectors transmitting three major Plasmodium species: Plasmodium falciparum, Plasmodium 

vivax, and Plasmodium malariae (14). Though the share of P. falciparum (66%) is more than P. vivax 

(34%) in the country, about 48% of the estimated global vivax malaria cases in 2017 occurred in India 

(24).  

 

Malaria is a deadly mosquito-borne disease caused by Plasmodium parasites transmitted by Anopheles 

female mosquitoes between humans. Once an infected mosquito bites a human, the parasites multiply in 

the host’s liver, destroying red blood cells during infection [6]. Parasites that infect humans are 

Plasmodium falciparum (P. falciparum), Plasmodium vivax (P. vivax), Plasmodium ovale (P. ovale), 

Plasmodium knowlesi (P. knowlesi) and Plasmodium malariae (P. malariae) [11, 4]. P. falciparum and P. 

vivax are unicellular protozoan parasites of humans, and are the most important Plasmodium species 

causing malaria in humans [11, 5,7.8]]. There are 58 species of Indian anophelines out of which six—

Anopheles culicifacies, An. fluviatilis, An. stephensi, The WHO has set an ambitious goal of malaria 

elimination in 35 countries and at least a 90% reduction in malaria cases by 2030. Within the WHO 

Southeast Asia region, India remains the leading contributor to the malaria burden, with 79% of cases and 

83% of total malaria deaths. Under the auspices of the Global Technical Strategy, adopted by the World 

Health Assembly in May 2015[24,25], India launched its malaria elimination program in 2016 under the 

National Framework for Malaria Elimination in India 2016–2030[15].  

In this study, we have derived and analyzed a mathematical model in order to better understand the 

transmission and spread of the malaria disease, and tried to suggest possible ways for its prevention and 

control.  

 

Dynamics in Epidemiology: 

Epidemic dynamics is an important method of studying the spread of infection disease. It is based on the 

specific property of population growth, spread rule of infection disease, and the related social factors etc. 

[17, 18,19]. To construct mathematical models reflecting the dynamic properties of infection disease, to 

analyze the dynamical behavior and to do some simulations [19,20,21,22,23]. The research result is helpful 

to predict the growth of infection disease, to determine the key factors of the spread of infection disease 

and to seek the optimum strategies of preventing and controlling the spread of infection diseases.  

Compartmental Models:  

(1) Models without latent periods. In these models the infected individuals becomes infectious 

immediately. These models are as follows:  

(2) SI Model. In this model, the infectives cannot be recovered from infection. It is represented 

IS
SIβ
⎯⎯→⎯  

The model equations are as follows: 

dt

dS
 = SIβ−  

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com     ●   Email: editor@ijfmr.com 

 

IJFMR250448223 Volume 7, Issue 4, July-August 2025 3 

 

and 

dt

dI
 = SIβ  

 (3) SIS Model 

In this model, the infective are recovered but gain no immunity from infection. It 

is represented by following diagram: 

IS
SIβ

Iγ
⎯⎯→⎯  

The model equations are as follows: 

dt

dS
 = SIβ−  + Iγ  

and 

dt

dI
 = −  SIβ + Iγ  

 (4) SIR Model. 

In this model, the infectives obtain permanent immunity to the disease after 

recovered from infection. It is represented by following diagram: 

RIS
IγSIβ
⎯→⎯⎯⎯→⎯  

The model equations are as follows: 

dt

dS
 = SIβ−  

dt

dI
 = SIβ  −  Iγ  = Iβ (S −  ρ ) 

where  ρ  = 
β

γ
        and   

dt

dR
 = Iγ  

(5) SIRS Model. 

In this model, the recovered individuals have only temporary immunity after they 

recovered from infection. It is represented by following diagram: 

SIβ    RIS
Iγ

⎯→⎯⎯→⎯  

The model equations are as follows: 

https://www.ijfmr.com/
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dt

dS
 = SIβ−  

 
dt

dI
 = SIβ  −  Iγ  + Rδ  = Iβ (S −  ρ ) + Rδ , 

where   ρ  = 
β

γ
        and   

dt

dR
 = Iγ  −  Rδ  

(6) SIRI Model. 

In this model, the infectives cannot obtain permanent immunity to the disease after 

recovered from infection. It is represented by following diagram: 

The model equations are as follows: 

SIβ    RIS
Iγ

⎯→⎯⎯→⎯  

The model equations are as follows: 

dt

dS
 = SIβ−  

 
dt

dI
 = SIβ  −  Iγ  + Rδ  = Iβ (S −  ρ ) + Rδ , 

where   ρ  = 
β

γ
        and   

dt

dR
 = Iγ  −  Rδ  

 (7) MSIR Model 

For many infections, including measles, babies are not born into the susceptible compartment but are 

immune to the disease for the first few months of life due to protection from maternal antibodies (passed 

across the placenta or through colostrum). This added detail can be shown by including an M class (for 

maternally derived immunity) at the beginning of the model. It is represented by following diagram: 

RISM
IγSIβ

⎯→⎯⎯→⎯⎯⎯→⎯  

Models with latent periods: 

 

For many important infections there is a significant period of time during which the individual has been 

infected but is not yet infectious themselves. During this latent period the individual is in compartment 

(E) exposed compartment. These models are as follows: 

 

1) SEI Model. 

This model is represented by following diagram: 

IES
EωSIβ
⎯⎯→⎯⎯⎯→⎯  

2) SEIR Model. 

https://www.ijfmr.com/
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In this model the population is broken into four compartments: susceptible, 

exposed, infectious and recovered. This model is represented by following diagram: 

RIES
IγEωSIβ
⎯→⎯⎯⎯→⎯⎯⎯→⎯  

3) SEIS Model. 

In this model the population is broken into four compartments: susceptible, exposed, and infectious again 

susceptible. This model is represented by following diagram: 

 

IES
EωSIβ
⎯⎯→⎯⎯⎯→⎯  

4) SEIRS Model. 

In this model the population is broken into five compartments: susceptible, exposed, infectious, recovered 

and again susceptible. This model is represented by following diagram: 

RIES
IγEωSIβ
⎯→⎯⎯⎯→⎯⎯⎯→⎯  

5) MSEIR Model 

For the case of a disease, with the factors of passive immunity, and latency period there is the MSEIR 

model are used for epidemiological classes. This model is represented by following diagram: 

 

Where the symbols stands for -  

M = Births and passive immunity 

S = Susceptible class 

E = Exposed Class 

I = Infective class 

   R = Recovered class 

   γ  = Recovery rate 

    β  = Transmission rate 

    ω  = Progression rate 

     δ  = Immunity rate 

 

Basic Concepts of Epidemiologic dynamics: 

We often come across the terms like contact rate, adequate contact rate, infection rate, simple mass action 

incidence, standard incidence, saturation incidence, basic reproduction number, threshold numbers etc 

whose definitions is as follows:  

An infectious disease transmitted through direct contacts. The number of individuals contacted by an 

infectives per unit of time is called a contact rate of infection and is denoted by P(N). It is depends on the 

total population N. If the individuals contacted by an infectives are susceptible, they may be infected. 

Suppose that the probability of infection by each contact is 0β . Then the function 0β  N is called an 

adequate contact rate, which describes the infection strength of the infectives and is usually depends on 

the toxicity of the virus or bacteria and the situation of the environment. Since disease are only transmitted 
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to susceptible by contacting with infectives and the fraction of the susceptible with the population is 
N

S
, 

then the mean adequate contact rate is 0β  P(N) 
N

S
. This rate is called an infection rate. Then the total 

new infectives in the infected compartment  

0β  P(N) 
N

SI
 , which is called an incidence of the disease.  

There are three types of incidence are used in disease modelling:  

1. If the contact rate is proportional to the total population size i.e. 

P(N) = kN then the incidence SIβ , 

where β  = 0β k is called the transmission coefficient. This type of incidence is called bilinear incidence 

or simple mass action incidence. 

2. If the contact rate is constant i.e. P(N) = k then the incidence 
N

SIβ
, where β = 0β k , then it is called 

the standard incidence. 

If the constant i.e. P(N) = k then the incidence β
SH

SI

+
, 

where H is constant, is called the saturation incidence. A basic reproduction number is the number of 

secondary cases produced in a totally susceptible population by a single infective individual during the 

time span of infection. Thresholds are also numbers which are capable of forecasting either the disease 

persists or not. 

Conclusion:  

This study emphasizes an understanding of deterministic modelling applied to the population dynamics of 

infection diseases and the role of dynamics in Malaria. Our investigation is focusing on historical aspects 

of bioepidemiological mathematical survey. This study also provides the Considerable role of Correlation 

of mathematical modelling and dynamical aspects of some epidemic diseases. Mathematically we 

recommend the use of higher and more compartments in the modelling of diseases by future researchers 

in order to be able to capture the complex interactions amongst the human and vector compartments more 

extensively.  
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