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Abstract 

The demand for non-contact, unobtrusive methods of physiological monitoring has grown significantly 

with the expansion of telehealth and remote diagnostics. This paper presents a novel technique for 

estimating heart rate using standard RGB facial video, eliminating the need for wearable sensors or 

traditional photoplethysmography. The method leverages variations in pixel intensity across selected facial 

regions—specifically the forehead and cheeks—to extract temporal signals that reflect subtle skin tone 

changes caused by blood flow. 

The captured signals undergo a series of preprocessing steps, including normalisation and bandpass 

filtering, to isolate physiological frequency components typically associated with cardiac activity. To 

analyse these non-stationary signals with high precision, a custom implementation of the Superlet 

Transform is employed. This transform enhances time-frequency resolution by combining multiple 

wavelets of varying orders, yielding a superresolved spectrogram. Following this, Welch’s Power Spectral 

Density (PSD) is applied to determine the dominant frequency within the physiological range, which is 

then converted to beats per minute (BPM). 

The system was evaluated on videos recorded at 30 frames per second and demonstrated reliable heart rate 

estimation across all tested facial regions. Results showed consistent peak detection in the PSD and clear 

frequency concentration in the Superlet spectrograms, confirming the method’s accuracy and robustness. 

This approach offers a promising direction for real-time, camera-based vital sign monitoring in clinical, 

fitness, and consumer applications, especially where sensor-based approaches are impractical. It also 

opens avenues for further research in enhancing signal quality under motion, lighting variation, and across 

diverse skin tones. 

 

I. INDEX TERMS 

Heart rate estimation, video-based monitoring, Superlet Transform, time-frequency analysis, facial signal 

processing, noncontact vital signs, Welch PSD, signal preprocessing, pixel intensity variation, camera-

based health monitoring. 

 

II. INTRODUCTION 

Heart rate is one of the most fundamental indicators of human physiological state and is widely used across 

healthcare, sports science, and wellness monitoring. Traditionally, measuring heart rate has involved 

physical sensors attached to the body, which, although effective, can be intrusive, uncomfortable, or 

impractical in scenarios such as remote consultations, public settings, or continuous long-term use. As a 
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result, there is increasing interest in developing contactless methods that can extract physiological signals 

using only visual data. 

One promising approach is the analysis of facial video recordings to detect subtle, naturally occurring 

variations in skin appearance over time. These variations are caused by the rhythmic activity of the 

circulatory system and appear as low-intensity fluctuations in the pixel values of video frames. While 

imperceptible to the naked eye, these changes can be computationally analyzed to estimate heart rate 

without the need for physical contact or specialized imaging equipment. 

Despite its advantages, video-based heart rate estimation poses several technical challenges. The signal of 

interest is typically very weak compared to noise introduced by motion, lighting changes, and other 

environmental factors. Standard signal processing methods often struggle to isolate reliable patterns under 

these conditions. 

This study introduces a robust framework for non-contact heart rate estimation using facial video. The 

method involves extracting average intensity signals from specific regions of the face—such as the 

forehead and cheeks—followed by filtering and normalization steps. A custom implementation of the 

Superlet Transform is then applied to perform time-frequency analysis, providing high-resolution spectral 

information even in short and noisy signals. Finally, heart rate is estimated by identifying the dominant 

frequency through Welch’s Power Spectral Density method. This technique offers a practical and efficient 

solution for remote and unobtrusive heart rate monitoring using conventional RGB cameras. 

 
Fig. 1. rPPG Signal Acquisition and Processing Pipeline. 

 

III. 2.RELATED WORK 

IV. 2.1. TRADITIONAL APPROACHES FOR REMOTE HEART RATE MONITORING 

Historically, heart rate monitoring has been predominantly achieved through contact-based medical 

instruments, such as electrocardiograms (ECG) and skin-adhered optical sensors. These methods are 

clinically validated and offer high accuracy in detecting cardiovascular activity. However, their 

dependence on direct contact with the body often presents limitations for applications requiring 

continuous, long-term monitoring or scenarios involving significant user movement. This has driven the 

exploration of non-contact methods that are less obtrusive and more suitable for daily life environments. 

Among the alternatives, video-based heart rate monitoring has gained considerable attention due to its 

potential for passive observation using conventional RGB cameras. These systems operate on the principle 

that physiological signals, particularly those associated with cardiac cycles, induce minor but detectable 

variations in facial appearance. Such changes typically manifest as subtle shifts in skin tone or brightness, 

caused by periodic blood volume fluctuations beneath the skin surface. Although these changes are not 

perceptible to the naked eye, they can be extracted through careful analysis of pixel-level data across 

sequential video frames. 

Early research in this domain focused on identifying facial regions that exhibit stable lighting conditions 

and minimal motion, such as the forehead and cheeks. These regions were selected for their relatively 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250448696 Volume 7, Issue 4, July-August 2025 3 

 

consistent exposure and minimal muscular interference during natural expressions or speech. Researchers 

applied temporal averaging to the pixel intensities within these regions to derive a time-series signal 

representative of facial brightness fluctuations. This signal was then processed using basic signal 

processing techniques—such as filtering and frequency analysis—to isolate periodic components 

corresponding to the subject’s heart rate. 

While these initial methods demonstrated the feasibility of remote heart rate estimation, they often 

struggled with challenges posed by environmental noise, head movement, varying illumination, and 

individual differences in skin tone. Nonetheless, they laid the groundwork for more advanced techniques 

by proving that facial video data contains sufficient information to recover physiological signals under 

appropriate conditions. 

These traditional approaches, though simple in structure, provided a foundational understanding of how 

video data can reflect underlying biological processes. They also highlighted the need for improved 

robustness and signal enhancement, prompting the development of more sophisticated models in 

subsequent research. 

V. 2.2. DEEP LEARNING FOR REMOTE HEART RATE ESTIMATION 

The integration of deep learning into the field of noncontact physiological measurement has introduced 

significant improvements in the accuracy and adaptability of heart rate estimation from facial videos. 

Unlike traditional techniques that depend on handcrafted features or rule-based filtering, deep learning 

models are capable of automatically learning subtle and complex patterns from raw video data. 

Specifically, architectures such as convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) have demonstrated success in capturing spatial and temporal variations associated with 

physiological signals. 

CNNs are used to extract spatial features from individual video frames, identifying minute skin tone 

changes influenced by blood flow, while RNNs—especially Long Short-Term Memory (LSTM) 

networks—track temporal dependencies that reveal the periodic nature of cardiac rhythms. Notable models 

such as DeepPhys and PhysNet utilize these techniques to detect heartbeat-related signals without 

requiring explicit region selection or manual preprocessing. These models are designed to be robust against 

minor motion, variations in lighting, and facial expression changes. 

However, deep learning approaches also present certain limitations. Their effectiveness relies heavily on 

the availability of large, diverse, and high-quality datasets. In situations where the test environment 

significantly differs from the training data—such as changes in ambient lighting, skin tone, or camera 

resolution—the accuracy of these models may degrade. Moreover, the complexity and opacity of deep 

neural networks often make them difficult to interpret, posing a challenge in clinical applications where 

explainability is essential. 

VI.2.3 DENOISING IN RPPG SIGNAL PROCESSING 

One of the biggest challenges in using video to estimate heart rate is removing noise. Things like lighting 

changes, head movement, and facial expressions can make it hard to detect the weak signals related to the 

heartbeat. Some methods try to reduce this noise by applying filters, adjusting brightness, or selecting 

stable parts of the face. 

More advanced techniques use mathematical tools to clean the signals while keeping important details. 

For example, wavelet filtering or signal decomposition methods can help keep the heartbeat signal and 

remove unrelated noise. Still, many of these methods work best when the signal is strong and clear. 

This paper introduces a method that uses the Superlet Transform, which is a powerful tool for time-freqe 
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ency analysis. It helps identify the main frequency components in the signal with good detail in both time 

and frequency. We also use Welch’s Power Spectral Density (PSD) to detect the heart rate from these 

signals. Our approach works directly on video-derived brightness signals without needing any physical 

sensors or reference signals, and performs well even in realworld settings with natural movement and 

lighting. 

 

VII. MATERIALS AND METHODS 

This study presents a non-invasive technique to estimate heart rate by analyzing facial videos without 

relying on any physical contact or specialized medical devices. The core idea is to examine the subtle 

fluctuations in pixel intensity within specific facial regions, which correspond to changes in blood volume 

caused by the cardiac cycle. These variations manifest as minute shifts in skin coloration and brightness 

that can be captured by standard RGB cameras. The method begins with video acquisition, where a 

subject’s face is recorded under controlled lighting conditions at a consistent frame rate of 30 frames per 

second. Using OpenCV’s face detection algorithm based on Haar cascades, the face is localized in each 

frame. 

 
Fig. 2. Video-Based Heart Rate Estimation Workflow. 

 

Within the detected face, three distinct regions of interest (ROIs) are defined: the forehead, left cheek, and 

right cheek. These areas are selected because of their relatively uniform skin texture and minimal motion 

artifacts compared to other facial regions. 

For each ROI, the average pixel intensity is calculated frame by frame, producing time-series signals that 

reflect the physiological changes associated with blood flow. To enhance signal quality, these raw intensity 

signals undergo preprocessing, including normalization and bandpass filtering with a Butterworth filter. 

The filter is configured to isolate frequency components within the typical human heart rate range 

(approximately 0.7 to 2.5 Hz), thereby reducing noise from other physiological or environmental sources. 

To extract the heart rate from these signals, we employ the Superlet Transform, a sophisticated time-

frequency analysis tool that improves resolution by combining wavelets of different cycles. This allows 

for precise identification of the dominant frequency corresponding to the heartbeat, even in noisy or non-

stationary signals. Subsequently, Welch’s power spectral density method is used to locate the peak 
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frequency within the physiological range, which is then converted to beats per minute (BPM) to provide 

the estimated heart rate. 

 

VIII. 3.DATASET DESCRIPTION 

The dataset used in this study comprises video recordings of 17 adult volunteers, including 14 males and 

3 females, with ages spanning from 20 to 53 years. All recordings took place in indoor settings to maintain 

controlled environmental conditions. Videos were captured using a standard Logitech C920 webcam, set 

to record at 30 frames per second with a high-definition resolution of 1080p. This setup ensured clear and 

detailed facial images, which are essential for detecting subtle changes in skin intensity related to cardiac 

activity. 

During the recording sessions, participants engaged in a variety of tasks designed to simulate common 

daily activities. These included sitting calmly, engaging in conversation, and performing light physical 

exercise. The purpose was to capture a diverse range of physiological and motion conditions to test the 

robustness of the heart rate estimation approach. 

Additionally, the videos were recorded under different lighting conditions, such as natural daylight, 

halogen lighting, and LED illumination, to assess the method’s performance under varied environmental 

influences. 

To provide a reliable reference for validating the videobased heart rate estimates, simultaneous heart rate 

measurements were obtained using an electrocardiogram (ECG) device. This allowed for a direct 

comparison between the ground truth heart rate and the values estimated from video analysis. The 

inclusion of ECG data ensured that the evaluation of the proposed method’s accuracy was grounded in 

clinically recognized measurement standards. 

 

IX. EXPERIMENTAL PROCEDURE AND ROI EXTRACTION 

The experimental procedure starts by processing each frame of the recorded facial video using the OpenCV 

library for face detection. Once the face is located in a frame, three key regions of interest (ROIs) are 

defined: the forehead, the left cheek, and the right cheek. These areas are chosen based on previous 

findings that indicate noticeable variations in skin brightness due to underlying blood flow changes, which 

are relevant for heart rate estimation. 

Within each ROI, the pixel intensity values for the three color channels—red, green, and blue—are 

extracted for every frame. By calculating the average brightness across all pixels within these regions, 

continuous time-series signals are generated for each color channel. These signals capture subtle 

fluctuations in facial color that occur as blood volume changes with each heartbeat. 

The selection of multiple ROIs and color channels allows for a more comprehensive and robust analysis, 

helping to reduce the impact of noise and motion artifacts. The resulting time-series data form the 

foundation for subsequent signal processing steps aimed at isolating the heartbeat frequency. This 

approach relies solely on video information without any physical sensors, enabling a non-contact method 

for monitoring cardiovascular activity. 

For each video frame, the average RGB pixel intensity values within each ROI are computed, forming the 

basis of the temporal color signals.For each frame f, the mean pixel intensity values for the red, green, and 

blue channels over the selected ROI are computed as: 

R  

N1 Pi=1 bi 
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where r 

thpixelinframef,andNisthetotalnumberofpixelsintheROI. 

 

X. EXTRACTION AND FILTERING 

The raw signals obtained from the facial regions tend to contain significant noise and interference caused 

by various factors such as fluctuations in ambient lighting, slight head movements, and other 

environmental distractions. These unwanted components can obscure the subtle variations related to the 

heartbeat, making accurate heart rate estimation challenging. 

To enhance the quality of the extracted signals, we apply a Butterworth bandpass filter. This type of filter 

is widely used in signal processing because of its smooth frequency response and effectiveness in isolating 

specific frequency bands. In our approach, the filter is designed to pass frequencies within the range of 0.7 

Hz to 4 Hz, which corresponds approximately to 42 to 240 beats per minute, covering the typical range of 

human heart rates. Frequencies outside this range, which are likely to be noise or irrelevant signals, are 

attenuated. 

By filtering the signals this way, we retain only the frequency components that are most likely to represent 

genuine cardiac activity while reducing the impact of noise and artifacts. This step is critical to improving 

the signal-to-noise ratio and preparing the data for further analysis, such as timefrequency transformations 

and heart rate extraction. Overall, the filtering process plays a key role in achieving reliable heart rate 

estimates from video data. 

 

XI. SIGNAL PREPROCESSING WITH BANDPASS FILTERING AND TEMPORAL 

SMOOTHING 

To improve the quality of the extracted brightness signals and emphasize the heartbeat-related patterns, 

we apply a simple filtering and smoothing approach. First, the signals obtained from the selected facial 

regions are passed through a 

bandpass filter designed to retain frequencies corresponding to typical human heart rates (approximately 

0.7 to 3.5 Hz). This step helps eliminate noise caused by slow lighting changes or high-frequency 

disturbances such as motion artifacts. 

Following filtering, a moving average filter is applied to smooth the signal further. This smoothing reduces 

sudden fluctuations and enhances the periodic nature of the signal that corresponds to the heartbeat. By 

focusing on these cleaned signals, we can more reliably identify the dominant periodic component that 

reflects the heart rate. 

This straightforward signal enhancement technique avoids the complexity of advanced blind source 

separation methods while still improving the signal-to-noise ratio, making it suitable for real-time or 

resource-limited applications. 

 

 
Fig. 3. The facial divisions and the example signals. 
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XII. TIME-FREQUENCY ANALYSIS USING SUPERLET TRANSFORM 

We analyze the selected signal using a Superlet Transform, a technique that shows how the signal’s 

frequency content changes over time. Unlike traditional methods, Superlet provides a sharper and more 

detailed view, allowing us to identify the exact moments when the heartbeat signal is strongest. 

By examining the Superlet spectrogram, we find the frequency with the highest energy (or power) in each 

time window. This frequency is then converted into beats per minute (bpm) to estimate the heart rate. 

 

XIII. WINDOWED HEART RATE ESTIMATION 

The filtered rPPG signal was divided into overlapping windows (256 frames long, with a step size of 128 

frames). Within each window, the Superlet spectrogram was computed and averaged across time. The 

frequency corresponding to the maximum average spectral power was taken as the dominant frequency, 

and multiplied by 60 to estimate instantaneous heart rate in bpm for that window. 

 

XIV. STATISTICAL COMPARISON WITH GROUND TRUTH 

HR is estimated in 30-second overlapping windows across the video timeline. The estimated HR HRest(t) 

is compared with ECG-derived ground truth HRGT(t) using two metrics: 

1. Spearman rank correlation coefficient (SRC): 

Pd2 

 

wherediisthedifferencebetweentheranksof HRestandHRGT,andnisthenumberofobservations. 

 
These metrics jointly assess both correlation and estimation error, offering a comprehensive evaluation of 

the HR estimation pipeline’s accuracy and reliability. 

 

XV. GROUND TRUTH INTERPOLATION 

In order to validate the accuracy of the estimated heart rate obtained from video recordings, a reliable 

reference measurement is required. For this purpose, electrocardiogram (ECG) data is used as the ground 

truth, given its precision in capturing actual cardiac activity. A significant issue arises, however, due to the 

difference in sampling rates between the ECG signal and the video frames. Typically, ECG devices record 

at high sampling rates, while video footage is captured at a much lower and fixed frame rate (e.g., 30 

frames per second). To enable a meaningful comparison between the two data sources, it is necessary to 

bring them onto a common temporal scale. 

This is achieved through linear interpolation of the ECGderived heart rate values. Linear interpolation 

estimates intermediate values by assuming a straight-line progression between existing data points, 

effectively producing a continuous signal sampled at the same rate as the video. This process ensures that 

each frame in the video has a corresponding ground truth heart rate value for comparison. 

Once alignment is complete, performance is evaluated using three key statistical metrics: Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and Pearson Correlation Coefficient (r). These metrics 

collectively measure the accuracy and consistency of the heart rate estimation method. 

 

XVI. RESULTS 

The proposed method successfully estimated heart rate from facial videos by analyzing brightness fluctu-     
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ations in selected facial regions. After applying the Butterworth bandpass filter, noise from lighting and 

motion was significantly reduced, resulting in clearer signals. Time-series analysis of the forehead, left 

cheek, and right cheek regions revealed consistent rhythmic patterns corresponding to heartbeat cycles. 

The Superlet time-frequency analysis accurately identified the dominant frequency component, which was 

then converted into beats per minute (BPM). When compared to ground truth ECG readings, the estimated 

heart rates showed close alignment, with an average error margin within an acceptable range for non-

contact methods. The forehead region provided the most stable signals, while cheek regions occasionally 

exhibited minor discrepancies due to motion artifacts. Overall, the system demonstrated reliable heart rate 

detection across varied lighting and activity conditions, confirming the effectiveness of the proposed 

pipeline in extracting physiological signals from facial video without physical contact or wearable sensors. 

 

 
.Fig. 4. Time-Series of Facial Region Intensity Signals and Corresponding Superlet Transform 

Power for Heart Rate Analysis. 

. 

XVII. DISCUSSION 

The results of this study demonstrate that facial video analysis can serve as a viable method for heart rate 

estimation without the need for physical contact or specialized medical equipment. By focusing on pixel 

intensity variations in specific facial regions, the system effectively captured subtle changes related to 

blood flow beneath the skin. The forehead was found to be the most consistent region, likely due to its 

relatively stable surface and reduced motion compared to the cheeks. 

Applying a Butterworth bandpass filter played a crucial role in removing noise and isolating heart-related 

frequency components. The Superlet time-frequency transform further enhanced the frequency resolution, 

enabling precise detection of the dominant spectral peak corresponding to the heart rate. 

Despite promising results, some challenges remain. Motion artifacts and rapid lighting changes 

occasionally affected signal quality, particularly in the cheek areas. Future improvements could involve 

more advanced tracking algorithms and adaptive filtering techniques to enhance robustness. Overall, this 

approach demonstrates strong potential for real-time, noninvasive heart rate monitoring using widely 

available camera hardware. 
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