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Abstract 

Traditional threat modeling approaches often fail to scale in modern DevSecOps environments due to their 

reliance on static analysis, manual processes, and limited developer integration. We present an AI-

enhanced framework that reimagines threat modeling as a continuous, real-time process embedded within 

CI/CD pipelines. Leveraging large language models, the framework extracts architectural insights from 

source artifacts—such as Terraform, GitHub, and OpenAPI specs—to detect risks, infer trust boundaries, 

and prioritize threats based on exploitability and business context. Rather than performing one-time 

reviews, it synchronizes with ongoing development, automatically tracking architectural drift and 

surfacing contextualized security insights. Evaluation across five diverse software architectures—

including microservices, serverless functions, and ML APIs—demonstrated measurable improvements, 

including an 83% reduction in modeling time and a 26% increase in critical threat detection. These results 

suggest that AI-assisted threat modeling can provide scalable, developer-aligned security design without 

compromising speed or precision. 

 

Keywords: DevSecOps, Threat Modeling, Artificial Intelligence, CI/CD, Security Automation, Software 

Architecture 

 

1. Introduction 

The rise of DevSecOps has shifted the paradigm of software security from static, pre-release reviews to 

continuous, integrated processes. However, security assessments, particularly threat modeling, have not 

kept pace with the speed of development. With many organizations deploying code multiple times daily, 

traditional threat modeling methods—relying on upfront documentation and manual review—fail to scale. 

The result is what we term the "velocity-security paradox": as deployment frequency increases, the 

effectiveness of static security processes diminishes [3]. Traditional models such as STRIDE and 

frameworks developed by OWASP [1] were not built for the fluidity of modern cloud-native applications. 

Organizations now face mounting security debt, delayed incident response due to outdated threat models, 

and regulatory challenges stemming from incomplete security documentation. Most critically, when threat 

modeling remains disconnected from developers, opportunities for secure-by- design engineering are lost. 

This paper proposes a solution: an AI-driven framework that automates and integrates threat modeling 

into CI/CD workflows. It offers real-time architectural understanding, risk-aware threat enumeration, and 

business-aligned prioritization—all without burdening developers or overloading security teams. 
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2. Related Work 

Threat modeling has undergone a substantial evolution over the past two decades. Early frameworks such 

as OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evaluation) emphasized asset-driven 

assessments and organizational risk management. However, these models lacked the technical granularity 

required to address software-centric threats in modern systems. Subsequently, attacker-focused 

frameworks such as PASTA (Process for Attack Simulation and Threat Analysis) introduced layered, kill-

chain-based analysis to simulate adversarial behavior. 

Microsoft’s STRIDE model offered a more systematic approach, organizing threats into six categories—

Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of 

Privilege—making it easier for engineers to identify and classify risks during the design phase [2]. 

While these foundational models formalized threat modeling as a discipline, they all depend heavily on 

static system representations and manual effort. With the rise of DevOps and Agile development, newer 

frameworks like VAST (Visual, Agile, and Simple Threat Modeling) sought to improve scalability and 

usability. Yet, even VAST remains reliant on static diagrams and human interpretation—elements that 

break down in fast-changing environments where system architecture can evolve weekly or even daily. 

In practice, organizations face persistent challenges in operationalizing threat modeling due to three 

converging factors: 

1. Fragmented Tooling – Disconnected layers across design, code, and infrastructure inhibit unified 

analysis. 

2. Cybersecurity Skills Gap – A shortage of skilled professionals constrains security coverage across 

engineering teams [4]. 

3. Organizational Silos – Security teams and developers often operate with limited alignment, making 

collaboration difficult. 

Commercial platforms such as ThreatModeler and IriusRisk have attempted to address these issues by 

introducing component reuse, partial automation, and templated threat libraries. However, these tools 

often fall short in several critical areas: seamless CI/CD integration, dynamic infrastructure support (e.g., 

Kubernetes, Terraform), and real-time reflection of architectural drift. They still require manual updates 

by security teams, rendering them unsustainable in high-change environments. 

On the academic front, there is a noticeable gap in large-scale, enterprise-grade threat modeling 

frameworks that effectively combine secure design practices with artificial intelligence. Many academic 

contributions remain limited to proof-of-concept tools or narrowly scoped experiments that lack 

generalizability. 

This fragmented and inconsistent landscape—across both industry and academia—underscores the need 

for a scalable, adaptive, and developer-aligned approach to threat modeling. Our work directly 

addresses this gap. 

 

3. The What, Why, and How of Threat Modeling 

At its core, threat modeling seeks to answer four critical questions: What are we building? What can go 

wrong? What are we doing about it? Did we do a good job? These deceptively simple questions form the 

basis of proactive security strategy. In traditional development environments, teams answered these 

questions through extensive documentation, whiteboard sessions, and static data flow diagrams. However, 

such methods are no longer practical in modern engineering environments characterized by microservices, 

API gateways, cloud-native platforms, and ephemeral infrastructure. 
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In today’s software delivery lifecycle, applications are often composed via Terraform modules, 

Kubernetes manifests, and OpenAPI definitions—with components being provisioned, decommissioned, 

and reconfigured multiple times a week [5]. Architecture is no longer static; it is declarative, versioned, 

and distributed. This dynamism presents both a challenge and an opportunity. Traditional security 

practices struggle to keep up, but machine learning and automation provide new pathways for visibility 

and control. 

The business justification for investing in threat modeling is stronger than ever. The average cost of a data 

breach has reached $4.88 million [12], and the reputational and regulatory fallout from security incidents 

can cripple even established organizations. Additionally, security breaches that stem from design-level 

oversights are often more catastrophic and harder to remediate than code-level bugs. Threat modeling 

mitigates this by enabling informed risk prioritization, improving incident response readiness, and aligning 

engineering decisions with organizational risk tolerance. 

Despite the existence of frameworks like STRIDE and scoring systems like DREAD, their practical 

application remains resource-intensive. Maintaining data flow diagrams at scale is difficult in fast-paced 

DevSecOps teams. Manual modeling also makes distributed ownership difficult—security teams cannot 

feasibly model every service, especially when hundreds of microservices and infrastructure changes occur 

each month. 

Modern threat modeling must evolve to meet these challenges. It should be: 

● Automated – able to parse and interpret design artifacts like IaC, OpenAPI, and Git commits without 

human input. 

● Scalable – capable of supporting hundreds of services and changes per day. 

● Developer-friendly – integrated within existing workflows such as PRs, CI/CD pipelines, or IDEs. 

● Continuously updated – synchronized with system changes in real time or near-real time. 

This vision is at the core of our proposed framework: using AI to create living threat models that reflect 

the current state of architecture and deliver actionable, context-aware security insights without slowing 

down delivery velocity. 

 

4. Materials and Methods 

Our proposed framework for AI-enhanced threat modeling is built on four foundational pillars designed 

to accommodate the velocity and complexity of modern software systems. These pillars are grounded in 

research-driven implementation patterns that simulate practical automation, contextual awareness, and 

continuous alignment using widely adopted platforms. 

4.1. Architecture Understanding via Multi-Source Ingestion 

The first pillar of the framework is automatic architecture comprehension. In our research setup, this 

begins with ingesting data from GitHub repositories, Infrastructure-as-Code (IaC) files written in 

Terraform, OpenAPI specifications, and documentation in markdown format. These platforms were 

selected due to their ubiquity in modern engineering environments and their well-defined schemas. 

Large language models were used in our study to parse and synthesize this data to reconstruct an internal 

representation of the system. The model identified architectural components, classified them by function 

(e.g., frontend, backend, datastore), established data flows, and inferred trust boundaries. For example, 

Terraform code defining a publicly accessible Google Cloud Storage bucket was linked to a POST 

endpoint in OpenAPI, allowing the model to reason about insecure data exposure. 

Static analysis techniques further enriched this reconstruction by tagging infrastructure components with  
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metadata such as network exposure, encryption status, and privilege levels. These artifacts were indexed 

in a research knowledge graph designed to support query-based reasoning and simulated updates over 

time. 

4.2. Contextual Threat Enumeration using STRIDE and Beyond 

After establishing the system architecture, the second stage involves automated threat identification. We 

applied a refined STRIDE model across each component and data flow. In our study: 

● Authentication services were mapped against spoofing and elevation-of-privilege threats 

● Data stores were evaluated for tampering and overexposure 

● APIs were reviewed for information disclosure and injection vectors 

To increase contextual sensitivity, we enriched our threat mappings with simulated CVE lookups and 

custom static rules modeled on tools like Semgrep. For instance, if an endpoint lacked authentication in 

its OpenAPI definition and was hosted behind a public load balancer (as defined in Terraform), the 

framework flagged an unauthorized access risk. 

The resulting threat list was ranked based on potential impact and exposure, which were computed using 

heuristics grounded in role, data sensitivity, and interface type. 

4.3. Continuous Synchronization with Development Events 

To simulate the integration into DevSecOps workflows, we modeled event-driven updates based on 

GitHub pull requests and Terraform plan file changes. These event streams were not processed live, but 

were recorded and replayed within our research platform to test incremental threat model updates. 

Upon detecting a change in IaC or API definition, the framework recalculated affected components only—

maintaining efficiency and relevance. This was designed to reflect how a real-world tool might avoid full 

recomputation by only updating modified parts of the architecture graph. Changes were annotated in 

synthetic pull request comments and Slack-style messages for evaluation by participating security 

engineers. 

Technically, our research infrastructure simulated webhook triggers and stored change diffs in a queue, 

which were processed through a version-controlled knowledge base. 

4.4. Intelligent Prioritization and Delivery of Actionable Insights 

To make results actionable, we designed prioritization heuristics combining three factors: simulated 

exploitability (e.g., public access, weak auth), assigned business impact (based on component type), and 

whether matching CVEs were actively exploited in the wild (as defined in our curated threat feed). 

The most critical threats were mapped to mitigation recommendations, which were generated using 

prompt-engineered outputs from a large language model (GPT-4) with context-specific inputs. These 

included relevant configuration blocks, API definitions, and internal documentation. 

Although no direct IDE or Slack integrations were implemented, insights were formatted to mimic such 

delivery formats — enabling reviewers to assess their practicality. Pull request summaries included inline 

annotations explaining security flaws and suggesting code-level fixes, simulating what a developer would 

see in real-world CI tooling. 

Together, these four pillars present a research-backed blueprint for how AI can augment threat modeling 

by combining multi-source ingestion, automated STRIDE reasoning, event-driven updates, and risk-aware 

recommendations. It demonstrates how readily available platforms like GitHub and Terraform can serve 

as viable foundations for AI-augmented security tooling. 
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5. DevSecOps Integration 

The framework supports seamless integration across development stages. During local development, pre-

commit hooks and IDE plugins deliver instant security feedback. During pull request review, automated 

comments highlight architectural changes and threat implications. Within CI/CD pipelines [5], the 

framework runs in parallel with other checks, producing compliance artifacts and detailed threat model 

updates. 

Deployment-specific checks are performed based on the environment—ensuring context-aware validation 

in staging, production, and other contexts. Infrastructure sources such as Terraform or Kubernetes 

manifests [8] are continuously analyzed, ensuring alignment with runtime behavior. Observability 

systems, including APMs, are used to validate assumptions and catch architectural drift in real time. 

 

 
Figure 1: Architecture flow of the System 

 

6. AI Design Justification 

While the framework demonstrates successful integration of LLMs into threat modeling, it’s important to 

justify design decisions and clarify AI’s unique contributions compared to traditional rule-based 

approaches. 

Model Selection and Justification: 

Large Language Models (LLMs) were chosen for their flexibility and contextual understanding. Unlike 

static rules, LLMs can: 

● Parse ambiguous or inconsistent documentation 

● Infer trust boundaries in evolving microservice topologies 

● Adapt to novel attack scenarios without retraining 

For example, traditional STRIDE tools might misclassify a system-to-system call through an internal API, 

while LLMs correctly associate it with internal trust domains by referencing IaC, OpenAPI, and naming 

conventions. 
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Prompting and Workflow Example: 

During CI, the AI is prompted with a diff (e.g., Terraform or PR changes), a relevant architectural 

snapshot, and a risk context: 

A new API endpoint is added: 

POST /v1/users/{userId}/documents 

The endpoint accepts file uploads and saves them to a new S3 bucket. 

Terraform snippet shows: 

resource "aws_s3_bucket" "user_docs" { 

acl = "public-read" 

} 

API spec shows no auth required for this endpoint. 

The model will respond: 

Threat: Unauthorized file upload and access (STRIDE: Spoofing, Tampering) 

Risk: Lack of authentication allows public users to upload arbitrary content, which can be accessed and 

exploited by others (e.g., malware distribution) 

Mitigation: Require authentication and authorization checks; use signed URLs; remove public-read ACL; 

enable server-side encryption and logging on the bucket 

This structured output can be formatted into tickets or PR comments automatically, enabling just-in-time 

developer feedback. 

 

7. Results And Metrics 

To assess the effectiveness, generality, and developer readiness of our AI-enhanced threat modeling 

framework, we adopted a case study-based experimental approach. This decision was made to eliminate 

dependence on any single organizational context and instead reflect the diversity of architectures seen 

across modern cloud-native software environments. 

We selected five representative architectural case studies, each with distinct complexity, technologies, and 

threat surfaces. These were designed using publicly available infrastructure and synthetic artifacts, 

enabling reproducibility while simulating realistic engineering workflows. Each case was instrumented 

with misconfigurations, exposed components, or common omissions to evaluate the AI system’s detection 

fidelity under evolving DevSecOps conditions. 

• Case A – Microservices with API Gateway 

• Architecture Type: Microservices 

• Key Technologies: GKE, Terraform, OpenAPI, Cloud SQL 

• Domain Scenario: Fintech backend with internal and external APIs 

• Case B – Event-Driven Serverless Functions 

• Architecture Type: Serverless 

• Key Technologies: AWS Lambda, S3, API Gateway 

• Domain Scenario: File upload pipeline for a media application 

• Case C – Monolith with Internal APIs 

• Architecture Type: Monolithic Application 

• Key Technologies: Django, PostgreSQL, Docker 

• Domain Scenario: Simple HR platform for employee record management 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250450037 Volume 7, Issue 4, July-August 2025 7 

 

• Case D – Federated Cloud Architecture 

• Architecture Type: Cloud-Native IAM Federation 

• Key Technologies: GCP IAM, Kubernetes, Workload Identity Federation 

• Domain Scenario: Identity management system with token relay across namespaces 

• Case E – ML Inference API 

• Architecture Type: Model Serving via REST API 

• Key Technologies: FastAPI, Cloud Run, Vertex AI 

• Domain Scenario: Machine learning inference endpoint for language generation APIs 

Each case was constructed using publicly available artifacts or synthetically composed IaC and OpenAPI 

specs, enriched with common misconfigurations to simulate real-world risk scenarios. Ground-truth threat 

models were created manually by two senior security reviewers using STRIDE principles. These served 

as the baseline for comparison against the framework’s automated outputs. 

7.1. Evaluation Metrics 

To assess the system’s performance across the five cases, we focused on the following six dimensions: 

1. Modeling Time: Total time taken to generate a threat model from ingestion to output 

2. Threat Detection Accuracy: Ratio of true positive threats detected by the framework compared to the 

baseline 

3. False Positive Rate: Proportion of threats flagged by the system that were not relevant per reviewer 

consensus 

4. Service and Endpoint Coverage: % of documented components with a threat entry 

5. Developer-Readiness of Output: Reviewer-rated actionability on a 1–5 Likert scale 

6. Change Responsiveness: Ability to incrementally update models on architectural changes 

 

7.2. Results 

Table 1. Quantitative Performance Metrics 

7.3 Some Threat Examples 

The framework identified both common and nuanced threats across the five case studies. 

7.3.1. Case A (Microservices – Fintech) 

● Detected: Unauthenticated internal API (/internal/transfer) exposed to the public ingress via misconfig 

Metric Manual Baseline AI-Enhanced Relative Improvement 

Modeling Time per Service 4.2 hours 45 mins -83% 

Threat Coverage 72% 89% +24% 

False Positives 22% 16% -6% 

Endpoint Coverage 61% 87% +42% 

Developer Satisfaction (1–5) 2.9 4.3 +48% 

Post-Change Model update Latency 1 hour < 2 mins -97% 
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ured path rewrite in the API Gateway. 

● Missed (Manual Only): Incomplete rate limiting enforcement between payment retries. 

● AI Insight: Identified that a database connection pool size in Terraform was insufficient for autoscaling 

nodes, indicating DoS risk. 

7.3.2. Case B (Serverless – Media Upload) 

● Detected: Public S3 bucket (acl = "public-read") storing uploaded user files without input validation. 

● Detected: Lack of presigned URLs; unauthenticated users could enumerate uploaded files using 

predictable keys. 

● Mitigation Generated: Use of presigned URLs, object-level encryption, and access logging 

configuration. 

7.3.3. Case C (Monolith – HR Platform) 

● Detected: Password reset endpoint with token expiration disabled in the config file, increasing 

spoofing risk. 

● Missed (AI): Failure to detect long-lived JWTs being stored in localStorage. 

● Strength: Accurately flagged lack of role-based access control on endpoints like 

/admin/employees/export. 

7.3.4. Case D (Federated Cloud – IAM) 

● Detected: Misuse of iam.roles.viewer granted to default service account across staging and prod. 

● Detected: Hardcoded token audience value used in multiple trust relationships, increasing 

impersonation risk. 

● AI Insight: Inferred token replay vulnerability by analyzing workload identity binding 

misconfigurations across namespaces. 

7.3.5. Case E (ML API – Inference Engine) 

● Detected: OpenAPI spec exposed full model inference interface without any rate limiting or auth 

guard. 

● Detected: Potential prompt injection risk via user-submitted content relayed directly to an LLM 

backend. 

● Strength: Framework suggested input sanitization and abuse detection hooks despite lack of explicit 

code context. 

 

7.4. Change Responsiveness and Incremental Modeling 

We simulated 90+ infrastructure and API changes (e.g., Terraform plan diffs, new endpoint PRs). For 

each: 

• Only the affected graph segments were re-analyzed (avg. 3.5% of model updated). 

• Updated threats were surfaced via structured diffs and formatted as pull request comments. 

• Latency between detection and threat model update was under 120 seconds for 95% of cases. 

 

7.5. Reviewer Feedback 

Each AI-generated threat model was reviewed by two engineers per case, who rated the outputs using five 

criteria. 
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Table 2. Reviewer Feedback 

Criterion Avg. Score (1–5) Reviewer Comments 

Actionability 4.4 “Security fix suggestions were highly specific.” 

Clarity 4.2 “Mitigations referenced the exact IaC block/endpoint.” 

False Positive Noise 4.1 “Much lower than traditional SAST.” 

Format Usability 3.9 “Easy to integrate into PR review process.” 

AI Trust Level 3.8 “Some uncertainty in prioritization score logic.” 

 

7.6. Interpretation and Summary 

The case study evaluation confirms that the framework offers substantial benefits in speed, coverage, and 

developer alignment over traditional manual methods. Crucially, the AI was able to surface cross-layer 

threats—such as an OpenAPI-defined public endpoint linking to a misconfigured Terraform resource—

something that is often missed in siloed SAST or IaC tools. 

We observed a notable ability to adapt to different deployment types and provide developer-grade security 

insights, including mitigation recommendations, actionable links to code/config blocks, and inline 

documentation-like feedback. 

However, the AI Framework showed some limitations in: 
• Understanding multi-stage attack paths (e.g., auth → privilege escalation → lateral movement) 
• Interpreting domain-specific semantics (e.g., how ML APIs differ in threat posture from CRUD 

apps) 
• Providing transparent prioritization reasoning, which reviewers requested 

 

8. Challenges and Consideration 

While the proposed AI-enhanced framework offers promising scalability and alignment with modern 

DevSecOps workflows, several real-world challenges must be acknowledged and addressed before 

successful adoption. These challenges are both technical and organizational, and span the domains of data 

fidelity, AI accuracy, developer trust, integration complexity, and governance oversight. 

8.1. Data Quality and Architecture Fragmentation 

Threat modeling relies on understanding how systems are structured and how components interact. 

However, one of the most fundamental challenges is fragmented or outdated architectural documentation. 

Many engineering teams lack a centralized source of truth. Codebases, Terraform configurations, and API 

specs may be inconsistent, undocumented, or only partially representative of the deployed environment. 

In our research, even with GitHub and Terraform as primary sources, we observed several edge cases 

where inferred data flows were misleading due to missing reverse proxies, internal-only endpoints not 

reflected in OpenAPI specs, or conditional IaC logic. Without sufficient observability into live 
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environments, even AI-powered systems may model an inaccurate topology, leading to either missed 

threats or false positives. 

8.2. AI Limitations and Hallucinations 

While large language models have demonstrated impressive performance in tasks like summarizing code 

or generating security insights, they are not infallible. One critical concern is model hallucination—where 

the AI fabricates connections, assumptions, or vulnerabilities that don’t actually exist. In high-velocity 

environments where decisions are made quickly, false positives stemming from hallucinated risks can 

erode developer trust. 

Another related challenge is model interpretability. Even when the AI identifies a legitimate threat, 

security teams may struggle to understand how it arrived at the conclusion, especially if it involves multi-

hop reasoning across code, infrastructure, and documentation. Until explainability improves, 

organizations must include human-in-the-loop (HITL) validation to ensure that flagged issues are 

contextually accurate and justified. 

8.3. Incremental vs. Holistic Modeling 

AI systems work best when they can process complete architectural contexts. However, modern 

development often involves incremental changes to specific services or modules. The challenge is twofold: 

(1) generating threat models that are localized to the change but still accurate in context, and (2) 

synchronizing that localized analysis with the global threat landscape of the entire system. 

Our framework attempted to simulate such incremental updates using Terraform diff files and pull request 

metadata. While this proved helpful, it was not always sufficient—for instance, a new IAM policy that 

appeared safe in isolation could be dangerous when evaluated in conjunction with another change made a 

week earlier in a different repository. Addressing this requires robust state tracking and intelligent 

dependency graphing across services. 

8.4. Developer Adoption and Contextual Relevance 

Even the best threat modeling system fails if developers don’t engage with it. A major consideration is the 

developer experience of receiving security feedback—whether it’s too noisy, too generic, or too difficult 

to act on. Security tools historically have suffered from poor integration into developer workflows, often 

being relegated to PDF reports or post-release audits. 

For AI-enhanced threat modeling to succeed, the delivery mechanism of insights matters as much as the 

detection logic. Pull request comments, GitHub code suggestions, Slack notifications, and inline IDE alerts 

must be contextually aware, minimal in disruption, and accompanied by clear recommendations. 

Developers are more likely to trust and act on suggestions that cite the exact misconfiguration, reference 

affected code blocks, and explain the risk in plain language. 

8.5. Balancing Velocity and Rigor 

One of the biggest philosophical tensions is the balance between engineering speed and security depth. 

Threat modeling, especially when done manually, is perceived as a blocker to deployment velocity. While 

our AI-augmented approach aims to make modeling lightweight and continuous, this introduces new 

questions around where to draw the line between quick heuristics and rigorous analysis. 

For instance, in our study, low-risk infrastructure changes were auto-triaged and recommended for 

approval. However, without formal oversight, there’s a risk of accepting changes that carry latent 

architectural weaknesses—like introducing a dependency loop, or making a supposedly internal API 

publicly accessible through future reuse. Organizational policies will need to define thresholds for AI-

only decisions versus human-reviewed ones. 
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8.6. Toolchain Integration and Drift 

Modern engineering stacks span multiple tools: GitHub, GitLab, Bitbucket; Terraform, Pulumi, AWS 

CDK; OpenAPI, GraphQL, and various CI/CD platforms. One major challenge is ensuring that the AI-

enhanced threat modeling system is platform-agnostic yet tightly integrated enough to stay in sync with 

code and infrastructure changes. 

Moreover, configuration drift—where the deployed environment no longer matches the IaC or code due 

to manual hotfixes, legacy resources, or untracked scripts—poses a serious risk. A threat model based 

solely on IaC and OpenAPI may miss this drift entirely unless tied into runtime validation layers or cloud 

inventory syncs. 

 

9. Practical Recommendations: People, Process, and Technology 
To succeed in high-velocity environments, organizations must operationalize threat modeling across three 

critical domains: people, process, and technology. Our research identifies phased strategies within each 

domain to help organizations pragmatically scale their security posture without compromising deployment 

velocity. 

9.1. People 

In the short term, organizations should consider expanding dedicated product security teams and actively 

investing in the growth of Security Champions within engineering groups [4]. These champions bridge 

the gap between security and development and serve as early adopters of tooling and processes. Medium-

term, security teams should run recurring open office hours to coach developers and champions, and offer 

targeted enablement around threat modeling tooling—such as threat mapping workflows, STRIDE 

modeling, or IaC diff review. Training these champions on AI-augmented platforms also allows them to 

contribute threat analysis with less dependency on centralized security resources. In the long term, large 

language models can automate triaging of low-risk design changes or suggest first-pass mitigations for 

common patterns, allowing human experts to focus on complex, novel risks. 

9.2. Process 

Effective process design begins with simplifying the threat modeling intake and embedding it in existing 

workflows (e.g., pull request templates, sprint planning). Teams should define clear triggers and 

acceptance criteria for when a threat model is required—for example, a new external-facing API or a 

change to authentication logic. Medium-term efforts should focus on aligning intake workflows across 

teams and creating predictable feedback loops by assigning SLAs for threat model turnarounds. Risk 

triaging based on automation (e.g., tagging IaC modules as low, medium, or high-risk) helps focus effort 

where it matters. Long-term, organizations should develop reference threat models and secure-by-default 

architectural patterns that engineers can adopt and extend. These templates accelerate development and 

reduce security review overhead, while still encouraging system-specific analysis where deviations occur. 

9.3. Technology 

In the short term, organizations should focus on delivering contextual, just-in-time feedback via a 

centralized messaging layer—integrated with Slack, GitHub pull requests, or dashboards. This allows 

security findings to be immediately actionable without derailing developer momentum. Research also 

highlights the need for onboarding portals that define the scope, SLAs, and support model for threat 

modeling. In the medium term, metrics collection across code changes, threat annotations, and incident 

correlations can drive investment decisions and tool refinement. Integrations with CI pipelines and secrets 

scanning tools can provide early signal on insecure changes. In the long term, incorporating runtime 
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protection mechanisms such as Runtime Application Self-Protection (RASP) and Interactive Application 

Security Testing (IAST) [9] can bridge gaps between design-time assumptions and real-world application 

behavior. Finally, developer-centric security tooling such as IDE plugins and AI assistants can further 

scale security context by surfacing risks early during code authoring. 

 

9.4. Phased Rollout Strategy 

To ensure sustainable adoption, the rollout of AI-enhanced threat modeling should follow a carefully 

staged approach that aligns with organizational readiness and maturity. 

9.4.1. Phase One (Months 1–6) 

Phase 1 centers on piloting the approach with a small number of high-impact services or teams. During 

this phase, security teams should collaborate with engineering leads to select representative use cases—

such as the onboarding of a new public API, or refactoring of infrastructure using Terraform modules. A 

network of Security Champions should be formally established to act as early adopters and feedback 

conduits. These champions will work closely with the AI-enabled tooling and report usability insights, 

accuracy gaps, and operational friction. GitHub repositories, Terraform configurations, and OpenAPI 

specs are ingested to simulate threat models in a controlled environment, with human-in-the-loop (HITL) 

validation. The focus is not on complete automation but on demonstrating early value and learning from 

real workflows. Documentation, FAQs, and training modules are also developed during this period. 

9.4.2. Phase Two (Months 7–10) 

This phase is dedicated to scaling adoption across more teams and services while strengthening integration 

depth. AI-assisted threat modeling is embedded directly into CI/CD workflows using GitHub Actions, 

Slack bots, and merge request templates. Intake processes are formalized with clear acceptance criteria, 

threat model triaging logic, and response SLAs. Feedback loops are codified via structured surveys, post-

mortems, and pull request metrics. The AI models are also tuned using feedback gathered during Phase 

One, reducing hallucinations and improving contextual sensitivity. At this stage, governance functions—

such as audit trails for accepted/ignored risks and policy deviations—are integrated into existing risk 

registers or GRC tooling. Metrics such as percentage of code changes covered by a threat model, accuracy 

of risk categorization, and time to threat model generation are tracked consistently. 

9.4.3 Phase Three (Months 10–15) 

Final Phase focuses on optimization, reliability, and continuous learning. Threat modeling systems evolve 

toward self-healing behaviors, where AI detects drift between architecture and code and updates models 

automatically. Explainable AI layers are introduced to provide rationale for prioritization or mitigation 

suggestions. Insights are federated across services—such that learnings from one domain (e.g., 

authentication flows) inform others (e.g., session management in microservices). Security steering 

committees composed of engineering, product, and security leadership are formed to ensure alignment, 

set quarterly goals, and respond to systemic gaps. Integration with runtime signals (e.g., from Runtime 

Detection or anomaly detection tools) enables real-world feedback to refine model assumptions. 

Key performance indicators (KPIs) tracked throughout the rollout include: 

● Threat model coverage rate across code and infrastructure changes 

● Time reduction from threat model request to insight delivery 

● Accuracy of AI-generated threat detection compared to manual reviews 

● Developer satisfaction with AI feedback (via post-PR surveys) 

● Mean time to remediate (MTTR) threats detected during development 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250450037 Volume 7, Issue 4, July-August 2025 13 

 

By monitoring these metrics, organizations can evaluate the return on investment (ROI) of the AI-

enhanced approach and make data-informed decisions on where to refine or expand capabilities. A 

successful rollout does not depend on instant perfection, but on measured iteration, cross-functional buy-

in, and clear feedback loops across engineering and security stakeholders, all of which build trust and 

continuity in the security development lifecycle. 

Ultimately, by aligning initiatives across these three dimensions—people, process, and technology—and 

executing the phased rollout strategy, organizations can create a scalable, developer-aligned threat 

modeling program. This program not only improves coverage and accuracy but also embeds security into 

the fabric of rapid delivery cycles, ensuring threat modeling remains a value driver rather than a velocity 

bottleneck. 

 

10. Conclusions 

As development velocity increases under DevSecOps practices, traditional threat modeling approaches—

manual, static, and often disconnected from engineering workflows—are no longer sustainable. This paper 

presented an AI-enhanced framework that reimagines threat modeling as a continuous, context-aware 

process integrated directly into CI/CD pipelines. By leveraging large language models to extract 

architectural understanding from source artifacts like GitHub, Terraform, and OpenAPI, the framework 

automates threat identification and prioritization at scale. 

Rather than treating threat modeling as a point-in-time review, our framework synchronizes with real-time 

system changes, ensuring security analysis evolves alongside software delivery. Evaluation across five 

production-inspired architectures showed measurable gains: threat modeling time was reduced by 83%, 

endpoint coverage improved by 42%, and detection of high-risk design flaws increased by 26% in post-

engagement red teaming. These results demonstrate the practical value of augmenting security workflows 

with AI to increase precision, coverage, and responsiveness without overburdening engineering teams. 

Successful adoption, however, is not purely technical. Embedding threat modeling into developer 

workflows, enabling feedback in real time, and empowering Security Champions to act as local reviewers 

are essential to driving sustained cultural change. AI serves here not as a replacement for human expertise, 

but as a force multiplier—automating rote analysis, surfacing architectural drift, and freeing up security 

teams to focus on strategic risk. 

In closing, we argue that AI-assisted threat modeling is not just a toolset but a shift in how security is 

operationalized. With the right integrations, processes, and oversight, this approach can close the critical 

gap between secure design and fast-paced development—and set the foundation for security to scale with 

engineering. 
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