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Abstract 

Rice serves as the primary staple food for more than 160 million individuals in Bangladesh, contributing 

significantly to the nation's economy and food security. Nevertheless, rice farming is significantly 

challenged by a range of diseases including bacterial leaf blight, brown spot, and leaf blast, which can 

result in considerable reductions in yield. Conventional methods for detecting diseases tend to require a 

lot of labor, consume considerable time, and depend heavily on the expertise of specialists, which limits 

their practicality for use by farmers in Bangladesh. This study explores the application of advanced deep 

learning architectures - ConvNeXt-Small, EfficientNet-B3, MobileNetV2, ResNet-50 and DeiT-Tiny for 

the identification of diseases affecting rice leaves using a dataset comprising approximately 12,700 

images. By utilizing transfer learning methods, we seek to evaluate and contrast the effectiveness of these 

models in correctly detecting and categorizing rice leaf diseases. The findings of this study have the 

potential to advance effective and scalable methods for automating disease identification in rice farming, 

particularly in the context of developing countries' agricultural landscape. 
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INTRODUCTION 

Rice is integral to Bangladesh’s agriculture, economy , and food security, accounting for approximately 

75% of the total cropped area and 93% of cereal production [5]. Even with improvements in farming 

methods, rice cultivation in Bangladesh faces considerable challenges due to multiple diseases, such as 

bacterial leaf blight, brown spot disease, and leaf blast disease. These illnesses can lead to yield reductions 

of anywhere from 10% to 70%, influenced by the severity of the disease and the promptness of the 

response. [17]. 

The shortage of qualified plant pathologists in rural areas of Bangladesh exacerbates the challenge of 

timely and accurate disease diagnosis [26]. These limitations underscore the need for automated, effective 

and adaptable approaches for identifying rice diseases. 

The arrival of technologies in deep learning and computer vision offers promising avenues for addressing 

these challenges.  Convolutional  Neural  Networks  (CNNs) and Vision Transformers (ViTs) have shown 

exceptional performance in a range of image classification tasks, such as identifying plant diseases . [13]. 

In the context of Bangladesh, incorporating these technologies into the agricultural sector has the potential 

to transform disease management methods, resulting in enhanced crop production and greater food 

security. 
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This research intends to evaluate the efficacy of various cutting-edge deep learning models—ConvNeXt-

Small, EfficientNet-B3, MobileNetV2, ResNet-50, and DeiT- Tiny—in detecting rice leaf diseases using 

a substantial image dataset relevant to Bangladeshi agriculture. 

The key contributions of this paper are as follows: 

• A comprehensive evaluation of five deep learning models, including four convolutional architectures 

(ConvNeXt- Small, EfficientNet-B3, MobileNetV2, and ResNet-50) and one transformer-based 

architecture (DeiT-Tiny), for rice leaf disease classification. 

• Utilization of a diverse dataset containing rice leaf images categorized into seven classes: Bacterial 

Leaf Blight, Brown Spot, Leaf Blast, Leaf Smut, Tungro, Others, and Healthy. 

• Performance comparison between CNN-based and transformer-based architectures to assess accuracy, 

robustness, and suitability for real-world agricultural deployment. 

 

Literature review 

Rice disease detection has gained significant attention within the area of agricultural technology, 

especially as deep learning methods continue to gain prominence. Several studies have explored deep 

learning models for effective detection, contributing to advancements in this domain. 

In 2022, Haque et al. [15] utilized YOLOv5 to identify various rice diseases, including bacterial leaf blight, 

brown spot, and sheath blight. With a dataset containing 1,500 annotated images, the model obtained a 

precision rate of 90% and a recall rate of 67%, and an F1 score of 81%. Although the results were 

promising, limitations included a small dataset and relatively low recall, suggesting the need for improved 

dataset size and diversity for better generalization. 

Rahman et al. [27] utilized CNNs (convolutional neural net- works) to recognize diseases and pests for 

rice by employing a dataset of images gathered from various sources. While achiev- ing high classification 

accuracy, the study faced challenges in distinguishing visually similar diseases, demonstrating the 

necessity for diverse and high-quality datasets for robust real- world applications. 

In another significant study, Al-Saffar et al [4] introduced a CNN that employs attention and utilizes 

depthwise separable layers, enhanced using Bayesian techniques, referred to as ADSNN-BO. Their 

framework accomplished 94.65% accu- racy on a four-class rice disease dataset. A potential limitation, 

however, is the restricted number of disease categories, which limits the model’s coverage in real-world 

applications. 

Jahan et al. [21] presented a unique methodology by cre- ating a dual-phase CNN framework that 

integrates Faster R- CNN for identifying lesions and a conventional CNN for the classification process. 

Aimed at small datasets, the method yielded 88.07% accuracy using 5-fold cross-validation. This 

architecture effectively isolated disease-affected regions before classification, increasing interpretability. 

However, its perfor- mance was relatively lower due to the limited dataset and high intra-class variability. 

Lastly, Hossain et al. [18] conducted a comparative anal- ysis of various CNN architectures, including 

DenseNet121, MobileNetV2, and ResNet50, to classify rice diseases across nine categories commonly 

found in Bangladesh. The study highlighted the advantages of transfer learning and ensemble strategies, 

though it did not provide detailed per-class met- rics or error analyses. Despite the broad scope, the absence 

of quantitative comparisons between models under identical conditions limits its value in guiding 

architectural choices. 

Despite significant progress in rice disease detection using deep learning, several research gaps persist. 

Challenges such as low recall scores, dataset bias, and subjectivity in man- ual annotation suggest a need 
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for larger, more diverse, and objectively labeled datasets. While models like MobileNet- CA-YOLO and 

ADSNN-BO have introduced lightweight and attention-enhanced architectures for practical deployment, 

their applicability remains constrained by limited disease cate- gory coverage. Overall, future work should 

focus on scalable, interpretable, and field-deployable solutions with extensive datasets and detailed 

performance evaluations. 

 

Materials and Methods 

The research in this paper was carried out on Kaggle Notebook employing the PyTorch framework. One 

of the top Python machine learning libraries, scikit-learn, was utilized for implementing machine learning 

techniques in Python. Throughout this research, all models were developed using Kaggle’s accelerated 

resources with GPU100 support. 

 
Figure 1. Rice Leaf  Images 

 

1.1 Datasets 

The visuals utilized in this research were gathered from various origins. Consequently, the data collected 

from images of rice leaves includes a blend of the Rice Leaf Disease Dataset from the Bangladesh Rice 

Research Institute (BRRI), the Mendeley Data repository, a dataset sourced from a public repository on 

Kaggle, and A dataset acquired from the Rice Leaf Disease Dataset provided by the University of 

California Irvine (UCI) Machine Learning Repository. The collection includes a total of 12672 images 

organized into 7 separate categories, which consist of a healthy leaf category, an un- known disease 

category, and 5 disease categories. 1). The dataset covers a diverse range of paddy diseases which are 

Fungal, Bacterial and Viral (Tungro). To imitate the real-life scenarios, the images are of various 

dimensions collected using different devices. The distribution of all types of collected images is shown in 

Figure 2. The initial images were divided into training and testing datasets in an 80:20 ratio. 
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Figure 2. Dataset Distribution 

 

1.2 Preprocessing 

All images were preprocessed using the torchvi- sion.transforms library. Image augmentation plays a vital 

role in improving the resilience and generalization capabilities of deep learning models by artificially 

increasing the size of the training dataset. In this research, we utilized image transformation methods for 

augmentation, which involved random resized cropping, flipping both horizontally and vertically, 

adjusting colors (brightness, contrast, saturation, hue), random rotations, affine transformations (shearing 

and translation), and applying Gaussian blur for enhancing the dataset. Additionally, tensor conversion 

and normalization are used for preprocessing before feeding images into the model. 

To address the variation in the number of images across different classes, we implemented class balancing 

through a weighted random sampler. This sampler computes the fre- quencies for each class, assigns 

greater weights to those that are less represented, and utilizes these weights to generate a 

WeightedRandomSampler, thereby ensuring that sampling during training is balanced. 

1.3 Methodology 

In this step, we have applied several computer vision models for comparative analysis in rice crop disease 

detection. We have analyzed the classification performances of ConvNeXt Small, EfficientNetB3, 

MobileNetV2, Resnet50, and Deit-Tiny models. We chose these models to incorporate a representative 

variety of model types, each with unique advantages in terms of accuracy, computing efficiency, and 

architectural innovation. These ranged from modern transformer-based designs to classical convolutional 

neural networks (CNNs). For proper analysis most steps and metrics were kept unchanged, and all the 

models were run under the same environment. The workflow diagram of automated rice disease detection 

using CNN and Vision Transformer-based frameworks is illustrated in Figure 3. 

 

Deep Learning Models 

To identify diseases in rice crops based on images of infected leaves, pretrained models were employed 

as the foundational network to harness transfer learning for effective feature extraction. The classifier head 
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was modified to output predictions across seven categories to match the output labels. The model was 

initially frozen to retain pretrained features, with selective unfreezing implemented after a fixed number 

of epochs following the progressive training strategy. We utilized the AdamW optimizer along with a 

OneCycle learning rate scheduler to enhance convergence speed, and we employed a cross-entropy loss 

function with class weights and label smoothing to address class imbalance and reduce overconfidence. 

 

 
Figure 3. Workflow of the experiment 

ConvNeXt-Small uses GELU activation, depthwise convolutions, layer normalization, and huge kernel 

sizes to provide good performance with comparatively little computational complexity. Its inclusion 

makes it possible to evaluate the performance of updated CNNs that have been tuned by transformer-

inspired techniques on image classification tasks that are particular to a given domain. [24], [28], [37]. 

EfficientNet-B3, a mid-sized variation, is appropriate for situations with limited resources since it 

preserves computational efficiency while achieving remarkable accuracy resulting from compound model 

scaling in the classification of fine-grained agricultural photos [9], [32]. 

MobileNetV2 is a lightweight architecture designed for mobile and edge device deployment, utilizing 

linear bottlenecks and inverted residual blocks. The model was selected to assess lightweight neural 

networks and look into their suitability for real-world agricultural applications, particularly in rural  
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contexts [11], [12], [31], [36]. 

ResNet-50 is a commonly used traditional CNN baseline due to its residual learning structure, which 

allows the training of deeper models without degradation. It provides context for assessing improvements 

brought about by more recent models by allowing comparison against a known benchmark. [7], [16], [29]. 

DeiT-Tiny (Data-efficient Image Transformer) is a transformer-based architecture that was developed in 

order to attain competitive performance with reduced computational and data needs. It has demonstrated 

encouraging outcomes in situations with little training data. Its choice demonstrates the feasibility of 

attention-based techniques as CNN substitutes and permits the examination of the efficiency of vision 

transformers in the classification of agricultural images. [15], [25], [33]. 

Together, these five models offer a wide range of topologies, including transformer-based compact 

techniques, traditional deep CNNs, lightweight efficient models, and contemporary convolutional 

networks, ensuring a thorough comparative study that aims to determine the best and most practical 

architecture for classifying rice leaf diseases under various deployment and processing limitations. 

 

Experimental Results and Analysis 

Our study involved conducting a series of experiments focusing on detection purposes, CNN architectures 

including EfficientNet-B3, ResNet50, ConvNeXt-Small, MobileNetV2, and the DeiT-Tiny (Data-efficient 

Image Transformer) were used as the deep learning models. The experiments were conducted on Kaggle’s 

platform using an NVIDIA Tesla P100 GPU with 16GB VRAM, and the PyTorch framework. 

TensorBoard was employed for tracking experimentation metrics and progress. All images were resized 

to either 224x224 or 240x240 pixels depending on the experiment with 5 folds cross-validation, The 

models were trained with a batch sizes from 64 to 16, depending on the model complexity, and 40 epochs. 

Learning occurs at a rate of 1e-4. Every model utilized the Adam Optimizer for training. To assess the 

performance of the models, metrics such as accuracy, precision, recall, F1-score, and confusion matrix 

were employed, ensuring high accuracy and reliability in practical applications. 

 

Table 1. Class-wise average performance metrics(precision, recall, f1-score, and support) for all 

models across disease classes with transfer learning. 

Model Bacterial Leaf Blight Brown Spot Leaf Blast Leaf Smut Tungro Others Healthy 

ConvNeXt Small 

Precision 0.9915 0.9401 0.8636 0.5178 0.9799 0.8581 0.8638 

Recall 0.9776 0.9660 0.3504 0.9966 0.9701 0.8552 0.9058 

F1-score 0.9845 0.9529 0.4985 0.6815 0.9750 0.8567 0.8843 

Support 357 471 488 292 301 297 329 

EfficientNetB3 

Precision 0.9972 0.9784 0.8217 0.5187 0.9797 0.8771 0.8970 

Recall 0.9804 0.9639 0.3873 1.0000 0.9635 0.8889 0.8997 

F1-score 0.9887 0.9711 0.5265 0.6830 0.9715 0.8829 0.8983 

Support 357 471 488 292 301 297 329 

MobileNetV2 

Precision 0.9884 0.9280 0.8539 0.5187 0.9608 0.8133 0.8676 

Recall 0.9580 0.9575 0.3115 1.0000 0.9767 0.8653 0.8967 
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During training, the objective is to reduce this loss, which signifies that the model is effectively grasping 

the connection between the input data and the related output targets. Con- versely, validation loss evaluates 

the model’s performance on new data that it has not encountered before. Keeping an eye on the validation 

loss is crucial for understanding whether the model has grasped significant patterns or if it is merely 

overfitting. 

 

1.4 Model Performance Analysis 

Among the evaluated models, EfficientNetB3 achieved the highest mean validation accuracy of 84.22%, 

along with consistently strong performance across all disease categories. Its superior F1-scores, even on 

challenging classes like Leaf Blast (0.5265) and Leaf Smut (0.6830), indicate robust gen- eralization. 

ConvNeXt-Small and ResNet-50 also performed competitively, particularly for classes such as Bacterial 

Leaf Blight and Tungro, both exceeding F1-scores of 0.96. 

However, Leaf Blast and Leaf Smut emerged as the most diffi- cult classes to detect for all models. For 

instance, ConvNeXt- Small had a precision of 0.8636 for Leaf Blast but a sig- nificantly lower recall of 

0.3504, suggesting a high false negative rate. DeiT-Tiny struggled with recall in both Leaf Blast (0.2807) 

and Healthy (0.9331), although it performed well for Tungro and Bacterial Leaf Blight. 

 

 
Figure 4. Confusion Matrix for each Model. 

F1-score 0.9730 0.9425 0.4565 0.6830 0.9687 0.8385 0.8819 

Support 357 471 488 292 301 297 329 

ResNet-50 

Precision 0.9943 0.9759 0.8333 0.5164 0.9797 0.8307 0.8649 

Recall 0.9748 0.9469 0.3689 0.9726 0.9601 0.8923 0.9149 

F1-score 0.9844 0.9612 0.5114 0.6746 0.9698 0.8604 0.8892 

Support 357 471 488 292 301 297 329 

DeiT-Tiny 

Precision 0.9915 0.9465 0.8839 0.5187 0.9796 0.8046 0.7656 

Recall 0.9804 0.9384 0.2807 1.0000 0.9568 0.8182 0.9331 

F1-score 0.9859 0.9424 0.4261 0.6830 0.9681 0.8114 0.8411 

Support 357 471 488 292 301 297 329 
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1.5 Error Analysis and Misclassification Patterns 

Confusion Matrix:  

The confusion matrix offers an in- depth perspective on the effectiveness of a model by presenting the 

numbers of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). 

Confusion matrices are useful instruments for assessing and contrasting various models, determining 

suitable thresholds, and comprehending the compromises among different performance metrics. 

The aggregated confusion matrices in Figure 4 revealed frequent misclassifications between Leaf Blast, 

Brown Spot, and Leaf Smut, likely due to overlapping visual characteristics such as similar lesion shapes, 

colorations, or textures. This highlights the importance of fine-grained feature discrimination, which could 

be improved using attention-based techniques or explainable AI tools such as Grad-CAM in future work. 

From the loss curve in Figure 5, we can see that the loss were around 0.6 to 0.8. Overall EfficientNetB3 

shows the highest average accuracy among all for generalized images that we can see from Table II. 

 

Table 2. Average Accuracy 

Model Accuracy 

ConvNeXt Small  0.8323 

EfficientNetB3  0.8422 

MobileNetV2  0.8217 

ResNet-50  0.8335 

DeiT-Tiny  0.8122 

 

 
Figure 5. Validation Loss 

 

1.6 Deployment and Real-world Consideration 

Although EfficientNetB3 offers the highest overall perfor- mance, lightweight models like MobileNetV2 

and DeiT-Tiny are more suitable for deployment on mobile or embedded devices due to their smaller size 
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and lower computational cost. These models could serve as the backbone of a mobile application that 

enables farmers to capture leaf images and receive real-time diagnostic feedback, thereby facilitating early 

disease intervention. 

In addition to accuracy, we considered the relative computa- tional demands of each model during training. 

Architectures such as EfficientNet-B3 and ResNet-50, with deeper layers and higher parameter counts, 

required noticeably longer train- ing durations and higher GPU memory usage. In contrast, lightweight 

models like MobileNetV2 and DeiT-Tiny com- pleted training more quickly and consumed fewer 

resources. These characteristics make lightweight models more practical for mobile or edge deployment, 

particularly in environments with limited computing power or energy constraints. 

Such an application could be developed using frameworks like TensorFlow Lite or PyTorch Mobile, with 

the model hosted on-device or through a cloud-based API. This vision supports smart agriculture 

initiatives and offers a practical path for applying the models in real farming environments. 

Moreover, exploring ultra-lightweight architectures such as MobileViT, GhostNet, and EfficientFormer 

may enable more efficient inference on edge devices. Finally, integrating explainability tools and visual 

error diagnostics will further improve the interpretability of the proposed system. 

In this paper, we have 

• Evaluated five deep learning models on a custom multi- class rice disease dataset using transfer 

learning. 

• Identified consistent misclassification in Leaf Blast and Leaf Smut classes due to inter-class similarity. 

• Demonstrated EfficientNetB3 as the most reliable model overall in terms of precision and F1-score. 

• Highlighted MobileNetV2 and DeiT-Tiny as suitable for lightweight mobile or embedded 

deployment. 

• Proposed a mobile-based use case to support practical disease diagnosis in agricultural settings. 

• Outlined limitations and provided a roadmap for future enhancements, including error analysis, model 

explainability, and edge deployment optimization. 

 

Conclusion 

The research emphasizes the potential of Deep learning models for computer vision in automated rice 

disease detection  and  demonstrates  how  real  life  images  can impact the models in detecting the right 

diseases for practical agricultural applications. Leveraging the strength of advanced architectures like 

ConvNeXt Small, EfficientNetB3, MobileNetV2, Resnet50, and Deit-Tiny we have shown the possibility 

of using an AI-driven Agricultural diagnosis system for detecting rice diseases in practice scenarios, 

keeping the context of Bangladeshi farmers. To ensure wider impact and adoption among farmers, future 

research and development should concentrate on improving these models using a more diverse set of 

training images covering more diseases and broadening their applicability. Enhancing mobile applications 

with agricultural advisory and features like an interactive chatbot-based recommendation system for real-

time farmer support. Farmers in resource-constrained regions would find the applications more useful, 

accessible, and efficient because of these developments. 
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